
On Composition of Checkpoint and Recovery
Protocols for Distributed Systems

Soumi Chattopadyay1, Ansuman Banerjee1, and Himadri Sekhar Paul2(B)

1 ACMU, Indian Statistical Institute, Kolkata, India
{soumi r,ansuman}@isical.ac.in

2 Innovation Labs, TCS Ltd., Kolkata, India
HimadriSekhar.Paul@tcs.com

Abstract. Rollback recovery has been studied as a low-cost fault toler-
ance mechanism for ensuring dependability of critical distributed appli-
cations. There is a rich variety of recovery protocols proposed in literature
and they are broadly classified as checkpoint-based recovery protocols and
message-log based recovery protocols. In this paper we attempt to model
composition of protocol and check whether such composition is consis-
tent with recovery. The composition of protocols in important in a system
whether resources are hierarchically organized, for example grid or cloud
systems.

1 Introduction

Distributed systems have always been looked at as a powerful computation plat-
form for addressing and mitigating the resource limitations of a single-node sys-
tem in terms of compute power or available memory. Over the past few years, dis-
tributed systems have evolved into the grid and then the cloud, imparting more
control and ease of access to such distributed infrastructures. Such infrastruc-
tures have often been defined as a federation of resources from multiple admin-
istrative domains.

A distributed system like a grid or cloud, which is termed here as a global
infrastructure or simply a global system, is composed of multiple smaller dis-
tributed installations, termed here as native systems or native clusters. Each
native system is a conglomeration of basic resources, like computing nodes. Typ-
ically a native cluster is located in a constrained geography, for example, in the
department of some university. But the clusters themselves can be geographi-
cally dispersed. Although the resources are managed in a hierarchical manner,
the whole system is presented as a single system to the user. At the same time,
it is important to maintain administrative segregation among the participating
native systems to honor their own administrative policies. To maintain a single
system view of the global infrastructure, it becomes important that some of the
system level services of the constituent native systems may need to be combined
to provide a system-wide, single, consistent service.

Fault tolerance remains a critical aspect of such systems and is being
addressed in various ways depending on the services they provide. In this paper,
c© Springer-Verlag Berlin Heidelberg 2016
A. Norta et al. (Eds.): ICSOC 2015 Workshops, LNCS 9586, pp. 231–242, 2016.
DOI: 10.1007/978-3-662-50539-7 19



232 S. Chattopadyay et al.

we assume that the native clusters employ some rollback recovery mechanisms
as fault tolerance. These native recovery protocols are combined by some global
recovery protocol to ensure system-wide consistent recovery. In this paper, we
investigate the problem of composing different recovery protocols in a cluster-
based distributed system. Section 2 presents discussions on definitions and mod-
els related to distributed systems. In Sect. 3, we present a model of a recovery
protocol. Analysis of composition consistency of recovery protocols based on this
model is presented in Sect. 4. Finally, Sect. 5 concludes this paper with directions
for future work.

2 Background

A distributed system is a collection of independent resource nodes connected
over a network. Since node failures and communication link malfunctions are
assumed to be independent events, larger the system - higher is the probability
of failure. Fault tolerance is, therefore, an important issue in distributed systems
and is critically linked to reliability, availability, and throughput. Fault tolerance,
however, can only be achieved through some form of redundancy. There are
different levels of guarantees for different forms of redundancy and with different
associated cost. Rollback recovery is a form of temporal redundancy which has
been proposed as a cost-effective mechanism of fault tolerance for non-critical
distributed applications. The following section presents a model of distributed
systems which we use for the illustration of our key concepts.

2.1 Model of Distributed System

A distributed system consists of a set of n processes P = {P1, P2, . . . Pn}. The
processes are connected by underlying communication channels, C = {Cij | 1 ≤
i, j ≤ n}, where channel Ci,j denotes a uni-directional channel from Pi to Pj .
Execution of a single process Pi is modelled as a state transition system Si. State
transitions are triggered by events. Events in distributed systems are classified
as two types: (1) local events like computation events, message send events; and
(2) external events, like message receive events. A local checkpoint of a process
Pi is a concrete realization of its execution state.

The execution model of the distributed system is the composition of the
state transition systems of the constituent processes, i.e. S = S1 × S2 × · · · ×
Sn. The global state of a distributed system is represented as the tuple DS =
(SP, SC), where SP = {si|si is the state information for pi ∈ P} and SC =
{cij |1 ≤ i, j ≤ n} where, cij is a set of in-transit messages from pi to pj . A
global checkpoint is a composition of local checkpoints, one taken from each of
the processes and also the state of the channels, which essentially represent the
in-transit messages in the channels.

A recovery process uses information recorded during the failure-free execution
of the system to construct a consistent global state. The necessary condition that
a recovery is consistent is that, for every message received by some process in the



On Composition of Checkpoint and Recovery Protocols 233

system, the corresponding send events are recorded in the state of the sender.
In the next section, we present a model of consistent recovery, which we use for
protocol composition.

3 Recovery Consistency Model

Protocols that employ temporal redundancy for fault tolerance, can be broadly
classified into two categories, namely checkpoint-based rollback recovery and
message-log-based roll-forward recovery. Checkpoint-based recovery ensures roll-
back of system state to some past consistent state. Message-log based recovery
uses roll-forward in conjunction with rollback recovery, where the processes are
assumed to follow the Piece-Wise Deterministic (PWD) model [12]. Accord-
ing to the model, execution of a process is divided into series of determinis-
tic executions, each terminated by a non-deterministic event or external event,
like a message receive event. For example, Fig. 1 depicts one execution instance
where a process has passed through the states s1, s2, s3, s4, and s5 in sequence.
The state transitions were triggered by events e1, e2, e3, and e4 in that order.
Events e1 = receive(m1) and e2 = receive(m2) are non-deterministic events.
The deterministic executions are highlighted with rectangular boxes. The non-
deterministic events are logged and are replayed during recovery. In message
passing distributed systems, the log consists of messages. We now define an
operation PWD which, given the local state of a process and a set of non-
deterministic event logs, determines the state at which the process can finally
be rolled forward following the PWD model.

Definition 1. Reachable by PWD: The reachability of a state ss with respect
to an event log M in the PWD model is defined as PWD(ss,M) = sf where, ss
is the start state, sf is the final state reached by PWD model from ss by replaying
events from M .

We also use an alternative notation ss �M sf for PWD(ss,M) = sf . If a
process is not assumed to follow PWD model, we say PWD(s, �) = s.

With reference to Fig. 1, consider the message log M = {m1}. The state of
the system can be rolled-forward from s1 to s2 by replaying the receive event e1
from M . In fact, by PWD, the system can be rolled forward up to s4, but not
beyond s4 since m2 �∈ M . Hence s1 �M s4, but s1 ��M s5.

Piece of Determ. Exec

s1 s2 s3 s4 s5
e4e3e2e1

m1
m2

Fig. 1. Roll-forward by PWD model



234 S. Chattopadyay et al.

3.1 Consistency of Global Recovery

In the event of a failure, processes need to be restarted. However, we can start
processes from some intermediate state instead of re-starting them from their
initial states. A global checkpoint represents such a state of the system and
the recovery protocol computes such a state from available local checkpoints
of the processes. However, any composition of local states does not guarantee
consistency of the global checkpoint. In this section, we derive consistency condi-
tions which are applicable for both checkpoint-based recovery protocols, as well
as log-based recovery protocols. The essential idea of consistency is to capture
the condition that no message becomes orphan after completion of the recovery
process. We formalize the concept of the orphan message in the discussion below.
This condition for consistency of a global checkpoint is a necessary condition.
However, in an environment where the underlying communication channel is reli-
able, the recovery process must also ensure that there is no lost message, which
essentially means that for every message whose send event is captured in the
log, the corresponding receive event is present as well. Based on this discussion,
the condition of consistency can be derived as follows.

No Orphan Message: Given local states or checkpoints of a pair of processes
ps and pr, denoted as cs and cr respectively, and a message m whose sender is
the process ps and the receiver is pr; the message is said to be orphan w.r.t. the
states {cs, cr}, if the receive event is recorded in cr but the corresponding send
event is not recorded in cs. In a consistent recovery, there cannot be any orphan
message present in the recovered global state. The condition is defined here as
No Orphan Message (NOM). Given a global state DS = (SP, SC) as defined
earlier, for every pair of local checkpoints, SPi, SPj ∈ DS, the NOM criterion
denotes either there is no orphan message for (SPi, SPj) or Pi can be rolled
forward from SPi to a state s such that there is no orphan message for the pair
< s, SPj >. Formally, this is defined as,

Definition 2. Given a global checkpoint C = (SP, SC), No Orphan Message
(NOM) constraint for a pair of local checkpoints, SPi, SPj ∈ SP is defined as,

NOM(SPi, SPj) =

⎧
⎨

⎩

true if ∀receive(m) ∈ SPj :
(send(m) ∈ PWD (SPi,Mi))

false otherwise

where, Mj is the event log of receive messages at process Pj , send(m) denotes
the send event of a message m, and receive(m) denotes the receive event of a
message m,

Definition 3. No Orphan Message constraint for a global checkpoint, C, is
defined as:

NOM(C) =
∧

∀i,j

NOM(SPi, SPj) | SPi, SPj ∈ C



On Composition of Checkpoint and Recovery Protocols 235

No Lost Message. Given local states or checkpoints of a pair of processes ps
and pr, denoted as cs and cr respectively, and a message m whose sender is the
process ps and the receiver is pr; the message is said to be lost w.r.t. the states
{cs, cr}, if the send event is recorded in cr but the corresponding receive event is
not recorded in cs. In a system, where the underlying communication channels
are reliable, a recovery protocol must ensure that there are no lost messages in
the recovered state to ensure consistency. Given a global state DS = (SP, SC)
as defined earlier, the condition of No Lost Message (NLM) is described for a
pair of local checkpoints SPi, SPj ∈ DS as follows:

– Either, there is no lost message for (SPi, SPj)
– Or, for every in-transit message m from Pi to Pj , m ∈ SCij , where SCij ∈ DS
– Or, Pj can be rolled forward to a state s such that for the state pair < SPi, s >,

there is no lost message or every in-transit message is included in the channel
state SCij .

Definition 4. Given a global checkpoint C = (SP, SC), the No Message Loss
constraint for a pair of checkpoints SPi, SPj ∈ SP , can be defined as follows:

NLM(SPi, SPj) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

true if ∀send(m) ∈ SPi :(
receive(m) ∈ PWD(SPj ,Mj)

⊕ (m ∈ SCij | SCij ∈ SC)
)

false otherwise

Definition 5. No Lost Message (NLM) constraint for the global checkpoint, C,
is defined as:

NLM(C) =
∧

∀i,j

NLM(SPi, SPj)|SPi, SPj ∈ C

3.2 Consistency of Global Checkpoint

A failure free run of a distributed system is one of its many valid execution
paths. Consistency of a global checkpoint ensures reachability of a global state
which could have been reached by the system in some failure free run. However in
none of these possible execution paths, an orphan message generation is possible.
Consistency criterion of a global state must ensure that such conditions are not
violated. Any arbitrary composition of local checkpoints into a global checkpoint
does necessarily make it consistent. We now define the consistency criterion for
a global checkpoint.

Definition 6. Given a global checkpoint C = (SP, SC)

consistent(C) ⇔

⎧
⎪⎪⎨

⎪⎪⎩

NOM(SPp, SPq) ∀SPp, SPq ∈ SP
. . .when the channels are unreliable

NOM(SPp, SPq) ∧ NLM(SPp, SPq) ∀SPp, SPq ∈ SP
. . .when the channels are reliable



236 S. Chattopadyay et al.

Intuitively, the definition above signifies that a collection of local checkpoints,
as a global checkpoint, is consistent only when there is no orphan message, given
any pair of local checkpoints from this collection. However, if the underlying
communication channels are reliable, the consistency criterion is more stringent
and must additionally satisfy ‘no lost message’ constraint.

3.3 Fault and Recovery Model

We now present a discussion on the fault and recovery model of the system fol-
lowing Hoare’s logical notations denoting logical derivation from a set of given
expressions [4]. For example, P Q

R expression denotes logical derivation of the
expression R from given expressions P and Q. Fault and recovery can be mod-
elled as processes. A fault takes the system to an unknown, possibly inconsistent
state. A fault can occur at any time, therefore,

{∗}
I {F} �

where I is a consistency invariant condition, F denotes the fault. We denote
unknown or unspecified condition as �. The numerator denoted by ∗ stands for
the fact that the fault can manifest at any state, denoted by the symbol ∗.

The recovery process takes the system from an unspecified state to a state
where the consistency criterion holds. We assume that no fault occurs during
the recovery procedure. Therefore,

� {R} I

where I is a consistency invariant condition as above, R denotes the recovery
process.

In these cases, I can be the global state condition tuple {NOM,NLM},
denoted in our usual representation of (process state, channel state) when the
underlying channels are lossless or {NOM} when the underlying channels are
lossy.

When a fault process is triggered, a recovery process must be subsequently
triggered, and the objective of the recovery process is to restore the system to a
consistent state. Therefore, under the composition operator (◦), the final system
remains in a consistent state.

I {F} �, � {R} I

I {F ◦ R} I

Assumption 1. Given a consistent global state C, recovery with C leads to a
consistent recovery.

consistent(C)
� R(C) I



On Composition of Checkpoint and Recovery Protocols 237

4 Hierarchical Protocol Analysis

A cluster-based distributed system is composed of several clusters of machines
where the clusters may be geographically dispersed and administered by inde-
pendent organizations. As a consequence, different clusters can employ different
checkpoint and recovery protocols. Figure 2 shows a snapshot of execution of
processes in two different clusters. The figure shows the communication pattern
and local checkpoints of the processes. Each of the clusters employ checkpoint
and recovery protocols independent of each other. For a simple case, we assume
both the clusters employ the same protocol. We analyze the consistent recovery
phenomenon under this most simple setup. We also present an analysis of sce-
narios involving two and three protocols being composed. Composition involving
more than one protocol is more complex than composing two instances of the
same protocol since the requirements of the individual checkpointing protocols
and their corresponding recovery protocols may be very different.

In a general framework of hierarchical protocols, there are two key elements,
a global protocol which interacts with nodes outside its own cluster and a local
protocol which implements the native checkpoint and recovery protocol inside the
cluster. Native protocols are well known protocols found in literature. The global
protocol is used to combine natives protocols running in different clusters so that
a consistent recovery can be ensured across the whole system. Each cluster may
have a node specially designated as the leader node, which usually acts as the
local coordinator whenever coordination is demanded by the global protocol.

4.1 Composition with Un-Coordinated Protocol

We begin our analysis with the simplest case of hierarchical composition of
checkpoint and recovery protocols, where all the clusters in the system use a

Checkpoint

m

C
lu
st
er
−1

C
lu
st
er
−2

P11

P12

P13

P21

P22

P23

Fig. 2. Communication pattern involving two clusters



238 S. Chattopadyay et al.

completely un-coordinated checkpointing protocol cite. The checkpointing pro-
tocol in this case is trivially composed where the global protocol has no role to
play. However, the corresponding recovery protocol requires coordination among
all nodes to construct a consistent global recovery state and this objective needs
to be achieved by the global protocol. The global recovery line can be computed
from partial Rollback Dependency Graphs (RDGs) maintained by all nodes in
the system [13]. Algorithm 1 presents an outline of the global recovery protocol.
The proof of the recovery is trivial and is guaranteed by the native recovery
protocol and is not elaborated here.

Algorithm 1. Global Recovery Protocol
1: procedure GlobalRecoveryCoord
2: The failed process initiates recovery by sending Recovery Request Message to

all the leader processes in the system.
3: All Leaders on receipt of the Recovery Request Message broadcast the Recovery

Request Messages to all nodes in its own cluster.
4: All nodes on receipt of the Recovery Request Message construct RDGs based

on their partial view of the dependency of the checkpoints and send to the their
leader process (native recovery procedure)

5: The leader combines the RDGs and sends to the failed processes
6: The failed process on receive of responses from all leader processes combines

the RDGs and identifies the recovery line (native recovery process)
7: The failed process sends the recovery line to all leaders
8: The leader broadcasts the recovery line in its cluster
9: All nodes, on receipt of the recovery line roll back to the checkpoint identified in

the recovery line and delete all local checkpoints beyond the recovery line (native
recovery process)

10: end procedure

4.2 Composition with Coordinated Checkpointing Protocol

We address another scenario where all the clusters use a coordinated checkpoint
and recovery protocol based on the two-phase commit protocol [3] as the native
protocol. This allows them to work independently without any global protocol.
It can be easily shown that this simple composition cannot guarantee a con-
sistent recovery and a counter-example is depicted in Fig. 2 in support of this
claim. The recovery lines in the individual clusters are highlighted. However,
these two recovery lines are not consistent with each other due to the pres-
ence of the inter-cluster message m. If the global state recovers to the yellow
recovery line highlighted in the figure, then m becomes an orphan message,
i.e. NOM(SP12, SP22) does not hold, where SP12 and SP22 are the checkpoints
of P12 and P22 respectively on the recovery line.

In general, due to consistency of native recoveryprotocols,NOM(SPki, SPkj) :
1 ≤ i, j ≤ nk holds, where SPki and SPkj are checkpoints of processes Pki ∈ Kk

and Pkj ∈ Kk respectively, Kk represents the kth cluster, and nk is the number



On Composition of Checkpoint and Recovery Protocols 239

of nodes in Kk. However, trivially NOM (SPki, SPlj) does not hold, where SPki

and SPlj are checkpoints on the recovery line of clusters Kk and Kl respectively.
This violation is usually due to the inter-cluster message as depicted in the example
above.

One possible method of composition to eliminate orphan inter-cluster mes-
sages is to impose coordination of checkpointing activities among clusters
through a global protocol. However, this translates to the fact that all checkpoint-
ing and recovery activities become a global event and by the guarantees of the
coordinated checkpointing protocol, the recovery is always consistent. Another
way of composition is by selectively blocking clusters, during global level coordi-
nation. Paul et al. proposed this solution, where a process is blocked whenever it
attempts to send an inter-cluster message during a global level coordination for
checkpointing [10]. They implement the rule as Policy B, which, when in force,
blocks the process on receipt of any inter-cluster message. The message can only
be processed once the policy is revoked at the termination of global checkpoint
coordination.

In the later sections, we explore more complex scenarios where multiple native
checkpoint and recovery protocols are used among clusters.

4.3 Composition of Two Heterogeneous Protocols

In this section, we consider the composition problem in the context of two clus-
ters, each employing its own checkpoint & recovery protocol. The case can be
generalized to any number of clusters, where there are two different protocols
being employed, with some processes running the first protocol and some running
the second. We analyze the case of composition of coordinated checkpointing [5]
and a pessimistic message-log-based recovery protocol [1]. Initially, we assume
that they are trivially composed with no global protocol to coordinate activities
between two different clusters. We have already shown that without global coor-
dination, two clusters with coordinated checkpointing protocol cannot ensure
consistent recovery. Also, without global coordination, a cluster with coordi-
nated checkpointing cannot be consistent with the cluster employing message-log
based recovery. Consider Fig. 2 and let us assume cluster-1 employs a log-based
recovery protocol and cluster-2 employs coordinated checkpointing. In the event
of a failure, by the native recovery protocol, the coordinated cluster rolls back to
its previous checkpoint, while the log-based recovery protocol only restarts the
failed process and rolls forward its state by replaying messages from its message
log. Consider a failure in cluster-2 which, by its native recovery protocol, rolls
back to the state highlighted in the figure. However, the processes in cluster-1
continue execution. Now, after recovery of the processes in cluster-2, it becomes
inconsistent since NOM (SP12, SP22) does not hold due to the presence of m,
which now is an orphan message.

In a cluster with log-based recovery protocol, only the failed process recovers
by restart and roll-forward mechanism. No other process takes part in the recov-
ery activity. So after recovery, by the guarantee of the native recovery process,
the recovered process becomes consistent with the states of rest of the processes



240 S. Chattopadyay et al.

in the system. In order to eliminate any possibility of generation of orphan mes-
sage in the event of a rollback in a cluster with coordinated checkpointing, the
global protocol must ensure that the cluster does not rollback beyond any send
event of an inter-cluster message. A forced checkpoint in the clusters with coor-
dinated checkpointing after every send event of an inter-cluster message, was
proposed as a solution in [11]. Due to this enforcement by the global protocol,
in the event of a recovery, a cluster with coordinated checkpoint never rolls back
beyond any send event of an inter-cluster message. Therefore, after recovery
NOM (SPki, SPlj) holds, where SPki is the recovered state of a process in the
kth cluster and SPlj is the same for the lth cluster, and k �= l. Again by the
guarantees of native recovery protocol of a cluster, NOM (SPki, SPkj) holds
for intra-cluster messages. Therefore, NOM holds for any two processes in the
system and hence the recovery is consistent.

4.4 Composition of Three Protocols

In this section, we attempt to compose three different protocols, namely coor-
dinated checkpointing and recovery [5], receiver-based pessimistic message log-
based recovery [1], and quasi-synchronous checkpointing protocol [6]. We assume
each cluster employs one of these three types of protocol. The recovery consis-
tency guarantee provided by the protocols are as follows:

NOM (SCki, SCkj) kth cluster employs coordinated checkpointing
NOM (sli, PWD(�,Mkj)) kth cluster employs log-based recovery and k �= l

� represents the restarted state
NOM (SCki, SCkj) kth cluster employs quasi-synchronous

checkpointing

The composed global checkpoint and recovery protocol must ensure the NOM
condition for local states of all processes after recovery. A failure in the clus-
ter employing log-based recovery is trivially consistent with states of all other
processes by the guarantee of the protocol. Since violations of NOM condition
arises due to inter-cluster messages, processes in clusters employing coordinated
checkpointing or quasi-synchronous checkpointing must force extra checkpoints
so that these processes never roll back beyond the send event of any inter-cluster
message. The message send procedure is shown in Algorithm 2.

Algorithm 2. Message Send Event Handler for Clusters with Coordinated and
Quasi-Synchronous Checkpointing

procedure MsgSendHandler(m : Message to be send)
Buffer m
Initiate coordinated checkpointing protocol
On completion of the native checkpointing successfully, release m to be
sent through network.

end procedure



On Composition of Checkpoint and Recovery Protocols 241

We now prove that the global protocol with the message handler described
in Algorithm 2 ensures consistent recovery in all clusters.

Proof. We need to prove that after rollback, the states of the processes are
consistent with respect to each other. There can be two cases for a pair of
processes, (1) both belong to the same cluster, and (2) both belong to different
clusters. For the first case, the consistency of the states of the processes are
guaranteed by the consistency of the native recovery protocol. We prove the
second case by contradiction. Let the processes be Pki and Plj and they belong
to clusters Ck and Cl respectively and k �= l. Let the states of the processes after
recovery be ski and slj respectively. We assume NOM(ski, slj) does not hold.
Without loss of generality, there must be an inter-cluster message m sent before
ski and received before slj . There can be the following cases.

Case 1: Cl employs log-based protocol and Ck employs Coordinated checkpointing.
During recovery, by native recovery protocols, Pli does not rollback and continues
with its normal operation. Pkj recovers to its latest checkpoint. But, due to the
Algorithm 2, there cannot be any send event of an inter-cluster message recorded
after skj . Hence a contradiction.

Case 2: Cl employs log-based protocol and Ck employs Quasi-Synchronous check-
pointing. Same argument as in case 1 holds.

Case 3: Cl and Ck both employ either Coordinated or Quasi-Synchronous check-
pointing. By the application of Algorithm 2, there cannot be any inter-cluster
message send event beyond the recovered state of either Pki or Plj . Hence a
contradiction. ��

4.5 Related Work

The first work towards composition of protocols for hierarchical distributed sys-
tems was by Paul et al. [9] where they demonstrated that cluster-based systems
running a coordinated checkpointing protocol and a communication induced
checkpointing (CIC) protocol can be combined by a higher level checkpoint and
recovery protocol to provide a consistent recovery. Monet et al. worked in the
same direction and presented a more detailed protocol where they combined
clusters running coordinated checkpointing with the method of the CIC pro-
tocol as global protocol [7]. Paul et al. also proposed a method to combine a
coordinated checkpointing protocol with a message logging protocol [11]. Bhatia
et al. proposed a hierarchical causal logging protocol that addresses the scala-
bility problems of causal logging [2]. Ndiaye et al. present a comparison of these
protocols obtained through composition by simulation using OmNet+ [8]. To the
best of our knowledge, a formal treatment of protocol composition as discussed
in this paper, is missing in literature.

5 Conclusion

In this paper, we discuss a model of checkpoint and recovery protocols for mes-
sage passing distributed systems and extracted consistency criterion of a recov-
ery process. The model we present is extended for inclusion of message-log based



242 S. Chattopadyay et al.

recovery protocols. The motivation behind the model is to apply the same for
protocol compositions and deduce the consistency of the recovery. Such composi-
tion is meaningful in a cloud or grid computing scenario, where multiple clusters
from multiple administrative domains participate in the system. We apply the
model on simple compositions involving various checkpoint and recovery proto-
cols. We believe that this study will open up future research avenues on more
protocol variants.

References

1. Alvisi, L., Murzullo, K.: Message logging: pessimistic, optimistic, causal and opti-
mal. IEEE Trans. Softw. Eng. 24, 149–159 (1998)

2. Bhatia, K., Marzullo, K., Alvisi, L.: Scalable causal message logging for wide-area
environments. Concurency Comput. Pract. Exp. 15(3), 873–889 (2003)

3. Gray, J.N.: Notes on database operating systems. In: Bayer, R., Graham, R.M.,
Seegmüller, G. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer,
Berlin (1978)

4. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

5. Koo, R., Toueg, S.: Checkpointing and rollback-recovery for distributed systems.
IEEE Trans. Softw. Eng. SE–13(1), 23–31 (1987)

6. Manivannan, D., Singhal, M.: A low-overhead recovery technique using quasi-
synchronous checkpointing. In: Proceedings of the 16th International Conference
on Distributed Computing Systems, pp. 100–107, May 1996

7. Monnet, S.: Hybrid checkpointing for parallel applications in cluster federations. In:
Proceedings of 4th IEEE/ACM International Symposium on Cluster Computing
and the Grid, pp. 773–782 (2004)

8. Ndiaye, N.M., Sens, P., Thiare, O.: Performance comparison of hierarchical check-
point protocols grid computing. Intl. J. Interact. Multimedia Artif. Intell. 1, 46–53
(2012)

9. Paul, H.S., Gupta, A., Badrinath, R.: Combining checkpoint and recovery algo-
rithm for distributed systems. In: 3rd Workshop on Distributed Computing, pp.
68–72 (2001)

10. Paul, H.S., Gupta, A., Badrinath, R.: Hierarchical coordinated checkpointing pro-
tocol. In: IASTED PDCS, pp. 235–240 (2002)

11. Paul, H.S., Gupta, A., Badrinath, R.: A heterogeneous checkpoint and recovery
protocol in cluster-based distributed systems. In: PDPTA, pp. 1224–1230 (2003)

12. Strom, R., Yemini, S.: Optimistic recovery in distributed systems. ACM Trans.
Comput. Syst. 3(3), 204–226 (1985)

13. Wang, Y.M.: Reducing message logging overhead for log-based recovery. In: Pro-
ceedings of IEEE International Symposium on Circuits and Systems, pp. 1925–1928
(1993)


	On Composition of Checkpoint and Recovery Protocols for Distributed Systems
	1 Introduction
	2 Background
	2.1 Model of Distributed System

	3 Recovery Consistency Model
	3.1 Consistency of Global Recovery
	3.2 Consistency of Global Checkpoint
	3.3 Fault and Recovery Model

	4 Hierarchical Protocol Analysis
	4.1 Composition with Un-Coordinated Protocol
	4.2 Composition with Coordinated Checkpointing Protocol
	4.3 Composition of Two Heterogeneous Protocols
	4.4 Composition of Three Protocols
	4.5 Related Work

	5 Conclusion
	References


