
From Choreography Diagrams to RESTful
Interactions

Adriatik Nikaj1(B), Sankalita Mandal1, Cesare Pautasso2, and Mathias Weske1

1 Hasso Plattner Institute at the University of Potsdam, Potsdam, Germany
{adriatik.nikaj,sankalita.mandal,mathias.weske}@hpi.de

2 Faculty of Informatics, University of Lugano (USI), Lugano, Switzerland
cesare.pautasso@usi.ch

Abstract. Today, business process management is a key approach to
organize work, and many companies represent their operations in busi-
ness process models. Recently, choreography diagrams have been intro-
duced to represent interactions between business processes, run by differ-
ent partners. While there is considerable work on using process models
during process implementation, there is little work on using choreogra-
phy models to implement interactions between business processes. In this
paper, a novel approach to enhance choreography diagrams by execution
information is introduced. The approach is based on the REST archi-
tecture style, which is the primary way for interacting systems. Using
enhanced choreography diagrams allows us to develop REST-based inter-
actions among business partners in an efficient manner. The approach is
illustrated by an example of an accommodation reservation service.

1 Introduction

As the number and the complexity of interactions between multiple business
partners grow, it becomes important to describe them using precise models which
can be refined to a level of detail suitable for their implementation. As more and
more services adopt the representational state transfer (REST) architectural
style [1] to expose their internal business processes on the Web [2], we identify
the opportunity to define and represent interactions among business processes
at a suitable level of abstraction with choreography diagrams, specified in the
Business Process Model and Notation (BPMN) standard [3].

In this paper we introduce a novel approach to enrich BPMN choreography
diagrams with annotations that facilitate capturing information required for an
efficient implementation of REST-based information exchanges between two or
more interacting business partners. The approach is motivated by an example
of a multi-party conversation [4] inspired by Airbnb, a popular accommodation
reservation service, which acts as a broker between many partners that are con-
currently enacting business processes for offering, selecting and booking suitable
accommodations.

The paper is organized as follows. The basics of BPMN choreography dia-
grams are introduced in Sect. 2, where also a motivating example is discussed.
c© Springer-Verlag Berlin Heidelberg 2016
A. Norta et al. (Eds.): ICSOC 2015 Workshops, LNCS 9586, pp. 3–14, 2016.
DOI: 10.1007/978-3-662-50539-7 1



4 A. Nikaj et al.

Section 3 introduces the role of the REST architectural style during business
process enactment. RESTful choreography diagrams are in the center of Sect. 4,
providing the conceptual basis of the approach introduced. The approach is eval-
uated in Sect. 5 by applying the identified patterns to the multi-party interaction
of the example. Section 6 explores related approaches; concluding remarks com-
plete this paper.

2 Motivating Example

Choreography diagrams were first introduced in the standard BPMN 2.0 [3].
Going by the definition of a choreography, it does not focus on the internal
activities of the participants, instead, it focuses on the interaction between the
participants. Starting from a process model where each organization participat-
ing in the process is represented by separate pools, we can say that the chore-
ography diagram corresponding to the process model will abstract all the work
done by the individual pools and only portray the message exchanges between
the pools.

The main building block of choreography diagram is a choreography task. A
choreography task consists of three bands representing the two participants and
the choreography task name. The participant who initiates the message exchange
is named as initiator and is highlighted white whereas the other participant who
receives the message and optionally sends a response is called the receiver and
is highlighted in grey.

The messages sent by the initiator and/or the receiver can be shown explicitly
using a message icon associated with the respective sender. The message icon
must be unfilled if it is the initiating message of the choreography task. On the
other hand, a message icon depicting the response must be highlighted in grey.
Several choreography tasks can be modelled using a sub-choreography with more
than two participant bands and a ‘plus’ sign indicating the abstraction.

An example is used both to illustrate choreography diagrams and to motivate
our approach. Figure 1 presents a choreography diagram for the accommodation
booking process of a fictional company ARS (Accommodation Reservation Ser-
vice). There are four participants: 1. ARS (the main platform of communication),
2. Guest (who wants to rent an apartment), 3. Host (the owner of an apartment)
and 4. Payment Organization (who handles the payment on behalf of ARS).

The conversation starts when the Guest makes a reservation request, repre-
sented by the first choreography task in Fig. 1. ARS checks whether the selected
offer is still available at this point or not. The latter may happen if, while creat-
ing the reservation request, the apartment gets booked by another Guest, or the
Host changes his plans. If the offer is not available any more, then ARS sends
the Guest a message saying ‘Not Possible’ and the reservation request fails.

Otherwise, ARS notifies the Host about the request and waits for 24 h for a
response. At this point, the Guest also receives an email that the Host has been
notified and the Guest can expect an answer within 24 h. The Host can either
accept or decline the request within 24 h and the Guest can cancel the request



From Choreography Diagrams to RESTful Interactions 5

Fig. 1. Choreography diagram of an accommodation reservation service

before he gets a response from ARS. If none of these interactions happen within
24 h, the request automatically expires, and an expiration notification is sent to
both Guest and Host.

In case of a cancellation by the Guest or a declination by the Host, the Host
or the Guest is notified, respectively, and the choreography comes to an end.
But when the Host accepts the request, the Payment Org comes into play. ARS
requests the Payment Org to charge the Guest using the payment details entered
at the time of creating the reservation request. After payment is completed, the
reservation request is confirmed, and ARS sends this confirmation to both Guest
and Host. In the example, the interactions between ARS and Payment Org are
abstracted using the sub-choreography ‘Charge Payment’.



6 A. Nikaj et al.

As can be seen in the motivating example, a choreography diagram can have
different gateways like exclusive gateways, event based gateways and parallel
gateways. These gateways are introduced next.

The exclusive gateway is used in a choreography where based on a decision
one of several alternatives can be chosen. Selecting one path deactivates the other
options. In the example, when a Guest sends a reservation request to ARS, ARS
checks the status of the Host’s calendar and then one of two paths is chosen, i.e.,
either the Guest receives a ‘Not Possible’ message or the partners are notified
about the reservation request.

An event based gateway is a branching point in a choreography where the
alternatives are not chosen based on the data, rather, one of the alternatives is
followed based on an event occurrence at that point. For example, after ARS
sends the notification about the reservation request to the Host, it waits for any
of the four events to occur: either the Host accepts the request or declines it
within 24 h, the request expires after 24 h, or the Guest cancels the request. The
event that occurs first determines the path to be followed.

Parallel gateways are used to represent independent paths that can be exe-
cuted concurrently. In our example, if the reservation request is possible, then
ARS sends notification to both the Host and the Guest concurrently.

3 RESTful Business Processes

The REST architectural style has gained widespread acceptance as the founda-
tion for building Web-based applications and so-called RESTful Web services
or RESTful Web APIs. These make full usage of the HTTP protocol not only
to exchange messages between the participants (usually one client interacting
with one or more Web service following a business process) but also to express
properties (e.g., the addressing and identification of the Web resources involved
in the interaction) and constraints (e.g., the idempotent request to perform a
state transition) of the interactions. The result is a highly decentralized system,
whose components are designed to be scalable under the assumption of stateless
interactions and mostly read-only operations.

Web resources are uniquely and globally identified through URLs accessed
via their Uniform Interface. In case of the HTTP protocol, this corresponds to
a limited set of verbs (like GET, POST, PUT, DELETE) that define the effect
of the basic interactions on the state of the resource. For example, POST will
create a new resource whose identifier is determined by the server, while PUT
will update (or create) a resource whose state and identifier are provided by the
client. GET will retrieve the current state of the resource, while DELETE will
remove it.

Business process models, seen as a collection of individual activities, can be
used both to represent the orchestration of one or more Web resource as well
as to indicate how the internal state of a resource may evolve. For example, a
process may define the behavior of a client which looks for a suitable accommo-
dation by navigating (GET) across multiple offerings, once an accommodation



From Choreography Diagrams to RESTful Interactions 7

has been found a client submits a reservation request (POST) and waits until
either the request has been accepted by the host (PUT) or keeps looking for
another accommodation.

Due to their client/server constraint, REST and HTTP do not play well
with server-sent notifications of state changes, which typically rely on a pub-
lish/subscribe messaging system. Whereas it is possible to reverse the roles of
the interaction and have the server call back the client (assuming the client also
publishes a RESTful API for incoming notifications) or have the client poll the
server by means of a feed subscription.

Concerning typical Web platforms such as ARS, this problem is solved by
email-based notifications, whereby authenticated clients are associated with an
email address, which is used to send event notifications triggered by state changes
of the reservation system, or, more precisely, on the reservation resource. What
is important is that the email does not only include information about the new
state of the reservation resource, but also embeds hyperlinks so that the recipient
may follow them to perform further interactions.

In general, when multiple clients are involved in an interaction with a resource
shared between them, it becomes important to reason about their interactions
not only from the perspective of individual participants, but also from the global
perspective. Hence, we aim at creating RESTful choreography diagrams to rea-
son about all possible valid interactions that lead to a given successful or unsuc-
cessful outcome. These will help us model what interaction each participant
may perform depending on the state of the shared resource, which may of course
change and evolve as a consequence of the participants interactions.

4 Implementation of Choreographies

RESTful choreography diagrams are an enhancement of BPMN choreography
diagram with REST-specific annotations. This section introduces the building
elements of RESTful choreography diagrams and their uses, before causality
relationship patterns are introduced.

4.1 REST Annotations

Since choreography tasks are the basic units for modeling interactions in a chore-
ography, we use them for modeling the basic RESTful HTTP request/response
interaction and email messaging. To properly annotate the choreography task
with REST information, we use annotated messages associated to choreogra-
phy tasks. This is realized by specializing the exchanged messages into HTTP
request, HTTP response or email messages (see Fig. 2).

Using annotated messages for expressing REST specific information avoids
the introduction of new modeling elements, and hence, avoids changing the meta-
model of BPMN choreography diagrams.

Due to the fact that one of the architectural constraints of REST is the
client/server communication, we identified two possible usages of the choreogra-
phy task, which depend on the presence of a recipient’s RESTful API.



8 A. Nikaj et al.

Fig. 2. Enriching choreography tasks by annotations

If the recipient provides a RESTful API then the client plays the role of the
initiator, while the server plays the role of the recipient. The initiating message
is a HTTP request and the return message is a HTTP response, as shown in
Fig. 2(a).

As discussed earlier, the recipient may not always provide a RESTful API
(e.g., the Guest and the Host in the example). The problem of notifying a client
can be solved via an email-based approach. In this case, the server plays the role
of the initiator, whereas the client plays the role of the recipient.

As initiating message, we use an email message, illustrated in Fig. 2(b), which
contains further links for the client to follow in the upcoming choreography tasks.
In this case, there is no need to model a return message.

The information in the HTTP requests/responses or email messages does not
need to be of the same level of detail as that of the implementation, which might
include, for instance, text fragments.

However, it is essential to include links which eventually determine the behav-
ior of the entire interaction modeled in a choreography diagram. In the ARS
scenario, for example, it is essential to include links in an email message to the
Host that allows him to accept or decline the reservation request by following
those links.

Sequence flow, per se, does not need any additional enhancement. However,
we can make use of conditions, which can be added to conditional sequence flows.
In the RESTful choreography diagram, the link can constitute a condition. It
perfectly fulfills the requirement of the choreography diagram, which states that
the condition should have been previously sent via a message (as links are).
Conditional flows can be placed directly after choreography tasks as well as
exclusive or inclusive gateways.



From Choreography Diagrams to RESTful Interactions 9

4.2 Causality Relationship Patterns

We observed several patterns that reoccur in choreography diagrams concerning
the relation between the content of the messages exchanged and the ordering of
choreography tasks. In REST-based interactions, links sent between participants
pave the way for upcoming interactions. More specifically, the number of links
contained in a choreography task impacts the type of the consecutive nodes in
a choreography diagram.

In REST-based interaction scenarios, links are the most prominent artifacts,
because links allow interaction partners to access and modify shared resources.
The patterns introduced below categorize interactions based on the number of
links transmitted. These categories provide useful information for checking if a
RESTful choreography diagram is feasible.

– no-link pattern In case of the no-link pattern, the choreography task incor-
porates a HTTP response message or an email message without any link.
This can be a simple notification, e.g., the information about a resource being
deleted. This choreography task is usually followed by an end event or by
another choreography task, which does not have the same participants as the
former interaction. In any case, the missing link hints to a lack of future
conversation between the participants.

– single-link pattern In the single-link pattern, the choreography task incor-
porates a HTTP response message or an email message with a single link.
This kind of message, generally, is a notification, which can link to additional
information than what is included in the HTTP response body or the email
body itself. Typical examples are a HTTP response linking to an updated
resource and an email linking to the status of a recently changed resource.

– multi-link pattern In case of the multi-link pattern, the choreography task
incorporates a HTTP response message or an email message with n (n > 1)
links. This task can be followed by an exclusive gateway or an event-based
gateway. In case of an exclusive gateway, the outgoing sequence flows of the
gateway are conditional sequence flows, each of which refers to a link contained
in the preceding choreography task. The following choreography task involve
the client as initiator, making a request to the resource identified by the link
corresponding to the chosen branch.

The validity of the patterns is illustrated as follows. If there is no link transmitted
from the participant that provides a RESTful API, then applying the no-link
pattern ensures that the other participants make no further interaction with the
resource. A typical example of the no-link pattern in an online shopping scenario
is a message that informs the customer of a late delivery.

If there is a single link transmitted among interaction partners, the receiver
has a handle for further interactions. In an online shopping example, the cus-
tomer receives an email message with a link to his open orders. Using this link,
the customer can use GET messages to retrieve the current status of his orders.

If there is a gateway in a choreography diagram, the outcome of which leads
to different resource states, then applying the multi-link pattern will make sure



10 A. Nikaj et al.

that the links are transmitted beforehand. The customer might decide to cancel
the order or update the delivery address, using several links that have been
transmitted to him by the online shop.

5 Evaluation

To evaluate the effectiveness of the approach, we enhance the ARS choreography
model with REST annotations and proceed one step further to the implementa-
tion level.

5.1 RESTful Choreography Diagram

In Sect. 4, patterns of RESTful interactions have been identified. We return to the
motivating example described in Sect. 2 and apply the approach to the example;
the resulting RESTful choreography diagram is shown in Fig. 3.

The approach is based on identifying the interaction types of choreography
tasks, mentioned in Sect. 4. The first interaction type consists of an initiating
message (HTTP request) and a return message (HTTP response), represented
by the first choreography task in the diagram. The Guest makes a POST request
and gets back the status ‘201 Created’ along with a link (/reservation/id/details)
for further correspondence.

The second type of interaction is an email-based notification sent from server
side to the client. We can see this type of interaction when ARS notifies the Host
about the reservation request. The Host receives an email with several links from
ARS and sends no specific response at this point.

Regarding the causality relationship patterns introduced above, three sce-
narios can be encountered. If there is no link transmitted in the choreography
task, then no further interaction between the participant and the resource is
expected. This pattern can be seen in the example where the task ‘Send Can-
cellation’, which is implemented by an email based interaction without passing
any link, leads to an end event (Reservation Cancelled).

The second pattern describes the choreography task containing a single link,
which the participant can use to get further details about the resource. This
pattern can be witnessed in several places. For example, when ARS notifies the
Host about the reservation request, at the same time the Guest also receives an
email with a single link /reservation/id/notified allowing the Guest to get more
details about the reservation at any time.

In general, whenever there is an update to a resource, using the single-link
pattern, a link with the details is transmitted from ARS to other participants.
This transmission is done either as an HTTP response (e.g., ‘Accept’) or as an
email message (e.g., ‘Send Confirmation’, ‘Send Declination’).

The third pattern describes a scenario where a choreography task incorporat-
ing more than one link is followed by a gateway. This pattern is found when ARS
sends a notification email to the Host containing three links. The task is followed
by an event-based gateway. The Host can use the /reservation/id/details link for



From Choreography Diagrams to RESTful Interactions 11

F
ig
.
3
.
R

E
S
T

fu
l
ch

o
re

o
g
ra

p
h
y

d
ia

g
ra

m
fo

r
th

e
m

o
ti

va
ti

n
g

ex
a
m

p
le



12 A. Nikaj et al.

getting the detailed information about the reservation request. The other two
links give the Host the options to accept or decline. This is represented in Fig. 3
by the tasks ‘Accept’ and ‘Decline’. At this point, the choreography has two other
possibilities: the reservation request can expire after 24 h or the Guest cancels
the request. These interactions can be represented by an event-based gateway. In
general, the multi-link pattern is used whenever there is an upcoming decision,
represented by a branching structure in the choreography diagram.

5.2 From Model Level Towards Implementation Level

The goal of the approach is to mitigate the gap between model level and imple-
mentation level. So far, we have enriched models with annotations that provide
information for the implementation level. In this section, we come up with a series
of messages that can be generated from the RESTful choreography diagram.

Fig. 4. Messages and their ordering resulting from an interaction between multiple
participants, from the sending of a reservation request by a Guest to the message
implementing the respective confirmation by ARS.

Figure 4 shows the messages generated from the interactions between ARS
and the other three participants for one instance where the reservation is suc-
cessful. The series of messages identifies with the REST and email interactions
starting from the creation of reservation request by the Guest until the reserva-
tion is confirmed. Each interaction is represented by a single rectangle containing



From Choreography Diagrams to RESTful Interactions 13

the generic message template for each REST operation and the corresponding
responses. The rectangles are named with the same labels used as choreography
tasks in the RESTful choreography model.

The reservation request contains details about the inquired reservation as
well as the payment details of the Guest. The reservation details are then stored
in the location /reservation/765/details where 765 is the unique reservation
id. The link https://exampleARS.com/reservation/765/details1 is passed to the
Host along with two other links for accepting or declining the request, all included
in an email sent by ARS, taking advantage of the multi-link pattern.

In this case, the Host decides to accept the Guest by clicking on the link
https://exampleARS.com/reservation/765/accepted. After getting the accep-
tance from the Host, ARS creates a payment request using the POST operation
with the parameters containing the same payment details entered by the Guest
at the time of creating reservation request. Finally after a successful payment, an
email is sent to both the Guest and the Host with the link https://exampleARS.
com/reservation/765/confirmed, using the single link pattern.

In standard BPMN or choreography models, this information cannot be rep-
resented. With our approach, it is possible to define this information and to
integrate it in the model. Moreover, including implementation information in
the model not only helps to come up with the messages for each instance, but
also gives a detailed overview of all possible instances.

6 Related Work

Different approaches exist for bridging the gap between the choreographies and
their implementation. One notable approach is that of Decker et al. [5], in which
the authors extend the BPEL web service composition standard [6] for model-
ing choreographies. The result is BPEL4Chor, an extended language capable of
orchestrating choreographies. That paper uses a bottom-up approach that inte-
grates pre-exisiting BPEL service orchestrations, based on web services stan-
dards like SOAP and WSDL [7]. In contrast, the approach presented in this
paper uses a top-down approach, starting at the choreography level. In addition,
our technological basis is REST as opposed to standard web services techniques,
and we incorporate email messaging, which is not addressed in the BPEL4Chor
approach.

Another approach, which enhances a modeling language for bridging the
gap between modeling and implementation is BPMN for REST [8]. The author
introduces an enrichment of BPMN for modeling RESTful business processes.
The paper’s focus is on the representation of business processes that interact
with external resources or where elements of the business processes are pub-
lished as resources. Conversely, our approach abstracts from business processes
or their composing elements and focuses only on the interaction aspect of busi-
ness processes. Nevertheless, these two approaches are complementary, and thus,
can be both used for modeling the same scenario from the two respective per-
spectives. The mapping between the two representations is left as a future work.
1 exampleARS.com is a fictional website.

https://exampleARS.com/reservation/765/details
https://exampleARS.com/reservation/765/accepted
https://exampleARS.com/reservation/765/confirmed
https://exampleARS.com/reservation/765/confirmed


14 A. Nikaj et al.

7 Conclusions

This paper introduced a novel approach for enriching BPMN choreography dia-
grams with REST-specific annotations, aiming at easing the transition from
choreography models to the implementation of RESTful HTTP conversations.
RESTful choreography diagrams still comply with the formal specification of
BPMN standard, since only annotations are used to capture the additional infor-
mation. This approach makes it feasible to use existing modeling tools and the
standardized output serialization, which is also defined in the BPMN standard.

This paper provides the conceptual basis of the approach and uses an example
that is inspired by a well-known accommodation reservation service. The pat-
terns identified can also be found in other scenarios, including online shopping
and e-commerce scenarios [9], where the integration of HTTP request-response
interactions and email communication plays an important role.

Future work will include an investigation on methodological aspect of the
approach, in particular which stakeholders are involved, to further ease the tran-
sition from choreography models to executable REST based implementation.

References

1. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis AAI9980887(2000)

2. Pautasso, C., Wilde, E.: Push-enabling RESTful business processes. In: Kappel, G.,
Maamar, Z., Motahari-Nezhad, H.R. (eds.) Service Oriented Computing. LNCS, vol.
7084, pp. 32–46. Springer, Heidelberg (2011)

3. OMG: Business Process Model and Notation (BPMN), Version 2.0, January 2011.
http://www.omg.org/spec/BPMN/2.0/

4. Hohpe, G.: Let’s have a conversation. IEEE Internet Comput. 11(3), 78–81 (2007)
5. Decker, G., Kopp, O., Leymann, F., Weske, M.: Bpel4chor: extending bpel for mod-

eling choreographies. In: IEEE International Conference on Web Services, ICWS
2007, pp. 296–303. IEEE (2007)

6. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., et al.: Web services business process execution
language version 2.0. OASIS standard 11, 10 (2007)

7. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, New York
(2004)

8. Pautasso, C.: BPMN for REST. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.)
BPMN 2011. LNBIP, vol. 95, pp. 74–87. Springer, Heidelberg (2011)

9. Benatallah, B., Casati, F., et al.: Web service conversation modeling: A cornerstone
for e-business automation. IEEE Internet Comput. 8(1), 46–54 (2004)

http://www.omg.org/spec/BPMN/2.0/

	From Choreography Diagrams to RESTful Interactions
	1 Introduction
	2 Motivating Example
	3 RESTful Business Processes
	4 Implementation of Choreographies
	4.1 REST Annotations
	4.2 Causality Relationship Patterns

	5 Evaluation
	5.1 RESTful Choreography Diagram
	5.2 From Model Level Towards Implementation Level

	6 Related Work
	7 Conclusions
	References


