
Toward the Formalization of BPEL

Laila Boumlik and Mohamed Mejri(B)

Department of Computer Science, Laval University, Quebec, Canada
laila.boumlik.1@ulaval.ca, Mohamed.Mejri@ift.ulaval.ca

Abstract. During the recent years, the composition, the orchestration
and the interaction of web services have generated a great deal of interest
for the Internet community. BPEL is the most important standard lan-
guage for web services orchestration. It provides a variety of constructors
allowing to build complex services from simple ones. However, many of
its features are complex and source of a large misunderstanding due to
the absence of formalization. For instance, understanding the Event Han-
dler, the Fault Handler, the Compensation Handler and the Termination
Handler (EFCT) of BPEL is a big challenge even for an experienced pro-
grammer.

This paper aims to formalize the EFCT fragment of BPEL using a
process algebra called AV-BPEL specially defined to fit with the BPEL
language and endowed with a small steps operational semantics.

Keywords: Web services · BPEL · Formal methods · Process algebra

1 Introduction

With the great success of Service Oriented Computing (SOC) [1], web services
are becoming the main model for automated interaction between distributed
systems on the Web. SOC is based on the composition of several services that
are typically designed to interact with other web services through the Internet to
form larger applications. Standard web service framework are essentially based
on three technologies: SOAP [2], WSDL [3] and UDDI [4]. The WSDL (Web Ser-
vice Description Language) provides an abstract language to describe messages
to be exchanged between services. The SOAP (Simple Object Access Protocol)
is a protocol for exchanging structured information between the involved par-
ties and the UDDI (Universal Description Discovery and Integration) is used to
publish and discover web services.

Having the possibility of constructing new web services by composing existing
ones has opened a new interesting prospective and has significantly influenced
the way industrial applications are developed. BPEL (Business Process Execu-
tion Language) [6] is the standard of web services composition and orchestration.
Among the interesting features of this expressive language, we found the fault
and the compensation handling mechanism. In fact, sometime it is useful to give
the end-users the possibility to cancel some services if other fails. For example,
if Alice wants to book a plane ticket and a hotel for a given period of time but
c© Springer-Verlag Berlin Heidelberg 2016
A. Norta et al. (Eds.): ICSOC 2015 Workshops, LNCS 9586, pp. 157–167, 2016.
DOI: 10.1007/978-3-662-50539-7 13

158 L. Boumlik and M. Mejri

after booking the hotel she does not find an appropriate plane ticket, then it is
desirable to allow her to cancel the hotel reservation. Compensation are intro-
duced in BPEL to give the possibility to remedy a situation where an activity
of a group fails whereas others terminated with success.

Even if the global ideas of the fault handler and the compensation handler are
clear, it remains that there are a large number of particular cases that need to be
handled: Which fault handler catches which error? Which compensation handler
needs to be called after a given error? Which activities need to be stopped when
an error occurs? What happens if an error occurs during a compensation? What
happens if an error occurs in a fault handler itself? These are only a part of the
particular situations that need to be clarified. Combined with other features, like
event handler and termination handler, the number of these kind of questions
explode justifying the urgent need of a suitable formalization for BPEL.

Contribution: The main contribution of this paper is a detailed formalization
of the EFCT of BPEL, that address the above questions, based on a dedicated
process algebra endowed with a small step operational semantics.

The remainder of this paper is organized as follows. Section 2 presents a
simplified language that abstracts BPEL for XML syntax and formalizes it.
Section 3 gives some related work. Finally, some concluding remarks are given
in Sect. 4.

2 BPEL Formalisation

2.1 Syntax of AV-BPEL: Abstracted Version BPEL

Let b be a metavariable that ranges over Boolean expressions and Exp ranges
over classical expressions like arithmetic and string expressions. The syntax of
AV-BPEL, a fragment of BPEL that is abstracted from XML syntax, is given
by the BNF grammar given in Table 1.

A basic activity A contains an empty process (NOP action) 1, an exit process
0, a Boolean expression b, an assignment expression x := Exp, a throw action
�e, a send action a!−→v and a receive action a?−→x .

A composed activity S can be any basic activity in A, a different composition
of two activities or or a scope < E , F, C, T,E, S >n.

A process Pr (either < E , F,E, S >n or < E , F,E, I >n) has a name n,
a running environment E , a fault handler F an event handler E and either a
normal activity S or an instantiation bloc I.

An instantiation bloc I allows a service to fork an activity when a request of
an operation is received (a?−→x).

An event handler E always starts by waiting for some event (receiving a
message or an alarm based on a “timing out”).

A compensation handler (respectively a termination handler) can be a basic
activity, an indication to compensate a particular scope $n or $, an indication
to compensate all the reached scopes that terminated with success. It can also

Toward the Formalization of BPEL 159

Table 1. Syntax of BPEL.

160 L. Boumlik and M. Mejri

be a root scope RS (similar to a normal scope except that it cannot contains a
compensation handler itself.).

A fault handler can be a basic activity, a catch for a named error (�e), a
catch all �, an indication to compensate a particular scope $n or $, an indication
to compensate all the reached scopes that terminated with success. It can also
be a root scope RS.

Besides the above constructors, we introduce a deployment D that does not
belongs to the syntax of BPEL, it is useful to formalize asynchronous communi-
cations where the sent action is not blocking whereas the receiving is blocking.

2.2 Semantics

Let D be set of all possible deployments, and let P , Q and R range over D. The
operational semantics of AV-BPEL is defined by the transition relation −→∈
D × A × D. Table 3 gives some standard rules that are true for all deployments
P , P1, Q and Q1. Also, it uses the equivalent relation ≡∈ D × D defined by
Table 2.

Table 2. Axiom of BPEL.

P +Q ≡ Q+ P (A1) P γQ ≡ Q γP (A2)
(P +Q) +R ≡ P + (Q+R) (A3) (P γQ) γR ≡ P γ(Q γR) (A4)

0 + P ≡ P (A5) 1.P ≡ P (A6)
0 γP ≡ P (A7) 1 γP ≡ P (A8)

We denote by < E , F, C?, T ?, E, P >n a root scope or a process, i.e., the
termination handler and the compensation handler are optional.

•Communication: Sending values −→v on a channel a, denoted by a!−→v , is not a
blocking action and its produces a floating message, denoted by a↑−→v , meaning
that the message has not been received yet. Receiving messages on a channel
a, denoted by a?−→x is however always blocking until seeing a floating message
a ↑ −→v such that the correlation values in −→x match with the correlation values
in −→v . This matching is denoted by −→v � −→x , where (x1, . . . , xn) � (v1, . . . , vn) if
xi = vi or xi is a variable (i.e., there exists a substitution σ from variables to
values such that σ(−→x) = −→v .).

To formalize this asynchronous communication, we introduce the relation
−�∈ D × A × D that aims to show whether a process is ready to perform an
action. This relation is not blocking even for the reception as shown in Table 4.

Now, the communication rules are formalized as shown hereafter.

(R1
Exp)

P
x:=Exp−� Q

< E, F, C?, T ?, E, P >m
n

τ−→ < E † [x �→ v], F, C?, T ?, E,Q >m′
n

�E(Exp)� = v

(R1
b)

P
b−� Q

< E , F, C?, T ?, E, P >m
n

τ−→ < E , F, C?, T ?, E,Q >m′
n

�E(b)� = 1

Toward the Formalization of BPEL 161

Table 3. Classical Rules for −→.

Table 4. Definition of −�.

162 L. Boumlik and M. Mejri

(R!
↑)

P
a↑−→v−� Q

< E, F, C?, T ?, E, P >m
n

E(a)↑−−→E(v)−→ < E ′, F ′, C′?, T ′?, E′, Q >m′
n ‖ E(a)↑−−→E(v)

(R
?
↑)

P
a?−→x−� Q D

a↑−→v
−� D

′

< E, F, C
?
, T

?
, E, P >

m
n ‖ D

a?−→v−→ < E † (−→x �→ −→v), F, C
?
, T

?
, E, Q >

m′
n ‖ D

′
−→v � −→x

where m,m′ ∈ {F,C, FT0, FT1, TC, }, and �−� is a function that evalu-
ates an expression (Boolean expression, arithmetic expression, string expression,
etc.). For the moment, we are not interested by having more details about it.
The operator † is defined as follows:

E † (x �→ v)(y) =
{E(y) if y �= x

v if y = x

•Creating an Instance of a Process: The sysntax of BPEL gives two possibilities
to explicitly specify the fact that we want to create an instance of a process
when a message is received: first with the parameter createInstance=YES used
within the definition of a “Receive” action. This case is transformed to (a?−→x)+

in our syntax. Or by using a “Pickup” activity that contains only “OnMessage”
(same as Receive, but it does not have the createInstance option). This case
is specified by (

∑
i∈Θ ai?xi.Si)+ in our abstracted syntax.

The operational rule showing the creation of an instance are as shown here
after.

(R
4
+) I

(a?−→x)+

−� I
′

D
a↑−→v
−� D

′

< E, F, E, I >
m
n ‖ D

a?−→v−→ < E, F, E, I >
m
n ‖ < E′ † (−→x �→ −→v), F

′
, E

′
, I

′
>

m′
n ‖ D

′
−→v � −→x

•Principal Activity: Some basic rules showing the evolution of an activity are
shown by Table 3. Further behaviors are dictated by specific rules described
hereafter.

– Each error thrown by the principal activity should be caught by the fault
handler of the same scope.

(R2
A)

P
�e−→ Q F

�e−→ F ′

< E , F, C?, T ?, E, P >FT
n

τ−→< E , F ′, C?, T ?, E,Q >FT0
n

– If a throw �e doesn’t have a dedicated catch in the fault handler, then it should
be handled by the “catch all” activity.

(R3
A) P

�e−→ Q F
�e�−→ F

�−→ F ′

< E , F, C?, T ?, E, P >n
τ−→< E , F ′, C?, T ?, E,Q >FT0

n

– If there is neither a specific catch nor a “catch all” activity for a specific error,
the fault handler execute the “Compensate all” activity ($).

(R4
A) P

�e−→ Q F
�e�−→ F

�
�−→

< E , F, C?, T ?, E, P >n
τ−→< E , $, C?, T ?, E,Q >)nFT0

Toward the Formalization of BPEL 163

– When the principal activity of a scope terminates with success, the scope is
stored, in a compensation mode, for an eventual future compensation.

(R5
A) < E , F, C, T ?, E, P >n

a−→< E ′, F ′, C, T ′?, E′, 1 >n

< E , F, C, T ?, E, P >n .S
a−→ S. < E ′, F ′, 1, T ′?, E′, C >C

n

(R6
A) < E , F, C, T ?, E, P >n

a−→< E ′, F ′, C, T ′?, E′, 1 >n

< E , F, C, T ?, E, P >n
a−→< E ′, F ′, 1, T ′?, E′, C >C

n

– In a compensation mode, a scope is executed like in a normal mode, except
that we do not need to store it anymore when it terminates with success. More
precisely:

• If the activity didn’t finished yet, the compensation mode behaves like
normal mode.

(R1
C) < E , F, C, T ?, E, P >n

a−→< E ′, F ′, C ′, T ′?, E′, Q >n

< E , F, C, T ?, E, P >C
n

a−→< E ′, F ′, C ′, T ′?, E′, Q >C
n

Q �= 1

• If the activity of the compensation mode terminates, the scope is unin-
stalled.

(R2
C)< E , F, C, T ?, E, P >n

a−→< E ′, F ′, C ′, T ′?, E′, 1 >

< E , F, C, T ?, E, P >C
n

a−→ 1

•Fault Handler, Termination Handler and Compensation Handler: When an
error occurs during the execution of the main activity of a scope, the control is
passed to the fault handler which executes a list of treatments in the following
order:

1. It stops all the running activities of the scope by the help of the relation −→t.
The termination produces always a silent action τ .

(R1
FT) P

τ−→t Q

< E , F, C?, T ?, E, P >FT0
n

τ−→ < E , F, C?, T ?, E,Q >FT0
n

– Stopping a scope consists on terminating its principal activity.

(R1
T) P

τ−→t Q

< E , F, C?, T ?, E, P >n
τ−→t < E , F, C?, T ?, E,Q >n

– Terminating two parallel activities turns to terminate each one of them.

(R2
T) P1

τ−→t Q1

P1‖P2
τ−→t Q1‖P2

– Terminating an iterative activity consists in removing its code.

(R3
T) �

P ∗
1 P2

τ−→t 1

164 L. Boumlik and M. Mejri

– Stopping a sequence turns to remove all it code except those related to a
compensation.

(R4
T)

P1.P2
τ−→t P2

P1 �=< E , F, C?, T ?, E, 1 >

2. Once an activity is stopped, the termination handler of the scope is executed.

(R6
T) P �−→t

< E , F, C, T ?, E, P >FT0
n

E(a)−→ < E † a, F ′, C, T ?, E, P >FT1
n

– The termination handler can compensate activities

(R1
TC) T

$−→ T ′

< E , F, C?, T, E, S >FT1
n

$−→ < E , F, C, T ′, E, S−1 >TC
n

• The activity of a compensation handler is executed via the relation
−→c and it can be invoked only by a fault handler, a termination
handler or another compensation handler.

(R
2
TC)

< E, F, C
?
, T, E, P >

C
n

a−→c < E′
, F

′
, C

′?
, T

′
, E

′
, Q >

C
n

< E, F, C
?
, T, E, P >

TC
n

a−→ < E′
, F

′
, C

′?
, T

′
, E

′
, Q >

TC
n

a �=�n and Q �= 1

• Once the compensation is successfully terminated, the control is
turned back to the calling activity (fault handler).

(R3
TC)

< E , F, C?, T, E, P >C
n

a−→c 1

< E , F, C?, T, E, P >TC
n

a−→ < E , F, C?, T, E, 1 >TF1
n

a �=�e

• If an error occurs during the execution of a compensation handler,
its remaining activity is ignored and the control is turned back to the
calling fault handler without reporting it.

(R4
TC) < E , F, C?, T, E, P >C

n
�n−→c S′

< E , F, C?, T, E, P >TC
n

τ−→ < E , F, C?, 1, E, 1 >F
n

– The termination handler can run activities others than calling a compen-
sation handler, but it can never signal an error.

(R5
TC) < E , F, C?, T ?, E, T >n

a−→ < E ′, F, C?, T ?, E, T ′ >n

< E , F, C?, T, E, P >FT1
n

a−→ < E ′, F, C, T ′, E, P >FT1
n

a �=�e

3. Once the termination handler finished, the fault handler runs it own activity.

(R5
F) T �−�

< E , F, C?, T, E, P >FT1
n

τ−→ < E , F, C?, T, E, P >F
n

– The fault handler can compensate an activity if this is specified in its
activity.

(R1
FC) F

$−→ F ′

< E , F, C?, T ?, E, P >F
n

$−→ < E , F ′, C?, T ?, E, P−1 >FC
n

Toward the Formalization of BPEL 165

where

P−1 =

⎧⎪⎪⎨
⎪⎪⎩

Q−1.a if P = a.Q
Q−1 + R−1 if P = Q + R
Q−1 ‖ R−1 if P = Q ‖ R
P else

• The code of the compensation handler is executed by the relation−→c.

(R
2
FC)

< E, F, C
?
, T

?
, E, P >

C
n

a−→c < E′
, F

′
, C

′?
, T

′?
, E

′
, Q >

C
n

< E, F, C
?
, T

?
, E, P >

FC
n

a−→ < E′
, F

′
, C

′?
, T

′?
, E

′
, Q >

FC
n

a �=�e and Q �= 1

• Once a compensation handler terminate with success, the fault han-
dler continues its activity.

(R3
FC)

< E , F, C?, T ?, E, P >C
n

a−→ 1

< E , F, C?, T ?, E, P >FC
n

E(a)−→ < E † a, F,C?, T ?, E, 1 >F
n

a �=�e

– A fault handler can run activities different from compensations.

(R1
F) < E , F, C?, T ?, E, F >n

a−→ < E ′, F, C?, T ?, E, F ′ >n

< E , F, C?, T ?, E, P >F
n

a−→ < E ′, F ′, C?, T ?, E, P >F
n

a �=�e

– A process or a scope that produces an error fails (i.e. becomes 0) regardless
of its fault handler terminates with success or not as shown here after.

• If an error occurs inside a compensation handler, the fault handler
propagates it to the parent scope and the current scope fails.

(R4
FC)< E , F, C?, T ?, E, P >C

n
�e−→c Q

< E , F, C, T ?, E, P >FC
n

�e−→ 0

• If an error occurs inside a fault handler itself, the error is propagated
to the parent scope.

(R2
F) F

�e−→ F ′

< E , F, C?, T ?, E, P >F
n

�e−→ 0

• If a fault handler terminates with success, its scope or process termi-
nates in a fail mode (0).

(R3
F) F

a−→ 1
< E , F, C?, T ?, E, P >F

n

E(a)−→c 0
a �=�e

•Event Handler:
– Once an event is received, the activity of it corresponding event handler is

executed in parallel with the principal activity of the scope.

(RE) E
a?−→x−� E

′
D

a↑−→v
−� D

′

< E, F, C
?
, T

?
, E, P >

m
n ‖ D

a?−→v−→ < E † (−→x �→ −→v), F, C
?
, T

?
, E, E

′‖P >
m′
n ‖ D

′
−→v � −→x

– Each error produced by an event handler is treated by the fault handler of the
corresponding scope.

(R�
E) E

�n−→ E′ F
�n−→ F ′

< E , F, C?, T ?, E, P >
τ−→< E , F ′, C?, T ?, E, P >FT0

166 L. Boumlik and M. Mejri

3 Related Work

Several interesting contributions were appeared during the last years to formal-
ize the semantics of BPEL. Most of them tried to match the constructors of
BPEL with some terms in an existing process algebra and only few works have
attempted to define a new algebra that fit better with BPEL’s features. In [7–9]
the authors have presented a two-way mapping between a fragment of BPEL
and the process algebra LOTOS. They have considered most of BPEL’s activ-
ities including fault, compensation and event handlers. In [5] the authors have
proposed a mapping from a BPEL process to a π-based calculus, named webπ∞.
They advocated that the different mechanisms (fault handler, termination han-
dler and compensation handler) for error handling are not needed and they pro-
posed the idea of event notification to substitute them. The authors of [11] have
proposed an approach based on two-way mapping between the π-based orches-
tration calculus and BPEL. [10] presented a formalization of BPEL 2.0 based
on the π-calculus.The authors of [12] proposed an approach based RECATNet
to model and verify a fragment of BPEL processes. The authors of [13] present
a novel correct-by-construction formal approach based on refinement using the
Event-B method. A Petri net sematics for BPEL has also been introduced in
[14]. The main drawback of these works is that they are either too abstract to
handle most of the interesting details related to BPEL or they lead to complex
representation of some intuitive aspects like compensation. In [8,15,16], Pu et
al. introduced an interesting process algebra to specify the activities of BPEL.
Mostly, the authors focus on fault and compensation handling. Several other
interesting formal semantics were proposed in the literature including [17,18] to
formalize handlers in BPEL, but no one of them take into account all the details.
Some of other advantages of AV-BPEL semantics are:

– Compensations can be executed in parallel in some cases as specified by the
semantic of BPEL. But, this is not the case for [17,18].

– Receive action is blocking while send action is not which reflect better reality.
Floating message give a simple way to integrate this kind of communication.

4 Conclusion

This paper introduces a process algebra called AV-BPEL to disambiguate some
important but very confusing features of BPEL. These include fault handler,
compensation handler, termination handler and event handler (EFCT). Despite
that the global idea of these handlers can be easily understood, their full seman-
tics hide many details making them the major source of difficulty behind BPEL.
Compared to existing related work, the main advantage of our formalization is
that it shows the real complexity hidden behind EFCT aspects by taking into
account almost all details related to them.

Toward the Formalization of BPEL 167

References

1. Huhns, M.N., Singh, M.P.: Service-oriented computing: key concepts and princi-
ples. In: IEEE Internet Computing, pp. 75–81 (2005)

2. SOAP Version 1.2 Part 0: Primer, 2nd edn. (2007)
3. Web Services Description Language (WSDL 1.1) (2003)
4. UDDI Version 2.04 API Specification (2002)
5. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. J. Logic

Algebraic Program. 70, 96–118 (2007)
6. Web Services Business Process Execution Language Version 2.0 (2007)
7. Salaün, G., Ferrara, A., Chirichiello, A.: Negotiation among web services using

LOTOS/CADP. In: (LJ) Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol.
3250, pp. 198–212. Springer, Heidelberg (2004)

8. Mateescu, R., Poizat, P., Salaun, G.: Adaptation of service protocols using process
algebra and on-the-fly reduction techniques. In: IEEE Transactions on Software
Engineering. Institute of Electrical and Electronics Engineers (IEEE) (2012)

9. Ferrara, A.: Web services: a process algebra approach. In: Proceedings of 2nd ACM
International Conference on Service Oriented Computing (2004)

10. Abouzaid, F., Mullins, J.: A calculus for generation, verification and refinement of
BPEL specifications. In: Electronic Notes in Theoretical Computer Science, vol.
4421, pp. 43–65 (2008)

11. Yang, C., Zhong, F.: Towards the formal foundation of orchestration process. In:
5th ICCCNT- 2014 (2014)

12. Kheldoun, A., Ioualalen, M.: Transformation BPEL processes to recatnet for
analysing web services compositions. In: Model-Driven Engineering and Software
Development (MODELSWARD), pp. 425–430 (2014)

13. Guillaume BABIN, Y.A.A., PANTEL, M.: Formal verification of runtime com-
pensation of web service compositions: a refinement and proof based proposal with
Event-B. In: 2015 IEEE International Conference on Services Computing, vol. 978,
pp. 7–15 (2015)

14. Stahl, C.: A Petri Net Semantics for BPEL, Humboldt-Universitat zu Berlin,
Informatik-Berichte 188 (2005)

15. Pu, G., Zhu, H., Qiu, Z., Wang, S.-L., Zhao, X., Kleinberg, R.D.: Theoretical
foundations of scope-based compensable flow language for web service. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 251–266. Springer,
Heidelberg (2006)

16. Chirichiello, A., Salaun, G.: Encoding process algebraic descriptions of web services
into BPEL. Web Intell. Agent Syst. Int. J. 5(3), 419–434 (2007)

17. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services.
In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg
(2007)

18. Spieler, D.: Scope-based fct-handling in WS-BPEL 2.0. Master’s thesis, Saarland
University (2008)

	Toward the Formalization of BPEL
	1 Introduction
	2 BPEL Formalisation
	2.1 Syntax of AV-BPEL: Abstracted Version BPEL
	2.2 Semantics

	3 Related Work
	4 Conclusion
	References

