Robots at the Edge of the Cloud

Rupak Majumdar®™9

Max Planck Institute for Software Systems (MPI-SWS),
Kaiserslautern, Saarbriicken, Germany
rupak@mpi-sws.org

Abstract. Computers have come a long way from their roots as fast
calculating devices. We live in a world in which computers collect, store,
and analyze huge volumes of data. We are seeing the beginnings of a new
revolution in the use of computers. In addition to collecting and analyz-
ing data, computers are influencing the physical world and interacting
autonomously, and in complex ways, with large groups of humans. These
cyber-physical-social systems have the potential to dramatically alter the
way we lead our lives. However, designing these systems in a reliable
way is a difficult problem. In this paper, we enumerate a set of research
challenges that have to be overcome in order to realize the potential of
cyber-physical-social systems.

1 Motivation

The computer has come a long way from its initial role as a fast calculating
device. We live in a world where a large number of geographically distributed and
physically embedded computing devices increasingly participate in our everyday
actions. Our digital activities generate and consume data at unprecendented vol-
umes. This data is collected, stored, and combined in novel ways. Storage, com-
munication, and processing of this data has moved out of individual workstations
into large ensembles of geographically distributed computers (“cloud comput-
ers”) connected via the Internet and dynamically managed for data processing
tasks. Data processing in the cloud has revolutionized the way we approach
large-scale design and deployment of software systems. Over the past decade, a
similar revolution is happening in the monitoring of the physical world through
large swarms of sensors wirelessly connected with each other and with a cloud
computing backbone (called variously “Internet of Things” (IoT) or “sensory
swarm” [31]).

The next wave in this progression is in large-scale interaction with the physi-
cal world through autonomous systems with actuation capabilities and symbiotic
relationships of these autonomous systems with large groups of humans. These
autonomous systems, call them robots, will connect wirelessly with each other
as well as with the cloud and the sensor swarm. They will interact with large
groups of people, and their actuation capabilities will allow them to modify the
state of the physical world. For the purposes of this paper, and keeping with
marketing practice, let us call this next progression the “Internet of Robots”
(IoR).
© Springer-Verlag Berlin Heidelberg 2016

M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 3-13, 2016.
DOI: 10.1007/978-3-662-49674-9_1



4 R. Majumdar

The notion of “closing the control loop” on sensor networks is not novel
(see, e.g., [44]), and indeed, the whole field of cyber-physical systems studies
the interaction between software and the physical world. However, the potential
for IoR today, with the computing and sensing infrastructure available through
the cloud and IoT, is much greater. On the one hand, we can expect systems
with a large number of dynamically interacting autonomous agents co-ordinating
through the cloud. On the other hand, we can expect systems in which software
agents and humans co-operate towards a common goal. In contrast to the “tra-
ditional” view where the human is in charge and the machines perform his or
her bidding, the IoR vision is that human agents and software or robotic agents
interact equally, or even with robots in charge.

While the IoR vision holds enormous promise, as with other grand visions,
realizing it requires overcoming a number of very hard research problems. In this
paper, we discuss some challenges for IoR, and posit that implementing the ToR
vision is a grand challenge for computer science. We structure the problems in
three core directions: challenges in the correct design of core algorithmic com-
ponents (controller synthesis), challenges in software engineering, and challenges
in human-robot interaction.

2 Formal Design of Control Systems

At the core of IoR is the notion of feedback control of mixed discrete-continuous
dynamical systems. Feedback control has a long history in both the continuous
world of dynamical systems and in the discrete world of automata theory.

In continuous control, one starts with a model of the system in continuous
time, where the continuous state of the system evolves based on the current state,
a control input, and a disturbance input. The goal is to provide feedback to the
system through the control input, that depends on the sensed value of the state,
so that the controlled system has “good” properties. Typically, the properties
studied in control are stability or performance. When restricted to these prop-
erties, under suitable restrictions on the dynamics, methods from continuous
control theory show how to synthesize the feedback controller.

In control of discrete systems, usually called reactive synthesis, one models
the system as a two-player game on graphs, and the goal is to come up with
a strategy, a state machine that looks at the history of the game and defines
the next move in the game, so that the outcome satisfies “good” properties.
Properties are typically specified in a temporal logic such as linear-time temporal
logic (LTL) or using automata [17].

The combination of continuous and discrete dynamics leads to cyber-physical
systems (CPS). In a cyber-physical system, the discrete component ranges over
nodes of a graph —as in reactive synthesis— and for each node of the graph,
there is a separate continuous dynamics. Cyber-physical systems arise in control
problems when one mixes the higher-level logical decision making (e.g., planning
a trajectory to reach a goal while avoiding obstacles) with lower-level dynamics
(e.g., navigation). At the level of the continuous dynamics, the specification is,



Robots at the Edge of the Cloud 5

as before, related to stability and performance. At the level of the discrete state,
the specification is, as in reactive synthesis, given as a temporal logic formula.

The controller for a cyber-physical system combines a strategy at the discrete
level with strategies at the continuous level. Traditionally, such controllers would
be designed “by hand” and verified through extensive simulation or through sym-
bolic techniques such as model checking. Recent research attempts to synthesize
controllers directly from the specification and the model [30,34,46]. Typically,
these synthesis techniques compute a finite-state abstraction of the continuous
dynamical system and apply reactive synthesis to the abstraction. One step of
the discrete strategy —for example, a request to go from one abstract state to
the next— can be refined to a continuous controller in the original continuous
system. Under certain assumptions on the dynamics, one can show that the
original and the abstracted systems are related by an e-bisimulation relation
[24,46]. This guarantees that controllers synthesized on the abstraction can be
implemented on the original system.

While initial results on controller synthesis through abstractions is encour-
aging, there are several difficult technical challenges before the techniques can
be applied more widely and to larger classes of systems. We outline some key
research questions.

Scalability of Synthesis. The major challenge in using formal synthesis techniques
is their scalability. The abstraction of a continuous system yields a discrete
system which is exponential in the dimension. In addition, reactive synthesis
algorithms, even with symbolic implementations, are expensive (cubic for broad
classes of properties [13], but doubly exponential for full linear temporal logic
[37]). When the modeling paradigm is extended to include probabilities or other
numerical parameters, the problem is even harder.

Recent approaches attempt to get around the scalability by adapting receding
horizon control techniques for temporal logic [52]. There are also some interesting
initial approaches based on deductive approaches [20], compositional synthesis
[38,41] and hierarchical decompositions [43]. In addition to techniques for state-
space reduction, an important open direction is to handle dynamically changing
specifications in open environments.

Notions of Robustness. A system is robust if small changes to its inputs cause
small changes in its outputs. Robustness is a classical notion in control theory
and a natural requirement when designing control systems. However, appropriate
notions of robustness are difficult to obtain for cyber-physical systems. Physical
systems are modeled and analyzed using continuous mathematics and concepts
such as continuity are readily available to help describe robustness. On the other
hand, discrete systems are modeled and analyzed using discrete mathematics for
which it is far less obvious what a meaningful notion of robustness can be. There
are several current attempts to define notions of robustness [11,47]. However, a
challenge is to come up with a definition that is broadly applicable and has good
algorithmic properties.



6 R. Majumdar

Quantitative Properties. Related to robustness are quantitative specification lan-
guages for synthesis. A specification in LTL classifies system behaviors as “true”
or “false.” In many cases, such specifications are too strict, and it is preferable
to use a quantitative formalism that associates a numerical score with system
behaviors. Recent work in the theory of quantitative languages and synthesis
[12,14,16], in quantitative logics such as signal temporal logic (STL) [21], and in
metrics on systems such as the Skorokhod metric [19,35], move in this direction.
The use of quantitative specifications also opens the door to more data-driven
approaches that optimize or learn system parameters [23,51]. Combinations of
learning with synthesis is an interesting emerging area.

System Co-design. The controller is one component of a complex stack integrat-
ing sensing, computation, communication, and actuation running several control
loops at various different levels of granularity. An end-to-end design, which co-
designs the controller along with other components of the system can achieve
better resource usage than one which designs each component in isolation. For
example, by designing a controller robust to intermittent steps in which the
control input is not computed, one can schedule more processes in the same
processor without sacrificing control performance [36,42,45]. At the same time,
co-design techniques may involve loss of modularity in the design. It is a challeng-
ing question whether tradeoffs between design choices of different components
can be captured in an abstract interface —controller-scheduler co-design is one
example where this is possible [42].

Co-design also requires reasoning about the underlying architecture. For
example, in order to guarantee a certain system performance, it may be nec-
essary to provide bounds on worst case execution times or worst case latencies.
This is a hard problem, and may require a fundamental redesign of architectural
elements for cyber-physical systems [7,33].

Co-design considers the various algorithmic components of a system together.
A new set of challenges arise when we consider the software implementation of
a system, which we describe next.

3 Programming Model and the Software Stack

Formal synthesis and verification is a key step towards more reliable and large-
scale IoR systems. However, synthesis of controllers is only the “core” algorithm.
For end-to-end development, these algorithms must be embedded in a software
stack. We now discuss the challenges of developing programming models and
software infrastructure for IoR applications.

We start with an analogy in the cloud computing scenario. Cloud comput-
ing abstracts the computing, distribution, communication, and storage needs
of a large-scale, distributed application. The end user can write computational
tasks focusing on the functionality. The cloud infrastructure manages physical
resources for the computation such as compute-servers, distribution, and fault
tolerance. The cloud can dynamically provision additional resources for computa-
tion and storage, or distribute or replicate a data structure across geographically



Robots at the Edge of the Cloud 7

separated infrastructure. However, for the most part, this is transparent to the
user application.

A dominant application on the cloud is statistical analysis of large data sets.
For this application, there is a declarative programming model (querying data
in specialized languages such as Pig Latin [5] or HiveQL [4]) that compiles into
a computational model (map-reduce [3,18] or Spark [6]) for fast execution on
parallel machines. The programmer’s view of the data is abstracted to centralized
database tables, and the query is made at a logical level. The infrastructure takes
care of executing the “program” on distributed and dynamic infrastructure. This
includes not only scheduling parallel jobs for low latency but also fault tolerance
and replication. While not a panacea for all applications, the abstraction enables
the separation between the programming abstraction (logical operations on a
dataset) and the infrastructure on which the operations are performed.

We lack a corresponding “programming model” for large-scale IoR applica-
tions. Currently, applications are written in low level programming languages
and use ad hoc mechanisms to implement layering between logical task models
and the underlying continuous controllers. Communication is mediated through
middleware such as ROS [39], but the resulting message-passing programs are
difficult to design and verify, especially when the number of components grow
large and when components can dynamically enter or leave the system.

A key design challenge for IoR is to develop programming tools for cyber-
physical systems. We outline some research challenges in this direction.

Programming Models and Run-time Systems. One major success of programming
models we use today is that they abstract from the real world. The “step” of a
Turing machine is a purely logical step. When we program, we do not, for most
applications, reason about the details of the physical world. This abstraction
breaks when we design cyber-physical systems where the controller must react
to events within a given (real) time bound. Indeed, dealing with the real world
and real time is one reason designing and verifying these systems is so difficult.
The difficulty is compounded when we consider large ensembles of autonomous
agents concurrently sensing and actuating the physical world. It is yet unclear
what programming models will enable ordinary developers design large-scale IoR
applications. One possibility is the programming idiom of actors [1], extended
to faithfully represent interactions in the physical world. A different possibility
is a specialized programming model such as the globally asynchronous locally
synchronous (GALS) model that abstracts out the part of the timing behavior
that the underlying compiler and run time systems enforce [9,15,49]. Very likely,
declarative techniques to specify controller behaviors —e.g., in LTL or STL—
will be integrated within the programming model; the compiler will be expected
to generate the code that enforces these behaviors at run time.

Developing languages, compilers, and run-time systems for large-scale sens-
ing, co-ordination, computing, and actuation is an outstanding open problem.

Managing Uncertainty. A second challenge is to incorporate uncertainty as a
first-class construct in the language. IoR applications will necessarily work in



8 R. Majumdar

environments that are not completely specified, or whose behaviors may change
over time in unexpected ways. There is a lot of recent work on introducing uncer-
tainty and probabilistic reasoning in programming languages [26,27]. Integration
of uncertainty management with controller synthesis in a programming model is
likely to be the next step.

Managing Dynamic Resources. Embedded control systems are currently pro-
grammed with well-defined resource requirements at compile time. Since their
correctness depends on real-time requirements, a conservative static analysis
bounds required resources and pre-allocates these resources. Such a program-
ming model can be overly pessimistic in dynamic environments where require-
ments change and resources can be provisioned dynamically. It is a challenge
to set up a programming model and run-time where critical resources are stat-
ically allocated (to ensure basic safety) but other resources can be dynamically
provisioned.

4 Cyber-Physical-Social Systems

In many IoR applications, groups of autonomous agents interact with humans.
For example, in an autonomous vehicle, the human may be kept in the loop
to compensate for driving conditions not familiar to the autonomous driver. In
a traffic management scenario involving both autonomous and human drivers,
a central server may provide route suggestions to ensure optimal flow of traf-
fic based on dynamically collected data, while individual drivers —human and
autonomous— may decide to follow the suggestions or not, based on individual
rational preferences. In an energy distribution scenario, human-operated electric
vehicles may be used to store energy and redistribute it in the grid. In these
and many other emerging scenarios, humans interact closely with computers
and controllers in a dynamic fashion [29]. These systems raise a number of new
challenges in design, implementation, and analysis.

First, the interaction between humans and computers may not be “one way”
—the human initiating a task that the controller implements— but involve coop-
eration between the two, and even be initiated by the controller. Second, formal
reasoning about such systems requires understanding social behavior and the
incentives that enable human participants to act in a way that optimizes the
overall system behavior. Third, these systems must implement infrastructure to
manage privacy, accountability, compliance, and reputation. We focus on two
directions.

Specification Challenges. Computers can follow algorithms that enforce logically-
specified behaviors. Unfortunately, it is hard to enforce similar logical specific-
tions for human behaviors. Instead, humans participate in activities motivated
by incentives, such as the desire for a particular beneficial outcome, or extrinsic
motivations such as money or reputation. Thus, the design of cyber-social sys-
tems requires not only logical specifications but also incentive mechanisms that



Robots at the Edge of the Cloud 9

ensure the participants engage in behaviors that are beneficial to the system.
There is some initial work on the modeling of human participants in human-
in-the-loop control (see, e.g., [22,32]), but a unified science for formal design of
cyber-physical-social systems remains a big challenge. Traditionally, design of
protocols for rational agents is the realm of (algorithmic) mechanism design. An
open question is whether approaches to synthesis from control, reactive synthe-
sis, and mechanism design can be combined profitably.

At the programming level, human-agent collectives also introduce new chal-
lenges. First, the natural interaction of humans with robots is not at the level of
code or of logical specifications but at the level of natural languages or gestural
user interfaces. Second, the programming model has to support incentive mecha-
nisms that allow groups of humans to come together for a system task, in cooper-
ation with autonomous participants. Designing such programming abstractions
that interoperate between code, natural user interfaces, and incentive mecha-
nisms is a hard problem.

We are encouraged by some programming abstractions that are emerging in
projects such as participatory sensing [40,48] and crowd-sourced computation
(such as the Mechanical Turk API [2] and its embedding in programming plat-
forms [10,50]). It remains to be seen how such platforms can be integrated with
control and co-ordination capabilities.

Privacy, Accountability, and Trust. A system that allows large scale interaction
between humans and autonomous agents also leads to social and ethical prob-
lems. Human social actions often follow incentives such as social responsibility
and reputation: we behave in the way we do because we care about how our
actions are perceived by others, and we are held accountable for our interactions
with other humans. It is unclear how norms of social behavior change when we
interact with robots. Can we “hurt the feelings” of an autonomous controller
by ignoring its suggestion? Moreover, when things go wrong, due to errors or
malicious behavior, how is accountability shared between human participants
and autonomous ones? Many of these questions involve social sciences or law in
addition to engineering and computer science.

Related to the problem of accountability is the problem of privacy. The use
of information relating to individuals may be necessary to engineer a system to
its optimal outcomes, but revealing personal information may not be allowed
due to individual preferences or regulatory limitations. The tradeoff between
accountability and privacy, or related tradeoffs between privacy and trust, must
be understood as we design more complex systems [8]. This problem is already
relevant in social computing systems without physical controllers; it takes a
larger role in complex applications where robots actuate the physical world.

5 Conclusion

ToR applications have the potential to transform the way we interact with com-
puters and with each other. The road to reliable and massive-scale IoR appli-
cations is long, and has many exciting research challenges, both technical and



10

R. Majumdar

social. While the list of problems in this paper is partial, they already demon-
strate the richness of the research landscape.

Acknowledgements.. This work is partially funded by the ERC Synergy grant
ImPACT. Thanks to Dmitry Chistikov, Samira Farahani, and Anne-Kathrin Schmuck
for useful discussions on these topics. I was inspired by several excellent overview arti-
cles on the topic of this paper [28,29,31].

References

N U LN

10.

11.

12.

13.

14.

15.

16.

Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press series in artificial intelligence. MIT Press, Cambridge (1990)
Amazon mechanical turk. https://aws.amazon.com/documentation/mturk/
Apache hadoop. https://hadoop.apache.org/

Apache hive. https://hive.apache.org/

Apache pig. https://pig.apache.org/

Apache spark. https://spark.apache.org/

Axer, P., Ernst, R., Falk, H., Girault, A., Grund, D., Guan, N., Jonsson, B.,
Marwedel, P., Reineke, J., Rochange, C., Sebastian, M., von Hanxleden, R.,
Wilhelm, R., Yi, W.: Building timing predictable embedded systems. ACM Trans.
Embedded Comput. Syst. 13(4), 82:1-82:37 (2014)

Backes, M., Druschel, P., Majumdar, R., Weikum, G.: Impact: privacy, account-
ability, compliance, and trust in tomorrow’s Internet. ERC Synergy Grant White
Paper (2015). http://www.impact-erc.eu/src/doc/imPACT-whitepaper.pdf
Balarin, F.; Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., Lavagno, L., Passerone,
C., Sangiovanni-Vincentelli, A., Sentovich, E., Suzuki, K., Tabbara, B.: The Polis
Approach. The Springer International Series in Engineering and Computer Science,
vol. 404. Kluwer Academic, Dordrecht (1997)

Bernstein, M.S., Chi, E.H., Chilton, L.B., Hartmann, B., Kittur, A., Miller, R.C.:
Crowdsourcing, human computation: systems, studies and platforms. In: Tan, D.S.,
Amershi, S., Begole, B., Kellogg, W.A., Tungare, M. (eds.) Proceedings of the
International Conference on Human Factors in Computing Systems, CHI 2011,
Extended Abstracts Volume, Vancouver, BC, Canada, 7-12 May, 2011, pp. 53-56.
ACM (2011)

Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Hofferek, G., Jobstmann,
B., Kénighofer, B., Konighofer, R.: Synthesizing robust systems. Acta Inf. 51(3-4),
193-220 (2014)

Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140-156. Springer, Heidelberg (2009)

Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911-938 (2012)

Cerny, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Com-
put. Sci. 413(1), 21-35 (2012)

Chapiro, D.M.: Globally asynchronous locally synchronous systems. PhD thesis
(1984)

Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4), 23 (2010)


https://aws.amazon.com/documentation/mturk/
https://hadoop.apache.org/
https://hive.apache.org/
https://pig.apache.org/
https://spark.apache.org/
http://www.impact-erc.eu/src/doc/imPACT-whitepaper.pdf

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Robots at the Edge of the Cloud 11

Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the
skorokhod metric. In: Kroening, D., Pasdreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9207, pp. 234-250. Springer, Heidelberg (2015)

Dimitrova, R., Majumdar, R.: Deductive control synthesis for alternating-time log-
ics. In: Mitra, T., Reineke, J. (eds.) 2014 International Conference on Embedded
Software, EMSOFT 2014, New Delhi, India, 12-17 October, 2014, pp. 14:1-14:10.
ACM (2014)

Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92-106. Springer, Heidelberg (2010)

Feng, L., Wiltsche, C., Humphrey, L., Topcu, U.: Controller synthesis for
autonomous systems interacting with human operators. In: Bayen, A.M., Branicky,
M.S. (eds.) Proceedings of the ACM/IEEE Sixth International Conference on
Cyber-Physical Systems, Seattle, WA, USA, 14-16 April, pp. 70-79. ACM (2015)
Fu, J., Topcu, U.: Probably approximately correct MDP learning, control with tem-
poral logic constraints. In: Fox, D., Kavraki, L.E., Kurniawati, H. (eds.) Robotics:
Science and Systems X, University of California, Berkeley, USA, 12-16 July, 2014
(2014)

Girard, A., Pappas, G.J.: Approximate bisimulation: a bridge between computer
science and control theory. Eur. J. Control 17(5-6), 568-578 (2011)

Girard, A., Sankaranarayanan, S. (eds.) Proceedings of the 18th International Con-
ference on Hybrid Systems: Computation and Control, HSCC 2015, Seattle, WA,
USA, 14-16 April, 2015. ACM (2015)

Gordon, A.D., Aizatulin, M., Borgstrom, J., Claret, G., Graepel, T., Nori, A.V.,
Rajamani, S.K., Russo, C.V.: A model-learner pattern for bayesian reasoning. In:
Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2013, Rome, Italy - 23-25
January, pp. 403-416. ACM (2013)

Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Herbsleb, J.D., Dwyer, M.B. (eds.) Proceedings of the on Future of
Software Engineering, FOSE 2014, Hyderabad, India, 31 May - 7 June, 2014, pp.
167-181. ACM (2014)

Henzinger, T.A., Sifakis, J.: The discipline of embedded systems design. IEEE
Comput. 40(10), 32-40 (2007)

Jennings, N.R., Moreau, L., Nicholson, D., Ramchurn, S.D., Roberts, S.J., Rodden,
T., Rogers, A.: Human-agent collectives. Commun. ACM 57(12), 80-88 (2014)
Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Robot. 25(6), 1370-1381 (2009)

Lee, E.A., Hartmann, B., Kubiatowicz, J., Rosing, T.S., Wawrzynek, J., Wessel,
D., Rabaey, J.M., Pister, K., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Blaauw,
D., Dutta, P., Fu, K., Guestrin, C., Taskar, B., Jafari, R., Jones, D.L., Kumar, V.,
Mangharam, R., Pappas, G.J., Murray, R.M., Rowe, A.: The swarm at the edge of
the cloud. IEEE Des. Test 31(3), 8-20 (2014)

Li, W., Sadigh, D., Sastry, S.S., Seshia, S.A.: Synthesis for human-in-the-loop con-
trol systems. In: Abraham, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS,
vol. 8413, pp. 470-484. Springer, Heidelberg (2014)



12

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

R. Majumdar

Liu, I., Reineke, J., Broman, D., Zimmer, M., Lee, E.A.: A PRET microarchi-
tecture implementation with repeatable timing and competitive performance. In:
30th International IEEE Conference on Computer Design, ICCD 2012, Montreal,
QC, Canada, 30 September- 3 October, 2012, pp. 87-93. IEEE Computer Society
(2012)

Liu, J., Ozay, N., Topcu, U., Murray, R.M.: Synthesis of reactive switching pro-
tocols from temporal logic specifications. IEEE Trans. Automat. Contr. 58(7),
1771-1785 (2013)

Majumdar, R., Prabhu, V.S.: Computing the skorokhod distance between polygo-
nal traces. In: Girard, A., Sankaranarayanan, S. (eds.) [25], pp. 199-208
Majumdar, R., Saha, I., Zamani, M.: Synthesis of minimal-error control software.
In: Jerraya, A., Carloni, L.P., Maraninchi, F., Regehr, J. (eds.) Proceedings of the
12th International Conference on Embedded Software, EMSOFT 2012, part of the
Eighth Embedded Systems Week, ESWeek 2012, Tampere, Finland, 7-12 October,
2012, pp. 123-132. ACM (2012)

Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, 11-13 January, pp. 179-190. ACM (1989)

Pola, G., Pepe, P.; Di Benedetto, M.D.: Compositional symbolic models for net-
works of incrementally stable control systems. CoRR, abs/1404.0048 (2015)
Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Andrew, Y. Ng. ROS: an open-source robot operating system. In: ICRA Workshop
on Open Source Software (2009)

Reddy, S., Mun, M.Y., Burke, J., Estrin, D., Hansen, M.H., Srivastava, M.B.: Using
mobile phones to determine transportation modes. TOSN 6(2), 23 (2010)
Rungger, M., Zamani, M.: Compositional construction of approximate abstrac-
tions. In: Girard, A., Sankaranarayanan, S. (eds.) [25], pp. 68-77

Saha, I., Baruah, S., Majumdar, R.: Dynamic scheduling for networked control
systems. In: Girard, A., Sankaranarayanan, S. (eds.) [25], pp. 98-107

Schmuck, A.-K., Majumdar, R.: Dynamic hierarchical reactive controller synthesis.
CoRR, abs/1510.07246 (2015)

Sinopoli, B., Sharp, C., Schenato, L., Schaffert, S., Sastry, S.: Distributed control
applications within sensor networks. IEEE Proc. 91(8), 1235-1246 (2003)
Soudbakhsh, D., Phan, L.T.X., Sokolsky, O., Lee, I., Annaswamy, A.: Co-design
of control and platform with dropped signals. In: Lu, C., Kumar, P.R., Stoleru, R.
(eds.) ACM/IEEE 4th International Conference on Cyber-Physical Systems (with
CPS Week ), ICCPS 2013, Philadelphia, PA, USA, 811 April, 2013, pp. 129-140.
ACM (2013)

Tabuada, P.: Verification and Control of Hybrid Systems - A Symbolic Approach.
Springer, Heidelberg (2009)

Tabuada, P., Caliskan, S.Y., Rungger, M., Majumdar, R.: Towards robustness for
cyber-physical systems. IEEE Trans. Automat. Contr. 59(12), 3151-3163 (2014)
Tangmunarunkit, H., Hsieh, C.-K., Longstaff, B., Nolen, S., Jenkins Ketcham,
J., Ketcham, C., Selsky, J., Alquaddoomi, F., George, D., Kang, J., Khalapyan,
Z., Ooms, J., Ramanathan, N., Estrin, D.: Ohmage: a general and extensible
end-to-end participatory sensing platform. ACM TIST 6(3), 38 (2015)

Tripakis, S., Pinello, C., Benveniste, A., Sangiovanni-Vincentelli, A.L., Caspi, P.,
Di Natale, M.: Implementing synchronous models on loosely time triggered archi-
tectures. IEEE Trans. Comput. 57(10), 1300-1314 (2008)

Trushkowsky, B., Kraska, T., Sarkar, P.: Answering enumeration queries with the
crowd. Commun. ACM 59(1), 118-127 (2016)



51.

52.

Robots at the Edge of the Cloud 13

Wen, M., Ehlers, R., Topcu, U.: Correct-by-synthesis reinforcement learning with
temporal logic constraints. CoRR, abs/1503.01793 (2015)

Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon control for tem-
poral logic specifications. In: Johansson, K.H., Yi, W. (eds.) Proceedings of the
13th ACM International Conference on Hybrid Systems: Computation and Con-
trol, HSCC 2010, Stockholm, Sweden, 12-15 April, 2010, pp. 101-110. ACM (2010)



	Robots at the Edge of the Cloud
	1 Motivation
	2 Formal Design of Control Systems
	3 Programming Model and the Software Stack
	4 Cyber-Physical-Social Systems
	5 Conclusion
	References


