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Abstract. In this work, we present a novel approach based on recent
advances in software model checking to synthesize ranking functions and
prove termination (and non-termination) of imperative programs.

Our approach incrementally refines a termination argument from
an under-approximation of the terminating program state. Specifically,
we learn bits of information from terminating executions, and from
these we extrapolate ranking functions over-approximating the number
of loop iterations needed for termination. We combine these pieces into
piecewise-defined, lexicographic, or multiphase ranking functions.

The proposed technique has been implemented in SeaHorn — an
LLVM based verification framework — targeting C code. Preliminary
experimental evaluation demonstrated its effectiveness in synthesizing
ranking functions and proving termination of C programs.

1 Introduction

The traditional method for proving program termination and other liveness
properties is based on the synthesis of ranking functions, that is, for any
potentially looping computation, proving that some well-founded metric strictly
decreases every time around the loop.

State-of-the-art termination provers (e.g., [5,10,16]) reduce termination to
the safety property that no program state is repeatedly visited (and it is not
covered by the current termination argument), and compose termination argu-
ments by repeatedly invoking ranking function synthesis tools (e.g., [4,8,26]).

In this work, we present a novel approach based on recent advances in soft-
ware model checking to synthesize ranking functions and prove termination (and
non-termination) of imperative programs. The core of our approach lies on an
innovative use of safety verification techniques to build termination arguments.
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Fig. 1. Overview of our approach.

We use a safety verifier to systematically sample terminating program execu-
tions and extrapolate from these a candidate ranking function for the program,
or to otherwise provide a witness for program non-termination. More specifi-
cally, rather than verifying that no program state is repeatedly visited, we verify
the safety property that no program state is terminating (and it is not covered
by the current termination argument). The counterexamples are terminating
program executions which provide an under-approximation of the terminating
program states. From these we extrapolate a candidate ranking function which
over-approrimates the number of loop iterations to termination and is possi-
bly valid also for other terminating program executions. The candidate ranking
function can be an affine function, or a piecewise-defined, lexicographic, or multi-
phase combination of affine functions. We then use the safety verifier to validate
that the candidate ranking function is indeed a ranking function, or to provide
a counterexample non-terminating program state.

The proposed approach has been implemented in SEAHORN [15] targeting C
code. We show empirically that it performs well on a wide variety of benchmarks
collected from SV-COMP 2015!, is competitive with the state-of-the-art and is
able to analyze programs that are out of the reach of existing techniques.

Overview. Figure 1 provides an overview of our approach for proving termination
via safety verification. The overall algorithm is presented in Sect. 3.2. A program
P systematically undergoes a transformation T pry described in Sect. 4.1 which
allows sampling terminating executions § not covered by the current candidate
ranking function rank. The candidate rank is systematically refined as described
in Sect. 4.2 until no terminating execution [ is left uncovered. Finally, P under-
goes a final transformation Tyank described in Sect.4.1 which allows validat-
ing the ranking function rank or providing a counterexample non-terminating
state 7).

! http://sv-comp.sosy-lab.org/2015/.
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Fig. 2. Traces and ranking function.

2 Preliminaries

In this section, we introduce the basic concepts that serve in subsequent sections
and we establish the notation used throughout the paper.

Transition Systems. We formalize programs using transition systems (X,T)
where Y is the set of program states and 7 C X x X defines the transi-
tion relation. Note that this model allows representing programs with (possibly
unbounded) non-determinism. In the following, a program state s € X' is a pair
(I,z) consisting of a program control point [ € £ and a vector T of integers
representing the values of the program variables at that control point. We write
7(s,s’) for (s,s") € 7. The set of initial states is Id§f{<i79’c> |ie L} C X,

where ¢ € L is the program initial control point, and the set of final states is

.7:d§{<f,§c> | f €L} C X, where f € L is the program final control point.

Given a transition system (X, 7), a trace is a non-empty sequence of states in X
determined by the transition relation 7, that is 7(s, s") for each pair of consecutive
states s, s’ € X in the sequence. A state s’ € X' is reachable from another state
s € X if and only if there exists a trace from s to s’. In the following, we write
7*(s,8") to denote the existence of a trace from s to s’. A state s’ € X' is reachable
if and only if it is reachable from an initial state s € Z.

A state s € X' is terminating if and only if all traces to which it belongs are
finite, potentially non-terminating if and only if it belongs to at least one infinite
trace. Dually, it is non-terminating if and only if all traces to which it belongs are
infinite, and potentially terminating if and only if it belongs to at least one finite
trace. Note that, terminating states are also potentially terminating states, and
non-terminating states are also potentially non-terminating states. For instance,
consider the traces depicted in Fig. 2a: the states labeled with T are terminating,
the states labeled with N are non-terminating, and the state labeled with P is
potentially non-terminating and potentially terminating.

Ranking Functions. The traditional method for proving termination dates back
to Turing [29] and Floyd [14] and it requires finding a ranking function:

Definition 1 (Ranking Function). Given a transition system (¥, 1), a rank-
ing function is a partial function rank whose domain dom(rank) is a subset
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Fig. 3. Terminating program 3PIECES (a) and its control flow graph (b).

of the program states and whose value (i) strictly decreases through transitions
between program states, that is Vs,s' € dom(rank) : 7(s,s') = rank(s’) <
rank(s), and (ii) is bounded from below, that is Vs € dom(rank) : rank(s) > 0.

For instance, an obvious ranking function maps each program state to
some well-chosen upper bound on the number of transitions until termination.
Figure 2b shows a ranking function labeling the terminating states of Fig. 2a.

Control Flow Graphs. The control flow graph (CFG) induced by a transition
system (X, 7) is a graph whose nodes are the program control points £ and
whose edges £ C L x L are pairs of control points corresponding to transitions
in the transition system: (I, z), (I,z') € X : 7((1,z), (I,&")) = (I,I') € €. In the
following, we restrict our attention to reducible control flow graphs. A loop is a
strongly connected component of the CFG with a single entry node h called loop
header. The loops nested within a loop are the strongly connected components
of the loop after removing the loop header. A loop entry edge is an edge whose
source is outside the loop and whose target is inside the loop, a loop edge is an
edge whose source and target are within the loop, and a loop exit edge is an edge
whose source is inside the loop and whose target is outside the loop. Similarly,
we can partition the corresponding transitions in the transition system into loop
entry transitions, loop transitions, and loop ezit transition.

Ezxample 1. Consider the program in Fig. 3a: the integer variable x is initialized
non-deterministically; then, at each loop iteration, the value of x is increased by
one or negated when it becomes greater than or equal to ten, until z becomes
zero. The control flow graph of the program is depicted in Fig. 3b. The program
while loop corresponds to the strongly connected component of the CFG formed
by the nodes 2, 3, 4 and 5. The loop header is the node 2. There is a single
entry edge (1,2) and a single exit edge (2, 6).

Remark 1. Note that it is not necessary for a ranking function to strictly decrease
at each transition but only around each loop iteration [11]: V(h,Z),(h,Z') €
dom(rank) : 7*({h,Z), (h,T’)) = rank({h,Z")) < rank({(h,Z)).
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Ezample 2. The program 3PIECES of Fig.3a terminates whatever the initial
value of the variable x. The following piecewise-defined function:

-z x <0
fl)=¢21—-2 0<z<10
z+1 10<=x

is a valid ranking function for the program, which maps the initial value of x to
the number of loop iterations needed for termination.

3 Verifying Termination via Safety

In the late 1970s, Lamport suggested a classification of program properties into
the classes of safety and liveness properties [20]. Safety properties represent
requirements that should be continuously maintained by the program. On the
other hand, liveness properties represent requirements that need not hold con-
tinuously but whose eventual or repeated realization must be guaranteed. Thus,
a counterexample to a safety property is a finite (prefix of a) program execution,
while for a liveness property a counterexample is an infinite execution on which
an event of interest does not occur. A prominent example of a liveness property is
termination. Instead, non-termination is a safety property since any terminating
(and, thus, finite) program execution is a witness against non-termination.

3.1 Verifying Safety Properties

The verification of safety properties often amounts to checking the reachability
of an error location: a program is safe when the error location is unreachable;
otherwise, the program is unsafe. In the former case, safety provers often pro-
vide an invariant testifying the validity of the property. In the latter case, safety
provers usually provide a counterexample trace violating the safety property.
In the following, we propose some examples to informally illustrate how safety
properties can be verified by checking the (un)-reachability of an error.

Verifying Non-Termination [6]. Consider the program in Fig.4a: the integer
variables x and y are initialized with value zero and nine, respectively; then, at
each iteration, x and y are increased by one, until  becomes equal to y. Since
safety provers report counterexample traces reaching an error location, in order
to verify that the program is non-terminating, we turn terminating traces into
counterexamples to be found. In Fig.4b, we added an error location — defined
as assert(false) — before the end of the program of Fig. 4a: only terminating
traces would execute assert(false), thus the program is non-terminating since
in this case the error location is in fact unreachable.
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int 'z :=0,y:=9

while ?(z # %) do
Sri=x4+1
y=y+1

od

assert (false)®

(a) (b)

int 'z :=0,y:=9

while %(z # %) do
3p = x+1
y=y+1

0d®

Fig. 4. Non-terminating program (a) annotated with an error location (b).

int 'z := 7, r := max{-=,21 —z,z + 1}
while *(x # 0) do

ri=r—1

assert (r > 0)

if ®(x < 10) then *z := z + 1 else °z := —x fi
0d®

Fig. 5. Program 3PIECES annotated with a ranking function.

Verifying a Ranking Function. Safety provers can also be used to verify whether a
given function is a ranking function for a program. For instance, to check wether
max{—z,21 — z,x + 1} is a ranking function for the program 3PIECES shown
in Fig. 3a, we instrument the program as shown in Fig.5: we add a variable r
initialized with the given function max{—=z,21 — x, z 4+ 1}; then, within the loop,
according to Definition 1 and Remark 1 (i) we strictly decrease the value of r
(i.e., we decrease r by one), and (ii) we assert that the value of r is bounded
from below (i.e., we assert that r is greater than or equal to zero). Note that the
counterexample traces that would violate the assertion are either (prefixes of)
non-terminating traces, or (prefixes of) traces that are terminating but require a
higher number of loop iterations with respect to the initial value of r. In this case,
since the assertion is never violated, the given function max{—=z,21 — =,z + 1}
is a valid ranking function for the program 3PIECES.

3.2 Verifying Termination via Safety

In the following, we describe the overall algorithm for proving termination via
safety. We detail our specific implementation choices in Sect. 4.

The overall algorithm is illustrated by Algorithm 1. We verify termination
of each loop in a program, implicitly constructing a lexicographic ranking func-
tion for nested sets of loops [1]. The function ISTERMINATING takes as input
a transition system (X, 7) and returns either TRUE: R, meaning that the pro-
gram is terminating and R is a ranking function, or FALSE: p, meaning that the
program is potentially non-terminating and p is a counterexample potentially
non-terminating initial state. Specifically, ISTERMINATING invokes the function
ISLOOPTERMINATING for each loop in the program (identified by the func-
tion GETLOOPS, cf. Line 4) and maps each loop header h (cf. Line 3) to the
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Algorithm 1. Program Termination
1: function ISTERMINATING((X/, 7))

2: R0

3: for h € geTLoops((X, 7)) do > h is a loop header in the program
4: r: p < ISLOOPTERMINATING (h, (¥, T))

5: if r then > the loop is terminating
6: R — Rh~ p]

7 else return FALSE: p > p is a potentially non-terminating state
8: return TRUE : R > R is a ranking function for the program

Algorithm 2. Loop Termination

1: function ISLOOPTERMINATING (h,(X, T)) > h is the loop header
2: rank «— 0 > candidate ranking function initialization
3 B—0

4 while TRUE do

5 B < GETTERMINATINGTRACE(h, (¥, T), rank)

6: if 5 then > there are terminating traces violating rank
7 B—BuUg

8 rank <« GETCANDIDATERANKINGFUNCTION(rank, B)

9: else > there are no terminating traces violating rank
10: 1 < ISRANKINGFUNCTION(rank)
11: if n then > n is a potentially non-terminating state
12: return FALSE: 7
13: else > rank is a ranking function for the loop
14: return TRUE: rank

returned ranking function (cf. Line 6), or returns as soon as a counterexample
non-terminating state p is found (cf. Line 7). The function GETLOOPS imple-
ments a standard control-flow analysis to identify (natural) loops within the
CFG induced by the transition system (X, 7). We omit its pseudocode due to
space limitations. The identified program loops are analyzed in no specific order.

The function 1ISLOOPTERMINATING is shown in Algorithm 2. Initially,
ISLOOPTERMINATING assumes that all program states within the loop are non-
terminating and looks for a counterexample, that is, a terminating trace 8 (cf.
Line 5). Then, the call to the function GETCANDIDATERANKINGFUNCTION com-
putes a candidate ranking function rank for the (potentially terminating) states
along this trace (cf. Line 8). The original non-termination property is weak-
ened to only search for terminating traces violating the candidate rank, and the
process starts over. The information provided by the collected terminating traces
is used to incrementally refine the candidate rank with further ranking function
pieces. In case no further terminating traces violating rank are found (cf. Line 9),
the call to the function ISRANKINGFUNCTION checks wether all program states
within the loop are terminating (cf. Line 10): if so, rank is a ranking function
for the loop (cf. Line 14); if not, a counterexample potentially non-terminating
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initial state n (that is, 7 belongs to at least one infinite trace) is returned (cf.
Line 12). Note that ISLOOPTERMINATING might also not terminate (cf. Line 4).

4 Counterexample-Guided Ranking Function Synthesis

We now detail our implementation choices for the functions GETTERMINATING-
TRACE, ISRANKINGFUNCTION and GETCANDIDATERANKINGFUNCTIONS. We
omit their pseudocode due to space limitations.

4.1 Search for Ranking Function Counterexamples

In Sect. 3.1, we have seen how to use a safety prover for verifying non-termination
by turning terminating traces into counterexamples (cf. Fig. 4). In our approach,
we use a similar intuition to systematically detect terminating traces violating
a given candidate ranking function rank.

In the following, we consider a generic candidate rank and we introduce two
program transformations Tigry and Tyank implemented by the functions GET-
TERMINATINGTRACE and ISRANKINGFUNCTION, respectively. We detail these
transformations with respect to a specific candidate rank in Sect. 4.2.

TrerMm Transformation. Let h be a loop header within a program (X, 7) and
let rank be a candidate ranking function for the loop. We modify the program
in order to turn terminating traces violating rank into counterexamples to be
found. Specifically, we modify X' in order to include the value of rank and we
add an error state w ¢ X: (X' x Z)U{w}. In the following, s, s’, and (h,Z) denote
program states in Y. We also define the modified transition relation 7 as follows:

— for each loop entry transition 7(s, (h,T)) there exists an entry transition 77%"*

which also includes the candidate rank:
T (s, 1), ((h,E), 7)) & 7(s, (b, 2)) AT’ = rank(z)

— for each loop transition 7({h,Z),s) whose source is the loop header h there
exists a loop transition 7€ which also strictly decreases the value of rank:

T6(<<h7j>’r>a <S,’I“/>> < T(<haj>7s) Ar'=rol

— for each loop exit transition 7(s,s’) there exists transition 7< to the error
state w when the candidate ranking function is negative:

79((s,7),w) g0

For every other transition 7(s,s’) there exists a transition 7/({s,r), (s',7')) &
7(s,8") Ar" = r. The counterexample traces that reach the error state are traces
that are leaving the considered loop but violate the candidate rank since they
require a higher number of loop iterations with respect to the initial value of
rank. The function GETTERMINATINGTRACE returns any of these counterex-
amples.
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int 'z =7, r == rank
while ?(x # 0) do
ri=r—1
if 3(x < 10) then *z := 2 + 1 else °x := —x fi
od
assert (r > 0)°

Fig. 6. Program 3PIECES annotated with a candidate ranking function rank.

Theorem 1. Let h be a loop header of a program (X, 7) and let (X', 7"} be the
program resulting from the Tigry transformation for a given candidate ranking
function rank. Then, 7*({{h, Z), rank(Z)), (s, ) AT({s,r),w) if and only if there
exist s' € X 7(s,s") and the transition is an exit transition, and 7*(s,s’) and the
trace wvisits the loop header h strictly more than rank(z) times.

Ezample 3. Consider again the program 3PIECES of Fig. 3a. The transformation
that we have just described intuitively corresponds to modifying 3PIECES as
illustrated in Fig.6: we add a variable r initialized with the candidate rank
within the entry transition (1,2); then, within the loop transition (2,3), we
decrease the value of r by one and, after the loop, we assert that the value of r
is greater than or equal to zero. The assertion is equivalent to adding an error
transition (2, w) when r is negative. The counterexample traces that violate the
assertion are traces that leave the loop after rank — r loop iterations, where r is
the (negative) value of the variable r after the loop.

Trank Transformation. Note that traces that never leave the considered loop
are not counterexamples since they never reach the error state. For this reason
Algorithm 2 includes a final validation of the ranking function (cf. Lines 10-14).
We implement this using an analogous program transformation: we define entry
transitions 77%** and loop transitions 7© as before:

7_7'cmk(<877»>7 <<h7j>’ r/>) = T(S, <h,£‘>) Ar = Tcmk:(i“)

Te(<<h,i’>,7”>, <S,7‘/>) ~ T(<h, f),s) Ar=rol

unlike before, for each loop transition 7(s,s’) we also define a transition 79 to
the error state w when the candidate ranking function is negative:

(s, 1), w) def . <0

Other transitions are again defined as 7/({(s, ), (s, 7)) dﬁfT(s, 'Y Ar" =r. The
counterexample traces that violate the assertion are necessarily (prefixes of) non-
terminating traces, since the T ury transformation has excluded all terminating
traces violating the candidate ranking function. The function ISRANKINGFUNC-
TION returns the initial state of any of these counterexamples.
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Theorem 2. Let h be a loop header of a program (X, 7) and let (X', 7'} be the
program resulting from the Trank transformation for a given candidate rank-
ing function rank. Then, 7"*({(h,Z),rank(Z)), (s,7)) A T7((s,r),w) if and only
if 7*({h,Z),s) and the trace is the prefix of an infinite trace and visits the loop
header h strictly more than rank(Z) times.

Ezample 4. The transformation that we have just described intuitively corre-
sponds to modifying the program 3PIECES of Fig. 3a as illustrated in Fig. 5 and
described in Sect. 3.1.

4.2 Synthesis of Candidate Ranking Functions

The function GETCANDIDATERANKINGFUNCTION uses the terminating traces
collected by GETTERMINATINGTRACE to extrapolate ranking function pieces
which are combined into a candidate loop ranking function. We only consider
affine pieces and leave the extrapolation of non-linear pieces for future work.

In Algorithm 2, the initial candidate is the constant function equal to zero
(cf. Line 2). Then, the candidate ranking function is systematically updated in
order to be valid for the newly discovered terminating traces, and possibly for
other terminating traces not explicitly enumerated.

We extrapolate an affine ranking function piece from terminating traces map-
ping the initial states of these traces to the number of loop iterations needed
for termination, and then finding an affine ranking function which fits these bits
of information. More specifically, let {(Z1,r1), (ZT2,72),...} be the set of pairs
mapping the initial states Z1,ZTs,... of the collected terminating traces to the
number 71,72,... of loop iterations needed for termination. We find a fitting
affine function m - & + ¢ of the program variables T by linear interpolation, that
is by solving the system of equations:

for the unknowns m and q.

Ezample 5. Let {(9,12),(4,17)} be the set of pairs mapping some initial states
of the program 3PIECES of Fig.3a to the number of loop iterations needed for
termination: the initial state with £ = 9 needs 12 loop iterations, and the initial
state with = 4 needs 17 loop iterations. Solving the system of equations:

m-9+qg=12
m-44q=17

yields the affine function 21 — x of the program variable x. Note that this is a
valid ranking function for all initial states with 0 < < 10, and not only for the
given initial states with z = 9 and = = 4 (cf. Example 2).
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When the system is unsatisfiable, we discard all collected states and we start
over by building a new ranking function piece. The ranking function pieces are
alternatively combined into piecewise-defined, lexicographic, or multiphase rank-
ing functions [24]. These combinations have complementary strengths: piecewise-
defined combinations are well-suited when multiple paths are present within
loops (cf. Fig.3a), lexicographic combinations are convenient for loops featur-
ing unbounded non-determinism (cf. Fig. 7), and multiphase combinations target
loops that go through a number of phases in their executions [3]. The choice of
the combination is a parameter of the analysis.

Piecewise-Defined Ranking Functions. We represent piecewise-defined affine
ranking functions using maz combinations of affine ranking functions [25]:

max{ranki,...,rank,}

where ranky,...,rank, are the affine ranking function pieces.

In the transformations Trpry and Trank described in Sect. 4.1, the modified
loop transitions 7€ strictly decrease a maz combination of ranking functions by
strictly decreasing all its pieces:

max{ry,...,rn} ©1 =max{r; — 1,...,r, — 1}

In the added error transitions 79 a maxz combination of ranking functions is
negative when all its pieces are negative:

max{ry,...,rn} <0< <OA---Arp <0

Ezxample 6. The transformations Trgry and Trank of the program 3PIECES of
Fig. 3a are shown in Figs. 5 and 6, respectively.

Lexicographic Ranking Functions. Lexicographic ranking functions are tuples:
(ranky,...,rank,)

where ranky,...,rank, are affine ranking function pieces.

In the transformations Tygry and Trawk, the modified loop transitions 7©
strictly decrease a lexicographic ranking function resetting the less significant
pieces to their initial affine expression:

(F1yee oy iy Tty o5 Tn) O 1= (r1, ..., — Lrank;1q, . .. ranky,)

were 741, ..,y are negative and get reset to the initial rank;y1,...,rank,. In
the added error transitions 7< a lexicographic combination of ranking functions
is negative when the first of its pieces is negative:

(r1,...,1)<0& 1 <0
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int 'z =7,y =7, 7 := (z,y)

while *(z > 0 Ay > 0) do
if (snd(r) < 0) then r := (fst(r) — 1,y) else r := (fst(r),snd(r) — 1) fi
assert (fst(r) > 0)
if 3(?) then *z : =z — 1; %y := ? else Sy :=y — 1 fi

od”

Fig. 7. Program annotated with a lexicographic ranking function.

Example 7. Consider the program in Fig.7: the integer variables x and y are
initialized non-deterministically; then, at each iteration, either the value of y
is decreased by one or the value of x is decreased by one and the value of y
is reset non-deterministically, until either variable is less than or equal to zero.
The program terminates whatever the initial value of z and y. Let (z,y) be
a candidate lexicographic ranking function for the program. In this case, the
transformation T,y intuitively corresponds to adding a variable r initialized
with (z,y) within the entry transition (1,2); then, within the loop transition
(2, 3), decreasing the value of r lexicographically resetting its second component
snd(r) when negative, and asserting that its first component fst(r) is greater
than or equal to zero. The assertion is equivalent to adding an error transition
(2, w) when fst(r) is negative. In this case, since the assertion is never violated,
(z,y) is a valid lexicographic ranking function for the program.

Multiphase Ranking Functions. Multiphase ranking functions specify ranking
functions that proceed through a certain number of phases during program exe-
cution [24]. They are represented as tuples:

(ranky,...,rank,)

where ranki, ..., rank, are affine ranking function pieces. Each piece represents
a phase of the ranking function. In the transformations Trgry and Tyank, the
modified loop transitions 7© strictly decrease a multiphase combination of rank-
ing functions as follows:

(Tl,...,Ti,T’,j_;,_l,...,T’n)@1:(Tl,...,T’ifL’l"i_i_l,...’f‘n)

were rii1,...,T, are negative (and, unlike in the lexicographic combination,
are never reset). In the added error transitions 7< a multiphase combination of
ranking functions is negative when the first of its pieces is negative:

(r1y...,1)<0& 11 <0

In summary, our approach systematically collects terminating program exe-
cutions and searches for a function that uniformly captures the termination
argument of the program. The function can be an affine ranking function, or
a piecewise, lexicographic, or multiphase combination of affine functions. Then,
we either manage to validate the candidate ranking function or we provide a
witness for program non-termination.
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‘Tot‘ Time ‘ SEAHORN

SEAHORN |135] 1.71s e x|
APROVE [28] |129(10.77s APROVE [25] |39|33| 96 |22
FuNcTION [30]|111] 0.55s FuncTIoN [30]]50/26 85 |29
HIPTNT+ [22]|152] 0.62s HIPTNT+ [22]|16/33/119]22
ULTIMATE [16] |109| 8.45s ULTIMATE [16] |55/29| 80 |26

(a) (b)

Fig. 8. Overview of the experimental evaluation.

5 Implementation

Our approach is implemented in SEAHORN?, an LLVM [21] based safety verifica-
tion framework. SEAHORN verifies user-supplied assertions as well as a number
of built-in safety properties (e.g., buffer and signed integer overflows). It can also
be used to check for inconsistent code in C programs [18].

SEAHORN is parameterized by the semantic representation of the program
using Constrained Horn Clauses (CHCs), and by the verification engine that
leverages the latest advances made in SMT-based Model Checking and Abstract
Interpretation. Detailed information about SEAHORN can be found in [15]. The
transformations Trgry and Trawk presented in Sect.4.1 are used to enhance
the CHCs passed to the verification engine. SEAHORN employs several SMT-
based model checking engines based on PDR/IC3 [2], including SPACER [19].
The synthesis of candidate ranking functions presented in Sect. 4.2 uses Z3 [12]
to find affine functions fitting the collected terminating states.

Ezperimental FEvaluation. We compared SEAHORN to the participants in
the termination division of SV-COMP 2015: APROVE [28], FuncTIoN [30],
HIPTNT+ [22], and ULTIMATE AUTOMIZER [16]. We evaluated the tools against
190 terminating C programs collected from the SV-COMP 2015 benchmarks.
Specifically, we selected only the programs that all tools could analyze (e.g.,
without parse errors or other clear issues) among the two most populated verifi-
cation tasks of the termination category (i.e., crafted-lit and memory alloca). Note
that other tools (e.g., FUNCTION) provide a very limited support for arrays and
pointers. Therefore, we were not able to analyze 30 % of the considered bench-
marks. The experiments were performed on a machine with a 2.90 GHz 64-bit
Dual-Core CPU (Intel i5-5287U) and 4 GB of RAM, and running Ubuntu 14.04.

In the evaluation, we run in parallel three instances of SEAHORN parame-
terized with the different ranking function combinations presented in Sect. 4.2,
halting the analysis as soon as one instance reported a result. Figure8 sum-
marizes our experimental evaluation and Fig.9 shows a detailed comparison of
SEAHORN against each other tool. In Fig. 8a, the first column reports the total

2 http://seahorn.github.io/.
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Fig. 9. Detailed comparison of SEAHORN against APROVE [28] (a), FUNCTION [30]
(b), HIPTNT+ [22] (c), and ULTIMATE AUTOMIZER [16] (d).

number of programs that each tool could prove terminating, and the second col-
umn reports the average running time in seconds for the programs where the tool
proved termination. We used a time limit of 30s for each program. In Fig. 8b,
the first column (M) lists the total number of programs that the tool was not
able to prove termination for and that SEAHORN could prove terminating, the
second column (@) reports the total number of programs that SEAHORN was
not able to prove termination for and that the tool could prove terminating, and
the last two columns report the total number of programs that both the tool and
SEAHORN were able (X ) or unable (A) to prove terminating. The same symbols
are used in Fig.9.

Figure 8a shows that SEAHORN is able to prove termination of 3.2 % more
programs than APROVE, 12.6 % more programs than FUNCTION, and 13.7%
more programs than ULTIMATE AUTOMIZER. HIPTNT+ is able to prove ter-
mination of 8.9% more programs than SEAHORN, but SEAHORN can prove
termination of 42.1% of the programs that HIPTNT+ is not able to prove
terminating (8.4 % of the total program test cases, cf. Fig. 8b).



68 C. Urban et al.

Figure 8b highlights the complementary strengths of SEAHORN and each of
the other tools. Specifically, SEAHORN and APROVE seem to form the best
combination with respectively 20.5 % and 17.4 % of the total program test cases
that could be proved terminating only by one tool and not the other, and only
11.6 % of the test case that could not be proved terminating by either tool.

Figure 9 shows that SEAHORN is generally faster than APROVE (cf. Fig. 9a)
and ULTIMATE AUTOMIZER (cf. Fig.9d), and often slower than FUNCTION (cf.
Fig. 9b) and HIPTNT+ (cf. Fig. 9¢). In Fig. 9b and ¢, we also see that FUNCTION
and HIPTNT+ give up earlier when unable to prove termination, while SEA-
HorN, APROVE, and ULTIMATE AUTOMIZER usually persist with the analysis
until the timeout (cf. also Fig. 9a and d).

Finally, we noticed that five of the SV-COMP 2015 program test cases could
be proved terminating only by SEAHORN (one only by APROVE, one only by
FuncTioN, two only by HIPTNT 4, and five only by ULTIMATE). No tool could
prove termination of six of the program test cases.

6 Related Work

In the recent past, termination analysis has benefited from many research
advances and powerful termination provers have emerged. Many approaches in
this area reduce termination to a safety property. For instance, the approach
implemented in TERMINATOR. [10] systematically verifies that no program state
is repeatedly visited (and it is not covered by the current termination argument).
The identified counterexamples are independently proved to be terminating [26]
building a disjunctive well-founded termination argument [27]. A similar incre-
mental approach is used in T2 [5] for the construction of lexicographic ranking
functions. An automata-based incremental approach is described in [17] and
implemented in ULTIMATE [16]. An approach based on conflict-driven learning
is used in [13] to enhance the abstract interpretation-based termination analy-
sis [31] implemented in FuncTION [30].

The incremental approach that we have proposed in this paper uses safety
verifiers for proving termination in a fundamentally different way than existing
methods: rather than systematically verifying that no program state is visited
repeatedly, we systematically verify that no program state is terminating. Thus,
our counterexamples are finite traces and do not need to be proven terminating.

The counterexample finite traces identified by our approach are used to
extrapolate affine ranking functions. The linear interpolation that we use resem-
bles the widening operator described in [31]. The extrapolated ranking functions
are combined into a piecewise-defined, lexicographic, or multiphase ranking func-
tion for a program. Thus, our method provides more valuable information than
just a positive or inconclusive answer like the methods based on the size-change
termination principle [23] and implemented in APROVE [28], or like the already
cited methods based on disjunctive well-foundedness and implemented in TERMI-
NATOR. Finally, compared to the incomplete methods implemented in APROVE
and FUNCTION, our method is also able to prove program non-termination.
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Conclusion and Future Work

This paper provides a new perspective on the use of safety verifiers for proving
program (non-)termination. We have proposed a novel incremental approach,
which uses a safety verifier to systematically sample terminating program exe-
cutions and synthesize from these a ranking function for the program, or to
otherwise provide a witness for program non-termination.

It remains for future work to adapt the approach in order to infer sufficient

preconditions for program termination [7,31]. We also plan to extend the app-
roach to other liveness properties [9,32].
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