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Abstract. s2n is an implementation of the TLS protocol that was
released in late June 2015 by Amazon. It is implemented in around 6,000
lines of C99 code. By comparison, OpenSSL needs around 70,000 lines
of code to implement the protocol. At the time of its release, Amazon
announced that s2n had undergone three external security evaluations
and penetration tests. We show that, despite this, s2n — as initially
released — was vulnerable to a timing attack in the case of CBC-mode
ciphersuites, which could be extended to complete plaintext recovery
in some settings. Our attack has two components. The first part is a
novel variant of the Lucky 13 attack that works even though protec-
tions against Lucky 13 were implemented in s2n. The second part deals
with the randomised delays that were put in place in s2n as an addi-
tional countermeasure to Lucky 13. Our work highlights the challenges
of protecting implementations against sophisticated timing attacks. It
also illustrates that standard code audits are insufficient to uncover all
cryptographic attack vectors.

Keywords: TLS · CBC-mode encryption · Timing attack · Plaintext
recovery · Lucky 13 · s2n

1 Introduction

In late June 2015, Amazon announced a new implementation of TLS (and
SSLv3), called s2n [Lab15,Sch15]. A particular feature of s2n is its small code-
base: while s2n relies on OpenSSL or any of its forks for low-level cryptographic
processing the core of the TLS protocol implementation is written in around
6,000 lines of C99. This is intended to make s2n easier to audit. Indeed, Amazon
also announced that s2n had undergone three external security evaluations and
penetration tests prior to release. No details of these audits appear to be in the
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public domain at the time of writing. Given the recent travails of SSL/TLS in
general and the OpenSSL implementation in particular, s2n generated significant
interest in the security community and technical press.1

We show that s2n — as initially released — was vulnerable to a timing attack
on its implementation of CBC-mode ciphersuites. Specifically, we show that the
two levels of protection offered against the Lucky 13 attack [AP13] in s2n at the
time of first release were imperfect, and that a novel variant of the Lucky 13
attack could be mounted against s2n.

The attack is particularly powerful in the web setting, where an attack involv-
ing malicious client-side Javascript (as per BEAST, POODLE [MDK14] and
Lucky 13) results in the complete recovery of HTTP session cookies, and user
credentials such as BasicAuth passwords. In this setting, an adversary runs mali-
cious JavaScript in a victim’s browser and additionally performs a Person-in-
the-Middle attack. We note, though, that many modern browsers prefer TLS 1.2
AEAD cipher suites avoiding CBC-mode, making them immune to the attack
described in this work if the sever also supports TLS 1.2 cipher suites as s2n
does. The issues identified in this work have since been addressed in s2n, partly
in response to this work, and current versions are no longer vulnerable to the
attacks described in this work.

We stress that the problem we identify in s2n does not arise from reusing
OpenSSL’s crypto code, but rather from s2n’s own attempt to protect itself
against the Lucky 13 attack when processing incoming TLS records. It does this
in two steps: (1) using additional cryptographic operations, to equalise the run-
ning time of the record processing; and (2) introducing random waiting periods
in case of an error such as a MAC failure.

Step (1) involves calls to a function s2n hmac update, which in turn makes
hash compression function calls to, for example, OpenSSL or LibreSSL. The
designers of s2n chose to draw a line above which to start their implementation,
roughly aligned at the boundary between low-level crypto functions and the
protocol itself. The first part of our attack is focused at the lowest level above that
line. Specifically, we show that the desired additional cryptographic operations
may not be carried out as anticipated: while s2n always fed the same number
of bytes to s2n hmac update, to defeat timing attacks, this need not result in
the same number of compression function calls of the underlying hash function.
Indeed this latter number may vary depending on the padding length byte which
controls after how many bytes s2n hmac digest is called, this call producing a
digest over all data submitted so far. We can also arrange that subsequent calls
to s2n hmac update do not trigger any compression function calls at all. This
has the effect of removing the timing equalisation and reopening the window for
an attack in the style of Lucky 13.

The second part of our attack is focussed on step (2), the random waiting
periods introduced in s2n as an additional protection against timing attacks.

1 See for example http://www.theregister.co.uk/2015/07/01/amazon s2n tls library/,
http://www.securityweek.com/amazon-releases-new-open-source-implementation-
tls-protocol.

http://www.theregister.co.uk/2015/07/01/amazon_s2n_tls_library/
http://www.securityweek.com/amazon-releases-new-open-source-implementation-tls-protocol
http://www.securityweek.com/amazon-releases-new-open-source-implementation-tls-protocol
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The authors of [AP13] showed that adding random delays as a countermeasure to
Lucky 13 would be ineffective if the maximum delay was too small. The s2n code
had a maximum waiting period that is enormous relative to the processing time
for a TLS record, 10s compared to around 1µs, putting the attack techniques
of [AP13] well out of contention. However, the initial release of s2n used timing
delays generated by calls to sleep and usleep, giving them a granularity much
greater than the timing differences arising from the failure to equalise the running
time in step (1). Consequently, at a high level, we were able to bypass step (2)
by “mod-ing out” the timing delays provided by sleep and usleep. However,
the reality is slightly more complex than this simple description would suggest,
because those functions do not provide delays that are exact multiples of 1µs but
instead themselves have distributions that need to be taken into account in our
statistical analysis. Weaknesses in random delays as countermeasures to timing
side-channels have been point out before, cf. [CK10]. In contrast to previous
work, though, here the source of timing differences was not close enough to
uniform, allowing our analysis of the low-level code to “leak through” the random
timing delays, despite them being very large.

Our attack illustrates that protecting TLS’s CBC construction against
attacks in the style of Lucky 13 is hard (cf. [AIES15]). It also shows that standard
code audits may be insufficient to uncover all cryptographic attack vectors.

Our attack can be prevented by more carefully implementing countermea-
sures to the Lucky 13 attack that were presented in [AP13]. A fully constant
time/constant memory access patch can be found in the OpenSSL implementa-
tion; its complexity is such that around 500 lines of new code were required to
implement it, and it is arguable whether the code would be understandable by all
but a few crypto-expert developers. It is worth noting that the countermeasure
against Lucky 13 in OpenSSL does not respect the separation adopted in the
s2n design, i.e. it avoids higher-level interfaces to HMAC but makes hash com-
pression function calls directly on manually constructed blocks.2 The s2n code
was patched to prevent our attacks using a different strategy, (mostly) main-
taining the above-mentioned separation. At a high-level, the first step of our
attacks exploits that s2n counted bytes submitted to HMAC instead of com-
pression function calls. In response, s2n now counts the number of compression
function calls. Furthermore, the second s2n countermeasure was strengthened
by switching from using usleep to using nanosleep.

1.1 Disclosure and Remediation

We notified Amazon of the issue in step (1) of their countermeasures, in the
function s2n verify cbc in s2n on 5th July 2015. Subsequently and in response,
this function was revised to address the issue reported. This issue in itself does
not constitute a successful attack because s2n also implemented step (2), the
randomised waiting period, as was pointed out to us by the developers of s2n.
This countermeasure has since been strengthened by switching to the use of

2 See [Lan13] for a detailed description of the patch.
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nanosleep to implement randomised wait periods. This transition was already
planned by the developers of s2n prior to learning about our work, but the
change was accelerated in response to it. Our work shows that the switch to
using nanosleep was a good decision because this step prevents the attacks
described in this work.3

1.2 Lucky 13 Remedies in Other Libraries

As mentioned above OpenSSL prevents the Lucky 13 attack in 500 lines of code
which achieves fully constant time/memory access [Lan13]. GnuTLS does not
completely eliminate all potential sources of timing differences, but makes sure
the number of compression function calls is constant and other major sources of
timing differences are eliminated. As reported in [Mav13] this results in timing
differences in the tens of nanonseconds, likely too small to be exploited in prac-
tice. In contrast, GoTLS as of now does not implement any countermeasure to
Lucky 13. However, a patch is currently under review to equalise the number of
compression function calls regardless of padding value [VF15]. This fix does not
promise constant time/memory access. Botan does not implement any counter-
measure to Lucky 13.4 WolfSSL implements the recommended countermeasures
to Lucky 13 from [AP13].5

2 The TLS Record Protocol and S2n

The main component of TLS of interest here is the Record Protocol, which
uses symmetric key cryptography (block ciphers, stream ciphers and MAC algo-
rithms) in combination with sequence numbers to build a secure channel for
transporting application-layer data. In SSL and versions of TLS prior to TLS
1.2, the only encryption option uses a MAC-Encode-Encrypt (MEE) construc-
tion. Here, the plaintext data to be transported is first passed through a MAC
algorithm (along with a group of 13 header bytes) to create a MAC tag. The sup-
ported MAC algorithms are all HMAC-based, with MD5, SHA-1 and SHA-256
being typical hash algorithms. Then an encoding step takes place. For the RC4
stream cipher, this just involves concatenation of the plaintext and the MAC
tag, while for CBC-mode encryption (the other possible option), the plaintext,
MAC tag, and some encryption padding of a specified format are concatenated.
In the encryption step, the encoded plaintext is encrypted with the selected
cipher. In the case where CBC-mode is selected, the block cipher is DES, 3DES

3 We also note that the first fix was still vulnerable to a timing attack in step (1),
as reported in [ABBD15]. This further highlights the delicacy of protecting against
timing side-channel attacks and that the move towards using nanosleep was a good
decision.

4 https://github.com/randombit/botan/blob/master/src/lib/tls/tls record.cpp#
L398.

5 http://www.yassl.com/forums/topic328-wolfssl-releases-protocol-fix-for-lucky-
thirteen-attack.html.

https://github.com/randombit/botan/blob/master/src/lib/tls/tls_record.cpp#L398
https://github.com/randombit/botan/blob/master/src/lib/tls/tls_record.cpp#L398
http://www.yassl.com/forums/topic328-wolfssl-releases-protocol-fix-for-lucky-thirteen-attack.html
http://www.yassl.com/forums/topic328-wolfssl-releases-protocol-fix-for-lucky-thirteen-attack.html
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or AES (with DES being deprecated in TLS 1.2). The s2n implementation sup-
ports 3DES and AES. Following [PRS11], we refer to this MEE construction as
MEE-TLS-CBC.

The MEE construction used in the TLS has been the source of many security
issues and attacks [Vau02,CHVV03,Moe04,PRS11,AP12,AP13]. These all stem
from how the padding that is required in MEE-TLS-CBC is handled during
decryption, specifically the fact that the padding is added after the MAC has
been computed and so forms unauthenticated data in the encoded plaintext. This
long sequence of attacks shows that handling padding arising during decryption
processing is a delicate and complex issue for MEE-TLS-CBC. It, along with
the attacks on RC4 in TLS [ABP+13], has been an important spur in the TLS
community’s push to using TLS 1.2 and its Authenticated Encryption modes.
AES-GCM is now widely supported in implementations. However, the MEE
construction is still in widespread use, as highlighted by the fact that Amazon
chose to support it in its minimal TLS implementation s2n.

2.1 MEE-TLS-CBC

We now explain the core encryption process for MEE-TLS-CBC in more detail.
Data to be protected by TLS is received from the application and may be

fragmented and compressed before further processing. An individual record R
(viewed as a byte sequence of length at least zero) is then processed as follows.
The sender maintains an 8-byte sequence number SQN which is incremented for
each record sent, and forms a 5-byte field HDR consisting of a 2-byte version
field, a 1-byte type field, and a 2-byte length field. The sender then calculates
a MAC over the bytes SQN||HDR||R; let T denote the resulting MAC tag. Note
that exactly 13 bytes of data are prepended to the record R here before the
MAC is computed. The size of the MAC tag is 16 bytes (HMAC-MD5), 20 bytes
(HMAC-SHA-1), or 32 bytes (HMAC-SHA-256). We let t denote this size in
bytes.

The record is then encoded to create the plaintext P by setting P =
R||T ||pad. Here pad is a sequence of padding bytes chosen such that the length
of P in bytes is a multiple of b, where b is the block-size of the selected block
cipher (so b = 8 for 3DES and b = 16 for AES). In all versions of TLS, the
padding must consist of p + 1 copies of some byte value p, where 0 ≤ p ≤ 255.
In particular, at least one byte of padding must always be added. The padding
may extend over multiple blocks, and receivers must support the removal of such
extended padding. In SSL the padding format is not so strictly specified: it is
only required that the last byte of padding must indicate the total number of
additional padding bytes. The attack on s2n that we present works irrespective
of whether the padding format follows the SSL or the TLS specification.

In the encryption step, the encoded record P is encrypted using CBC-mode
of the selected block cipher. TLS 1.1 and 1.2 mandate an explicit IV, which
should be randomly generated. TLS 1.0 and SSL use a chained IV; our attack
works for either option. Thus, the ciphertext blocks are computed as:

Cj = EKe
(Pj ⊕ Cj−1)
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where Pi are the blocks of P , C0 is the IV, and Ke is the key for the block cipher
E. For TLS (and SSL), the ciphertext data transmitted over the wire then has
the form:

HDR||C
where C is the concatenation of the blocks Ci (including or excluding the IV
depending on the particular SSL or TLS version). Note that the sequence number
is not transmitted as part of the message.

Simplistically, the decryption process reverses this sequence of steps: first the
ciphertext is decrypted block by block to recover the plaintext blocks:

Pj = DKe
(Cj) ⊕ Cj−1,

where D denotes the decryption algorithm of the block cipher. Then the padding
is removed, and finally, the MAC is checked, with the check including the header
information and a version of the sequence number that is maintained at the
receiver.

However, in order to avoid a variety of known attacks, these operations must
be performed without leaking any information about what the composition of
the plaintext blocks is in terms of message, MAC field and padding, and indeed
whether the format is even valid. The difficulties and dangers inherent in this
are explained at length in [AP13].

For TLS, any error arising during decryption should be treated as fatal, mean-
ing an encrypted error message is sent to the sender and the session terminated
with all keys and other cryptographic material being disposed of.

2.2 Details of HMAC

As mentioned above, TLS exclusively uses the HMAC algorithm [KBC97], with
HMAC-MD5, HMAC-SHA-1, and HMAC-SHA-256 being supported in TLS 1.2.6

To compute the MAC tag T for a message M with key Ka, HMAC applies the
specified hash algorithm H twice, in an iterated fashion:

T = H((Ka ⊕ opad)||H((Ka ⊕ ipad)||M)).

Here opad and ipad are specific 64-byte values, and the key Ka is zero-padded
to bring it up to 64 bytes before the XOR operations are performed. All the
hash functions H used in TLS have an iterated structure, processing messages
in chunks of 64 bytes (512 bits) using a compression function, with the output of
each compression step being chained into the next step. Also, for all relevant hash
functions used in TLS, an 8-byte length field followed by padding of a specified
byte format are appended to the message M to be hashed. The padding is at
least 1 byte in length and extends the data to a (56 mod 64)-byte boundary.

6 TLS ciphersuites using HMAC with SHA-384 are specified in RFC 5289 (ECC cipher
suites for SHA256/SHA384) and RFC 5487 (Pre-Shared Keys SHA384/AES) but we
do not consider the SHA-384 algorithm further here.
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In combination, these features mean that HMAC implementations for MD5,
SHA-1 and SHA-256 have a distinctive timing profile. Messages M of length up to
55 bytes can be encoded into a single 64-byte block, meaning that the first, inner
hash operation in HMAC is done in 2 compression function evaluations, with 2
more being required for the outer hash operation, for a total of 4 compression
function evaluations. Messages M containing from 56 up to 64 + 55 = 119 bytes
can be encoded in two 64-byte blocks, meaning that the inner hash is done in
3 compression function evaluations, with 2 more being required for the outer
operation, for a total of 5. In general, an extra compression function evaluation
is needed for each additional 64 bytes of message data. A single compression
function evaluation takes typically a few hundred clock cycles.7

Implementations typically implement HMAC via an “IUF” interface, mean-
ing that the computation is first initialised (I), then the computation is updated
(U) as many times as are needed with each update involving the buffering
and/or hashing of further message bytes. When the complete message has been
processed, a finalisation (F) step is performed. In s2n, OpenSSL or any of its
forks is used to implement HMAC. The initialisation step s2n hmac init carries
out a compression function call on the 64-byte string Ka⊕ipad. The update step
s2n hmac update involves buffering of message bytes and calls to the compres-
sion function on buffered 64-byte chunks of message. Note that no compression
function call will be made until at least 64 bytes have been buffered. The finalisa-
tion step s2n hmac digest consists of adding the length encoding and padding,
performing final compression function calls to compute the inner hash and then
performing the outer hash operation (itself involving 2 compression function
evaluations).

2.3 HMAC Computations After Decryption in s2n

The s2n implementation uses the code in Fig. 1 to check the MAC on a record in
the function s2n verify cbc. This code is followed by a constant-time padding
check that need not concern us here (except to note that the fact that it is con-
stant time helps our attack, since it enables us to isolate timing differences com-
ing from this code fragment). In Fig. 1, the content of buffer decrypted->data
is the plaintext after CBC-mode decryption. The header SQN||HDR of 13 bytes is
dealt with by the calling function.

Notice how the code first computes, using the last byte of plaintext, a
value for padding length, the presumed length of padding that should be
removed (excluding the pad length byte). Arithmetic is then performed to find
payload length, the presumed length of the remaining payload over which
the HMAC computation is to be done. The actual HMAC computation is
performed via an initialise call (not shown), and then the code in line 78
(update via the function s2n hmac update) and line 84 (finalise via the func-
tion s2n hmac digest). Line 86 compares the computed HMAC value with that

7 For example, SHA-256 takes about 550 cycles per block on one of our test systems,
an Intel Core i7–4850HQ CPU @ 2.30 GHz, whereas SHA-1 takes about 300 cycles.
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contained in the plaintext, and sets a flag mismatches if they do not match as
expected.

Line 79 copies the HMAC state to a dummy state, so that line 89 can per-
form a dummy s2n hmac update computation on data from the plaintext buffer.
This attempts to ensure that the number of hash computations carried out is the
same, irrespective of the amount of padding that should be removed. This is in an
effort to remove the timing channel exploited in the Lucky 13 attack. The num-
ber of bytes over which the update is performed is equal to decrypted->size
- payload length - mac digest size - 1, which is one less than the number of
bytes in the plaintext buffer excluding the 13 bytes of SQN||HDR, the message,
and the MAC value. Recall, however, that this update operation may not actu-
ally result in any compression function computations being carried out. What
happens depends on exactly how many bytes are already sitting unprocessed in
the internal buffer and how many are added to it in the call.

2.4 Randomised Waiting Period

In order to additionally protect against attacks exploiting timing side-channels,
s2n implements the following countermeasure: whenever an error occurs, the

67 int payload_and_padding_size = decrypted ->size - mac_digest_size;

68

69 /* Determine what the padding length is */

70 uint8_t padding_length = decrypted ->data[decrypted ->size - 1];

71

72 int payload_length = payload_and_padding_size - padding_length \

- 1;

73 if (payload_length < 0) {

74 payload_length = 0;

75 }

76

77 /* Update the MAC */

78 GUARD(s2n_hmac_update(hmac , decrypted ->data , payload_length ));

79 GUARD(s2n_hmac_copy (&copy , hmac ));

80

81 /* Check the MAC */

82 uint8_t check_digest[S2N_MAX_DIGEST_LEN ];

83 lte_check(mac_digest_size , sizeof(check_digest ));

84 GUARD(s2n_hmac_digest(hmac , check_digest , mac_digest_size ));

85

86 int mismatches = s2n_constant_time_equals(decrypted ->data +

payload_length ,

check_digest ,

mac_digest_size) ^ 1;

87

88 /* Compute a MAC on the rest of the data so that we perform

the same number of hash operations */

89 GUARD(s2n_hmac_update (&copy , decrypted ->data + payload_length +

mac_digest_size ,

decrypted ->size - payload_length -

mac_digest_size - 1));

Fig. 1. Excerpt from s2n verify cbc, s2n’s code for checking the MAC on a TLS
record
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implementation waits for a random period of time before sending an error mes-
sage. We reproduce the relevant code excerpts in Fig. 2; at a high level, when a
MAC failure occurs, the following steps are taken:

– All available data is erased. Depending on the amount of buffered data, the
time this takes may vary.

– All connection data is wiped, which may also introduce a timing difference.
– A random integer x between 1,000 and 10,001,000 is requested. Since rejec-

tion sampling is used to generate x, this might also introduce some timing
variation.

– This random integer is then fed to usleep and sleep calls (after the appro-
priate scaling), causing a random delay of at least x μs.

s2n_record_read.c

91 int s2n_record_parse(struct s2n_connection *conn)

...

238 /* Padding */

239 if (cipher_suite ->cipher ->type == S2N_CBC) {

240 if (s2n_verify_cbc(conn , mac , &en) < 0) {

241 GUARD(s2n_stuffer_wipe (&conn ->in));

242 S2N_ERROR(S2N_ERR_BAD_MESSAGE );

243 return -1;

244 }

s2n_recv.c

36 int s2n_read_full_record(struct s2n_connection *conn , \

uint8_t *record_type , int *isSSLv2)

97 /* Decrypt and parse the record */

98 if (s2n_record_parse(conn) < 0) {

99 GUARD(s2n_connection_wipe(conn ));

100 if (conn ->blinding == S2N_BUILT_IN_BLINDING) {

101 int delay;

102 GUARD(delay = s2n_connection_get_delay(conn ));

103 GUARD(sleep(delay / 1000000));

104 GUARD(usleep(delay % 1000000));

105 }

106 return -1;

107 }

Fig. 2. Excerpts from s2n record read.c and s2n recv.c, s2n’s code for adding a
random waiting period

We note that this countermeasure, which is activated by default, is designed
as an API mode which can in principle be disabled. This is to support implemen-
tations which provide their own timing channel countermeasures. If the variable
blinding is not equal to S2N BUILT IN BLINDING then none of the countermea-
sure code is run.8 Since this countermeasure introduces a delay of up to 10 s in
8 However, we note that a bug in the version of s2n that we studied prevented this

from ever happening, because the call to wipe the connection data erased this con-
figuration flag as well.
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case of an error, it might be tempting for some application developers to disable
it. However, note that the s2n documentation strongly advises against disabling
this counter measure without replacing it by an equivalent one on the application
level.

3 The Attack Without the Random Waiting Period
Countermeasure

We first describe our variant of the Lucky 13 attack against s2n assuming the
random waiting period countermeasure is not present. We show how to deal with
this additional countermeasure in Sect. 4.

For simplicity of presentation, in what follows, we assume the CBC-mode
IVs are explicit (as in TLS 1.1 and 1.2). We also assume that b = 16 (so our
block cipher is AES). It is easy to construct variants of our attacks for implicit
IVs and for b = 8. The MAC algorithm is HMAC-H where H is either MD5,
SHA-1 or SHA-256. We focus at first on the case where the MAC algorithm
is HMAC-SHA-256, so that t = 32. We explain below how the attack can be
adapted to t = 16 and t = 20 (HMAC-MD5 and HMAC-SHA-1, respectively).

Let C∗ be any ciphertext block whose corresponding plaintext P ∗ the
attacker wishes to recover. Let C ′ denote the ciphertext block preceding C∗.
Note that C ′ may be the IV or the last block of the preceding ciphertext if C∗

is the first block of a ciphertext. We have:

P ∗ = DKe
(C∗) ⊕ C ′.

Let Δ be an arbitrary block of 16 bytes and consider the decryption of a
ciphertext Catt(Δ) of the form

Catt(Δ) = HDR||C0||C1||C2||C3||C ′ ⊕ Δ||C∗

consisting of a header field HDR containing an appropriate value in the length
field, an IV block, and 5 non-IV blocks. The IV block and the first 3 non-IV
blocks are arbitrary, the penultimate block C4 = C ′ ⊕ Δ is an XOR-masked
version of C ′ and the last block is C5 = C∗. The corresponding 80-byte plaintext
is P = P1||P2||P3||P4||P5 in which

P5 = DKe
(C∗) ⊕ (C ′ ⊕ Δ)

= P ∗ ⊕ Δ.

Notice that P5 is closely related to the unknown, target plaintext block
P ∗. Notice also that, via line 67 of the code in Fig. 1, the variable
payload and padding size is set to 80−32 = 48 (recall that the 13-byte string
SQN||HDR was fed to HMAC by the calling function and is buffered but otherwise
unprocessed at this point). We now consider 2 distinct cases:
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1. Suppose P5 ends with a byte value from the set {0x00, . . . , 0x04}. In this
case, the code sets padding length to be at most 4 and then, at line 72,
payload length is set to a value that is at least 48 − 4 − 1 = 43 (and at
most 47). This means that when the HMAC computation is performed in
lines 78 (update) and 84 (finalise), the internal buffer contains at least 56
bytes (because 13 bytes were already buffered by the calling function) and
exactly 5 calls to the compression function will be made, including one call
that initialises HMAC and 2 that finalises it. The time equalising code at line
89 adds between 0 and 4 bytes to the internal buffer, which still holds the
previous message bytes. However, because of the short length of our chosen
ciphertext, the buffer ends up being exactly 60 bytes in size. This number is
obtained by considering the 13 bytes of SQN||HDR, the payload length bytes
added to the buffer at line 78 and the decrypted->size - payload length -
mac digest size - 1 bytes added to the buffer at line 89. Combining these,
one arrives at there being 12 + decrypted->size - mac digest size bytes in
the buffer. This evaluates to 60 for the particular values in the attack. Notably,
this number is independent of payload length and padding length. The call
at line 89 is to the update function rather than the finalise function, so at
least 64 bytes would be needed in the buffer to cause any compression function
computations to be performed at this point. Thus no compression function
call is made as a consequence of the call to s2n hmac update at line 89.

2. Suppose P5 ends with a byte value from the set {0x05, . . . , 0xff}. In this
case, the code sets padding length to be at least 5 and then, at line 72,
payload length is set to a value that is at most 48 − 5 − 1 = 42 (and at
least 0). This means that when the HMAC computation is performed in lines
78 (update) and 84 (finalise), the internal buffer contains at most 55 bytes and
exactly 4 calls to the compression function will be made (again, including the
initialisation and finalisation calls). The time equalising code at line 89 will
again result in no additional calls to the compression function being made, as
the internal buffer is again too small at exactly 60 bytes in size (recall that
the buffer size is independent of payload length and padding length).

Based on this case analysis, a timing difference will arise in HMAC processing
of the attack ciphertext Catt(Δ), according to whether the last byte of P5 = P ∗⊕
Δ is from the set {0x00, . . . , 0x04} or not. The difference is equal to that taken
by one compression function call. This timing difference becomes evident on the
network in the form of a difference in the arrival time of an error message at
the man-in-the-middle attacker who injects the attack ciphertext. The difference
is of the same size as that observed in the plaintext recovery attack presented
in [AP13], a few hundred clock cycles on a modern processor. Of course, as
in [AP13], this time difference would be affected by noise arising from network
jitter, but it is sufficiently big to enable it to be detected. Furthermore, if the
attacker can arrange to be co-resident with the victim in a cloud environment,
a realistic prospect as shown by a line of work culminating in [VZRS15], the
attacker can perform a Person-in-the-Middle attack and observe the usage of
resources on the server by being co-resident.
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As was the case in [AP13], the attack can be iterated as often as is desired
and with different values of Δ, provided the same plaintext is repeated at a
predictable location across multiple sessions. The attack as presented already
takes care of the complication that each trial will involve a different key in a
different TLS session; only P ∗ needs to be constant for it to work.

By carefully exploring the timing behaviour for different values in the last
byte of Δ (each value being tried sufficiently often so as to minimise the effect
of noise), the attacker can deduce the value of the last byte of P ∗. For example,
the attacker can try every value in the 6 most significant bits in the last byte
of Δ to identify a value Δ∗ for which the time taken is relatively high. This
indicates that the last byte of P ∗ ⊕ Δ∗ is in the set {0x00, . . . , 0x04}; a more
refined analysis can then be carried out on the 3 least significant bits of the last
byte of Δ∗ to identify the exact value of the last byte of P ∗. The worst case
cost of this version of the attack is 64 + 8 = 72 trials (multiplied by a factor
corresponding to the number of trials per Δ needed to remove noise).

The attack cost can be reduced further by using initially longer ciphertexts,
because the peculiar characteristics of the s2n code mean that this choice results
in there being a greater number of values for (the last byte of) Δ that result in
a higher processing time; the precise value of the last byte of P ∗ can then be
pinned down by using progressively shorter ciphertexts. We omit the details of
this enhancement.

3.1 Extending to Full Plaintext Recovery

In the web setting, with HTTP session cookies as the target, the attack extends
in a straightforward manner to full plaintext recovery using by-now-standard
techniques involving malicious client-side Javascript and careful HTTP message
padding. A good explanation of how this is achieved can be found in [MDK14]
describing the POODLE attack on TLS. BasicAuth passwords also form a good
target; see [GPdM15] for details.

3.2 Variants for HMAC-MD5 and HMAC-SHA-1

Assume b = 16 (as in AES) and consider the case of HMAC-MD5. Then, because
t = 16 in this case, and t is still a multiple of b, the attack described above works
perfectly, except that we need to use a ciphertext having 4 non-IV blocks instead
of 5. The attack also works for b = 8 for both HMAC-MD5 and HMAC-SHA-256
by doubling the number of non-IV blocks used.

For HMAC-SHA-1, we have t = 20. Assume b = 16 (AES). Then a similar
case analysis as above shows that using a ciphertext with 4 blocks result in a
slow execution time if and only if the last plaintext block P4 ends with 0x00.
This leads to a plaintext recovery attack requiring, in the worst case, 256 trials
per byte. The attack adapts to the b = 8 case by again doubling the number of
non-IV blocks used.
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4 Defeating the Random Wait Period Countermeasure

As described in Sect. 2.4, s2n implemented a second countermeasure against
attacks exploiting timing channels. In this section, we show how it could be
defeated.

4.1 Characterising the Timing Delays

To start off, we notice that at the price of increasing the number of samples by a
factor of roughly ten, we can assume that sleep at line 103 in the code in Fig. 2
is called with parameter zero, by rejecting in an attack any sample where the
overall time is more than 1s. This removes one potential source of randomness.
As shown in Fig. 3, calling sleep(0) has a rather stable timing profile.

0 50 100 150 200 250 300 350 400 450 500

0

5 · 10−2

0.1

clock cycles

Fig. 3. Distribution of clock ticks for calling sleep(0) on Intel(R) Xeon(R) CPU E5-
2667 v2 @ 3.30 GHz.

Next, we consider calls to usleep with a random delay as a source of timing
randomness. For this, note that usleep has a granularity of 1µs. On our main
test machine, which is clocked at 3.3 GHz, this translates to 3,300 clock cycles.9

From this, we might expect that if we take our timings modulo the clock ticks
per µs (namely, 3,300 on our test machine), we could filter out all the additional
noise contributed by the usleep(delay) call. However, usleep(delay) does
not guarantee to return after exactly delay μs, or even to return after an exact
number of μs. Instead, it merely guarantees that it will return after at least
delay μs have elapsed. Indeed, on a typical UNIX system, waking up a process
from sleep can take an unpredictable amount of time depending on global the
state of the OS.
9 We note, however, that modern CPUs reclock their CPUs dynamically both below

the base operating frequency and above it (e.g. Intel Turbo Boost). This must be
taken into account when measuring time delays in elapsed clock cycles.
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However, despite this, usleep does show exploitable non-uniform behaviour
on the systems we tested. Figures 4 and 5 illustrate this behaviour. Figure 4 shows
raw timings (in clock cycles) for usleep(d), normalised to remove the minimum
possible delay, namely 3, 300 · d clock cycles. Figure 5 shows the distribution of
timings (in clock cycles) for usleep(delay) with delay uniformly random in an
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d = 1,000
d = 10,000

Fig. 4. Distribution of usleep(d)−3, 300 ·d (in clock cycles) on Intel(R) Xeon(R) CPU
E5-2667 v2 @ 3.30 GHz. Probability on the y axis.
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Fig. 5. Distribution of clock ticks modulo 3,300 for usleep(delay) with delay uni-
formly random in [0, d), on Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30 GHz.
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Fig. 6. Distribution of clock ticks for calling s2n stuffer wipe on Intel(R) Xeon(R)
CPU E5-2667 v2 @ 3.30 GHz.
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Fig. 7. Distribution of clock ticks modulo 3300 for calling s2n public random on
Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30 GHz.

interval [0, d), but now taken modulo 3,300. Both figures are generated from data
captured on our main test machine. They exhibit the non-uniformity needed to
bypass the random waiting period countermeasure in s2n.

Figures 6 and 7 show that, like the call to usleep, the calls to the functions
s2n stuffer wipe and s2n public random also do not produce timing profiles
which are uniform modulo 1µs (3,300 clock cycles).

However, it is not enough to simply characterise the timing profile of the
calls to usleep; rather it is necessary to study the distribution of the running
time of the entire random timing delay code in Fig. 2, in combination with the
code for checking the MAC on a TLS record in Fig. 1, for different values of
the mask Δ in the attack in Sect. 3. Figure 8 brings different sources of timing
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difference together and shows that the timing distributions (modulo 3,300) that
are obtained for different mask values are indeed still rather easily distinguish-
able. The figure is for samples with the maximum delay restricted to 100,000µs
instead of 10 s. We stress that this is a synthetic benchmark for studying the
behaviour of the various sources of timing randomness and does not necessar-
ily represent actual behaviour. See Sect. 5 for experiments with the actual s2n
implementation of these countermeasures.

4.2 Distinguishing Attack

Having characterised the timing behaviour of the s2n code, as exemplified in
Fig. 8, we are now in a position to describe a statistical attack recovering plain-
text bytes and its performance. In fact, the approach is completely standard:
given the preceding analysis, we expect the timing distributions modulo 1µs
for ciphertexts in the attack of Sect. 3 to fall into two classes depending on the
value of the last byte of P ∗ ⊕Δ, one class H = {0x00, . . . , 0x04}, the other class
L = {0x05, . . . , 0xff}; if the observed distributions for all values in L (resp.
H) are close to each other but the Kullback-Leibler (KL) divergence between
distributions from L and H is large (and equal to D, say), then, applying stan-
dard statistical machinery, we know that we will require about 1/D samples to
distinguish samples from the two distributions. As Tables 1 and 2 demonstrate,
the requirements on KL divergence for values in L and H are indeed satisfied,
even for relatively large values for the maximum delay.

For example, assuming for the sake of argument that no additional noise is
introduced by network jitter or other sources, we would be able to distinguish
the value 0x00 from 0xc8 in the last byte of P ∗ ⊕ Δ with 1/(3.6/1, 000) ≈ 280
TLS sessions if the maximum delay were restricted to 100,000 μs. Using rejection
sampling, i.e. discarding all samples with a delay greater than 100,000μs from
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Fig. 8. Distribution of clock ticks modulo 3,300 for timing signals on Intel(R) Xeon(R)
CPU E5-2667 v2 @ 3.30 GHz with the maximum delay restricted to d = 100, 000.
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Table 1. KL divergence multiplied by 1,000 of time distributions in clock cycles modulo
3,300 with the maximum delay limited to 1,000µs on Intel(R) Xeon(R) CPU E5-2667
v2 @ 3.30 GHz.

0x00 0x04 0x05 0x10 0x20 0x30 0x40 0x64 0xc8

0x00 .0 .7 14.1 15.1 17.7 13.2 18.4 17.4 17.6

0x04 .7 .0 15.4 16.8 19.5 15.3 20.0 18.9 19.3

0x05 14.0 15.3 .0 .1 .2 .3 .3 .2 .2

0x10 15.0 16.6 .1 .0 .1 .2 .2 .1 .1

0x20 17.4 19.2 .2 .1 .0 .5 .0 .0 .0

0x30 13.0 15.1 .3 .2 .5 .0 .7 .5 .5

0x40 18.2 19.7 .3 .2 .0 .7 .0 .0 .0

0x64 17.2 18.7 .2 .1 .0 .5 .0 .0 .0

0xc8 17.4 19.0 .2 .1 .0 .5 .0 .0 .0

Table 2. KL divergence (scaled by 1,000 for readability) of time distributions in clock
cycles modulo 3,300 with the maximum delay limited to 100,000µs on Intel(R) Xeon(R)
CPU E5-2667 v2 @ 3.30 GHz.

0x00 0x04 0x05 0x10 0x20 0x30 0x40 0x64 0xc8

0x00 .0 .0 2.4 1.9 2.3 2.0 2.8 2.1 3.6

0x04 .0 .0 2.3 1.8 2.1 2.0 2.6 1.9 3.3

0x05 2.4 2.3 .0 .0 .0 .1 .0 .0 .2

0x10 1.9 1.8 .0 .0 .1 .1 .1 .0 .3

0x20 2.3 2.1 .0 .1 .0 .2 .0 .0 .1

0x30 2.0 2.0 .1 .1 .2 .0 .3 .2 .5

0x40 2.8 2.7 .0 .1 .0 .3 .0 .1 .0

0x64 2.1 1.9 .0 .0 .0 .2 .1 .0 .2

0xc8 3.6 3.4 .2 .3 .1 .5 .0 .2 .0

the actual distribution produced by s2n (where the maximum delay is 10 s), this
increases to roughly 28, 000 TLS sessions for a successful distinguishing attack.
We stress that this estimate is optimistic because it is derived from a synthetic
benchmark not the actual implementation and because the surrounding code
and network jitter will introduce additional noise.

4.3 Plaintext Recovery Attack

We can extend this distinguishing attack to a plaintext recovery attack in
the following (standard) way. We assume that in a characterisation step, we
have obtained, for possible value x of the last byte in block P5, a histogram of
the timing distribution modulo 1μs for ciphertexts Catt(Δ) of the form used in
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Table 3. Timing of function s2n verify cbc (in cycles) with H = SHA-256 for different
values of last byte in the decrypted buffer, each cycle count averaged over 28 trials.

Byte value Cycles Byte value Cycles Byte value Cycles

0x00 2251.96 0x05 1746.49 . . . . . .

0x01 2354.57 0x06 1747.65 0xfc 1640.79

0x02 2252.07 0x07 1705.62 0xfd 1634.61

0x03 2135.11 0x08 1808.73 0xfe 1648.70

0x04 2130.02 0x09 1806.50 0xff 1634.64

the attack. We assume these timings are distributed into B equal-sized bins, and
so the empirical probability of each bin px,b for 0 ≤ b < B can be calculated. (In
fact, since we expect that timing behaviours for the classes H and L are similar,
it is sufficient to sample for two values x, one from each class.)

Now, in the actual attack, for each value δ of the last byte of Δ, we obtain N
samples for ciphertexts Catt(Δ) for which the timing delay is at most 100,000 μs.
This then requires a total of about 256 · 100 · N TLS sessions. We bin these into
B bins as above, letting nδ,b denote the number of values in bin b for last byte
value δ. Now for each candidate value y for the last byte of P ∗, we compute the
log likelihood for the candidate, using the formula:

LL(y) =
∑

δ∈{0x00,...,0xFF}
nδ,b · log(pδ⊕y,b) .

We then output as the preferred candidate for the last plaintext byte the value
y∗ having the highest value of LL(y) amongst all candidates.

We omit the detailed analysis of the performance of this attack, pausing only
to note that it will require more samples than the distinguishing attack because
the underlying statistical problem is to now separate one correct candidate from
255 wrong candidates, and this is more demanding than the basic distinguishing
problem.

To wrap up, we note that nanosleep, which is now used in s2n to add a ran-
dom time delay, has a granularity of nanoseconds, does not show this behaviour,
and therefore thwarts the attacks described in this work.

5 Proof of Concept

We confirmed that s2n does indeed behave as expected using the following two
experiments.

For the first experiment, we setup a s2n blob buffer of length 93 and filled it
with random data. Then, we assigned all possible padding length values 0x00 to
0xff by overwriting the last byte of the buffer and timed how long the function
s2n verify cbc took to return. As expected, the padding length values between
0x00 and 0x04 resulted in timings about 500–550 cycles longer than all other
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values. The timing difference was clear and stable. Some sample data is shown in
Tables 3 and 4. We note that at present we cannot explain the variation within
the second and third columns of those tables.

Table 4. Timing of function s2n verify cbc (in cycles) with H = SHA-1 for different
values of last byte in the decrypted buffer, each cycle count averaged over 210 trials.

Byte value Cycles Byte value Cycles Byte value Cycles

0x00 1333.99 0x05 1095.01 . . . . . .

0x01 1174.29 0x06 1092.68 0xfc 1062.37

0x02 1178.52 0x07 1065.08 0xfd 1035.48

0x03 1156.56 0x08 1102.31 0xfe 1035.15

0x04 1140.14 0x09 1101.04 0xff 1036.02

For the second experiment, we ran the attack against the actual s2n imple-
mentation instead of running a synthetic benchmark. That is, we timed the
execution of s2n recv under the attack described in Sect. 3. However, to speed
up execution we patched s2n to only sample random delays up to 10,000 μs. As
highlighted in Table 5, this, too, shows marked non-uniform timing behaviour
modulo 1μs.

Table 5. KL divergence observed the full attack against actual s2n implementation
(scaled by 105 for readability) using 224 samples on Intel(R) Xeon(R) CPU E5-2667
v2 @ 3.30 GHz.

0x00 0x01 0x02 0x03 0x04 0x05 0x0a 0x10 0x20

0x00 .0 .4 .2 .1 .4 1.7 1.6 1.9 2.2

0x01 .4 .0 .4 .3 .3 2.6 2.6 2.8 3.2

0x02 .2 .4 .0 .1 .2 2.3 2.2 2.6 2.8

0x03 .1 .3 .1 .0 .3 2.1 1.9 2.3 2.7

0x04 .4 .3 .2 .3 .0 2.6 2.6 2.9 3.2

0x05 1.7 2.6 2.3 2.1 2.6 .0 .1 .2 .3

0x0a 1.6 2.6 2.2 1.9 2.6 .1 .0 .2 .3

0x10 1.9 2.8 2.6 2.3 2.9 .2 .2 .0 .2

0x20 2.2 3.2 2.8 2.7 3.2 .3 .3 .2 .0

We did not adjust our proof-of-concept code to realise a full plaintext recovery
attack, because (a) s2n has since been patched in response to this work and
because (b) the cost is somewhat dependent on the target machine and operating
system. We note, though, that an attack can establish the characteristics of a
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target machine by establishing genuine TLS sessions (where, hence, padding
bytes are known) but with some random bits flipped.

The complete source codes for our experiments (which borrow heav-
ily from the s2n test suite) are available at https://bitbucket.org/malb/
research-snippets.

6 Discussion

Our attack successfully overcomes both levels of defence against timing attacks
that were instituted in s2n, the first level being the inclusion of extra crypto-
graphic operations in an attempt to equalise the code’s running time and the
second level being the use of a random wait interval in the event of an error such
as a MAC failure.

Fundamentally, the first level could be bypassed because s2n counted bytes
going into s2n hmac update instead of computing the number of compression
function calls that need to be performed as suggested in [AP13]. A call to
s2n hmac update in itself will not necessarily trigger a compression function
call if insufficient data for such a call is provided. A call to s2n hmac digest,
however, will pad the data and trigger several compression function calls, the
number also depending on the data already submitted at the time of the call.
We note that in OpenSSL this issue is avoided by effectively re-implementing
HMAC in the function ssl3 cbc digest record, i.e. by performing lower-level
cryptographic operations within the protocol layer. In contrast, s2n is specifi-
cally aimed at separating those layers. In response to this work, s2n now sensibly
counts the number of compression function calls performed, somewhat maintain-
ing this separation.

The second level could be bypassed because, while the randomised wait
periods were large, they were not sufficiently random to completely mask the
timing signal remaining from the first step of our attack. Note that the analy-
sis in [AP13] of the effectiveness of random delays in preventing the Lucky 13
attack assumed the delays were uniformly distributed; under this assumption,
their analysis shows that the count measure is not effective unless the maximum
delay is rather large. What the second step of our attack shows is that, even if
the maximum delay is very large, non-uniformity in the distribution of the delay
can be exploited. In short, it is vital to carefully study any source of timing delay
to ensure it is of an appropriate quality when using it for this kind of protection.

Our experiments indicate that the distribution of nanonsleep as imple-
mented on Linux is sufficiently close to uniform to thwart the attack described in
this work. We note, however, that this puts a high security burden on this func-
tion which is not designed for this purpose. In particular, nanosleep(2) states
(emphasis added): “nanosleep() suspends the execution of the calling thread
until either at least the time specified in *req has elapsed, or the delivery of
a signal that triggers the invocation of a handler in the calling thread or that
terminates the process”.

https://bitbucket.org/malb/research-snippets
https://bitbucket.org/malb/research-snippets
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Finally, since randomised waiting can also have a significant performance
impact, this work further highlights that MAC-then-Encrypt constructions such
as MEE-TLS should be avoided where possible.

Acknowledgement. We would like to thank Colm MacCarthaigh and the rest of the
s2n development team for pointing out the randomised waiting countermeasure and
for helpful discussions on an earlier draft of this work.
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