
The Influences of Edge Instability on Change
Propagation and Connectivity in Call Graphs

Lei Wang(B), Han Li, and Xinchen Wang

School of Computer Science and Engineering, Beihang University, Beijing, China
{wanglei,sy1406228,wxc11061106}@buaa.edu.cn

Abstract. During the lifetime of any software there are numerous
changes, which lead to a large number of versions over time. The amount
of effort in programming and debugging for these updates and therefore
the reliability of the software depends substantially on how far the change
propagates. We introduced the concept of Propagation Scope (PS) to
quantify change propagation and investigated several open-source soft-
ware systems. We found that the propagation property varies even with
systems of similar scales. According to the asymmetry between the in-
degree and out-degree distributions in call graphs of software, we defined
Edge Instability (EI) to measure the change propagation of a call graph.
Analyzing newly added nodes in six software, we found that the new
nodes exhibited preferential attachment behaviors and were more likely
to call new nodes. We proposed a model based on these observations to
adjust EI and Clustering Coefficient (CC). CC has been believed to be
the major factor determining the propagation scope in a network. Our
experiments showed, however, that EI had a larger impact on the prop-
agation of call graphs. In both real software and our model, we measured
the connectivity of call graphs with EI and evaluated connectivity under
three edge-removal strategies. Our experiments showed that removing
edges with high EI s hurt network connectivity the most.

Keywords: Complex networks · Software evolution · Change
propagation · Network model · Call graph

1 Introduction

It has been observed that ideas, information, viruses, and diseases often prop-
agate in the form of complex networks [30] and a network’s topological struc-
ture has a significant impact on the dynamics of change propagation [28]. In
the domain of computer science, it has been demonstrated that class diagrams
[34,35], collaboration graphs [29], package dependency networks [23], the object
graphs [31], software component graphs [20], and call graphs in large-scale soft-
ware systems [37] are all complex networks. In this paper, we studied change
propagation in call graphs, a critical aspect in software evolution. As developers
code to introduce new features or fix bugs for one part of a software system,
other parts need to be updated accordingly to stay consistent with the changes.
c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 197–213, 2016.
DOI: 10.1007/978-3-662-49665-7 12

198 L. Wang et al.

For example, when a function’s prototype changes, its callers have to be modi-
fied to call through the new interface. To understand the evolution of software
systems, we collected call graphs of a large number of software systems of multi-
ple versions. A call graph describes the calling relationship between functions in
a program. Specifically, functions in the program are represented as nodes in a
call graph. If one function calls another, an edge from the node representing the
caller to the node of the callee function is added to the graph. We generated a
call graph for each version of a selected software system and, by comparing the
graphs of different versions, investigated change propagation as software evolves.

We selected 35 stable Linux kernels from version 1.0 to version 2.2.26 (avail-
able at http://ftp.kernel.org) and generated their call graphs using a modi-
fied version of GCC 3.4.6 [2]. To compare update propagation characteristics
among different software, we collected call graphs for five additional open-source
projects, including 80 versions of Samba, 25 versions of BIND, 55 versions of
Sendmail, 76 versions of OpenSSH, and 59 versions of vsftpd obtained from the
code repository [7]. To identify updates between two adjacent versions of a soft-
ware system, we use ctags [1] to get the start and end points of a function in
one version. We then compared the functions of the same name in the two ver-
sions to decide if the function is updated. We also identified functions removed
from the older version or added in the newer version. All these changes, including
updates, additions, and removals of functions, can be identified in the call graphs
when they are propagated to other functions in the software. In this paper, we
name the versions with ordered sequence numbers starting from 0 following their
chronological order.

We quantified network propagation with Propagation Scope (PS). The scope
that a change propagation can reach is mostly determined by the topological
structure of the corresponding call graph, which can be characterized by many
factors, including the graph’s node count, edge count, average node degree, etc.
Among the factors, the clustering coefficient (CC) measures how tightly nodes in
a network are clustered and is believed to be the most powerful factor determin-
ing the propagation of networks [38,41]. We found, however, that propagation
in a call graph was not sensitive to CC changes. In fact, for the studied soft-
ware, the asymmetry between the in-degree and out-degree distributions were
manifest [36] and have a significant influence on the change propagation of soft-
ware [8]. Given the asymmetry, we introduce Edge Instability (EI) to measure
the propagation. We found that the new nodes exhibit preferential attachment
behaviors and are more likely to call new nodes. With these observations, we pro-
pose a model to adjust CC and EI based on Barabási and Albert (BA) model
and it’s extension [6,18]. Experiments showed that EI has a larger impact than
CC on the propagation of call graph.

Inspired by the influences of EI on change propagation, we use EI to measure
the connectivity of call graphs. In complex networks, researchers often study
robustness by measuring connectivity after removing nodes or edges [10,32]. We
adopted the same methodology to evaluate the connectivity of call graphs and
compare three strategies to attack generated graphs by our model: 1. Removing

http://ftp.kernel.org

The Influences of Edge Instability 199

edges randomly. 2. Removing edges with higher EI s. 3. Removing edges with
higher “edge degrees” [19]. Our experiments showed that removing edges with
high EI s hurt network robustness more than removing edges with high “edge
degrees” or randomly.

The rest of this paper is organized as follows. Section 2 introduces the con-
cept of propagation scope, edge instability and statistics with various software
systems. Connectivity of call graphs under three edge-removal strategies are
discussed in Sect. 3. Section 4 describes behaviors of new nodes and an innova-
tive model of software evolution. The correlation among parameters of the pro-
posed model, change propagation and connectivity are also discussed in Sect. 4.
Section 5 introduces the related work briefly. The paper closes with our conclu-
sions in Sect. 6.

2 Change Propagation

To quantify the change propagation in a network, we introduce the concept of
propagation scope (PS), derived from the concepts of Change Cost [26] and
Average Propagation Ratio [25], and edge instability. To reveal impact of the
structure of a call graph on PS, we will measure the number of nodes and edges,
the average node degree, the diameter, the clustering coefficient and the edge
instability of the call graphs under investigation.

2.1 Propagation Scope

The concept of propagation scope is motivated by the observation that in a call
graph a change propagates in one direction. For example, if Function A calls
Function B and B’s interface is changed, Function A has to change accordingly,
or the change of B propagates to A. Changes do not propagate in the opposite
direction. For example, the change of Function A does not affect function B.
Formally, we state that Node ni can reach Node nj within a distance of 1 if
there is a directed edge < ni, nj > in a network G. We use Rd

j to denote the set
of nodes that can reach nj within distance d. Formally, we use Eq. (1) to define
the propagation scope of Network G within distance d, or PSd

G.

PSd
G =

|N |∑

j=1

∣
∣Rd

j

∣
∣

|N |2 (1)

where |N | is the number of nodes in Network G.
According to Eq. (1) and the definition of Rd

j , if d1 > d2, then PSd1
G � PSd2

G ,
because Rd

j monotonically increases with d. Using D to denote network diameter,
we have PSd

G = PSD
G for any d larger than D. Finally, the propagation scope of

Network G, PSG, can be defined using Eq. (2).

PSG = PSD
G =

|N |∑

j=1

∣
∣RD

j

∣
∣

|N |2 (2)

200 L. Wang et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30

N
um

be
r o

f C
ha

ng
ed

 F
un

ct
io

ns

(a) Linux

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80

N
um

be
r o

f C
ha

ng
ed

 F
un

ct
io

ns

(b) Samba

Fig. 1. Number of changed functions in Linux and Samba.

The propagation scope can be used to differentiate networks of different
topologies in terms of impact of a node’s change on other nodes. The larger
the propagation scope, the greater the number of nodes affected by changes
taking place at a node.

By definition, PS is obviously related to the number of nodes, the number
of edges and the average node degree. We compare some versions of Linux with
versions of Samba of similar scale. The results are shown in Table 1. In the table,
“Linux1” stands for set of the Linux versions from 1.2.0 to 1.2.10, “Linux2”
stands for set of the Linux versions from 2.0.0 to 2.0.40. “Samba1” stands for set
of Samba versions from 2.2.8 to 2.2.12, and “Samba2” stands for set of Samba
versions from 3.0.25 to 3.0.34. As shown in Table 1, Linux1 and Samba1 have
similar node count and edge count. This is also the case for Linux2 and Samba2.
However, we can see that the PSG values of different Linux versions is always
smaller than those of Sambas in Table 1.

Table 1. Statistics with Linux and Samba of similar scale.

software Linux1 Samba1 Linux2 Samba2

Avg. node 3993 3803 8099 7373

Avg. edge 14996 13849 31400 30513

Ave. degree 7.51 7.28 7.75 8.27

PSG 0.0135 0.0297 0.0112 0.0295

We also investigate changes between two adjacent versions of Linux and
Samba, respectively. Figures 1 and 2 showed the number of changed functions
and the size of the maximal connected subgraphs. To compare Linux with Samba
using their call graphs of similar scales, we chose Linux 2.0.40 and Samba 3.0.34
as the last tested version shown in Figs. 1 and 2. For most versions, the number
of changed functions in Linux was fewer than that of Samba. For the maximal
connected subgraphs, the sizes in the two versions of Linux were larger than 200,
and those in other versions were less than 90. On the other hand, in over one
third of the versions of Samba, the sizes of the maximal connected subgraphs
were larger than 200, with the largest of 1501. The change propagation in Samba
seemed substantially larger than that in Linux. This observation is consistent
with Table 1. Therefore, PS could be used to measure the change propagation
in call graphs of software.

The Influences of Edge Instability 201

 0

 300

 600

 900

 1200

 1500

 0 5 10 15 20 25 30
Si

ze
 o

f M
ax

im
um

 C
on

ne
ct

ed
 S

ub
gr

ap
h

(a) Linux

 0

 300

 600

 900

 1200

 1500

 0 10 20 30 40 50 60 70 80

Si
ze

 o
f M

ax
im

um
 C

on
ne

ct
ed

 S
ub

gr
ap

h

(b) Samba

Fig. 2. Size of maximal connected subgraphs in Linux and Samba.

2.2 Edge Instability

The asymmetry between the in-degree and out-degree distributions of software
appears obviously [9,29,34,36]. The in-degree distribution of software systems
obviously obeys the power-law while the out-degree distribution are similar to
the power-law distribution with a cutoff. Inspired by the asymmetry of degree
distribution and direction of change propagation in software, we propose the
Edge Instability of a call graph.

Firstly, we define the node stability Si for Node ni in Eq. (3).

Si =
ki

in

ki
in + ki

out

(3)

where ki
in and ki

out are the in- and out-degree of node ni, respectively. A
greater value of Si means that ni has a smaller out-degree and therefore the
changes of other nodes are less likely to propagate to ni. Thus we say a node
with a greater Si is more stable. The value of Si is always in the range of [0, 1].

The instability Iij of the edge < ni, nj > is derived from node stability and
defined by Eq. (4).

Iij = Si − Sj (4)

where Si and Sj are the node stability of nodes ni and nj , respectively. With
this definition, an edge with a greater Iij propagates changes to more nodes.
Thus we call Iij as edge instability. The edge instability, EI, of a graph is the
average Iij of the edges in the graph.

Figure 3 includes two examples to explain this observation.

1. In Fig. 3(a), Si is 3/4 and Sj is 1/4. Accordingly, Iij of Edge < i, j > is 1/2.
A change at Nodes j, a, b or c will propagate to Nodes i, d, e, and f across
Edge < i, j >, as indicated by the dotted lines.

2. In Fig. 3(b), Si is 0 and Sj is 1/4. Accordingly, Iij of Edge < i, j > is -1/4.
Changes at Nodes j, a, b, and c only spread to Node i but do not reach nodes
d, e, and f.

202 L. Wang et al.

Fig. 3. Comparison between the effects of two edges with the higher and lower Iij for
the neighboring nodes

Apparently, Edge < i, j > with higher EI in the first example has a higher
impact on the propagation scope.

2.3 Statistics with Six Open Source Software

For a node in a call graph, the out-degree is the number of other functions that
the function represented by this node calls, and the in-degree is the number of
other functions that call the function of this node. The sum of the in-degree and
out-degree is the degree of the node. We calculated average degree of the nodes
in the call graphs of the selected systems. We found that the average degrees
stayed stable as the software systems evolve over many versions. For each call
graph, we measure the diameter, denoted as D.

Clustering, the tendency that a node’s neighbors are likely to be neighbors
themselves, has been commonly considered as one of the most important factors
in the study of propagation [38]. We calculated the clustering coefficient (CC)
in Ci of Node i using Eq. (5):

Ci =
2Ei

ki(ki − 1)
(5)

where Ei is the number of edges connecting neighbors of Node i, and ki is the
degree of Node i. The clustering coefficient C of a graph is the average clustering
coefficient of the nodes in the graph.

The number of nodes, the number of edges, the average node degree, the
diameter (D), the clustering coefficient (CC), the edge instability (EI) and the
propagation scope (PSG) of six selected systems are showed in Fig. 4. Figure 4
shows that for all the systems both the number of nodes and the number of
edges grow over time. A number of observations can be made as below.

1. Table 2 summarizes the correlation coefficient results between PSG and other
features of six software. Compared with the number of nodes, the number of
edges, the average node degree, the diameter (D) and the clustering coeffi-
cient, the edge instability is the only one that had a positive correlation with
PSG in all six software.

2. As the increase of node number, the corresponding PSG decreases except for
BIND. In fact, PSG is the ratio of the number of nodes a propagation reaches
to the number of all nodes. The propagation of changes in a system is hard
to maintain the same rate as a software system becomes larger.

The Influences of Edge Instability 203

 0

 8000

 16000

 0 5 10 15 20 25 30 35
 0

 32000

 64000

N
od

eN
um

E
dg

eN
um

node

edge

 6
 8

 10

 0 5 10 15 20 25 30 35
 10
 20
 30

A
vg

D
eg

re
e

D

AvgDegree

D

-0.8

-0.6

-0.4

 0 5 10 15 20 25 30 35
 0.1

 0.2

 0.3

E
I

C
C

EI

CC

 0
 0.04
 0.08
 0.12

 0 5 10 15 20 25 30 35

PS
G psG

(a) Linux

 0
 4000
 8000

 12000

 0 20 40 60 80
 0

 32000

 64000

N
od

eN
um

E
dg

eN
umnode

edge

 6
 8

 10

 0 20 40 60 80
 10
 20
 30

A
vg

D
eg

re
e

D

AvgDegree

D

-0.8

-0.6

-0.4

 0 20 40 60 80
 0.1

 0.2

 0.3

E
I

C
C

EI

CC

 0
 0.04
 0.08
 0.12

 0 20 40 60 80

PS
G psG

(b) Samba

 0
 2000
 4000
 6000

 0 5 10 15 20 25
 0
 6000
 12000
 18000

N
od

eN
um

E
dg

eN
um

node
edge

 6
 8

 10

 0 5 10 15 20 25
 10
 20
 30

A
vg

D
eg

re
e

D
AvgDegree

D

-0.8

-0.6

-0.4

 0 5 10 15 20 25
 0.1

 0.2

 0.3

E
I

C
C

EI
CC

 0
 0.04
 0.08
 0.12

 0 5 10 15 20 25

PS
G PSG

(c) BIND

 200
 400
 600
 800

 0 10 20 30 40 50 60
 0
 1600
 3200
 4800

N
od

eN
um

E
dg

eN
um

node

edge

 6
 8

 10

 0 10 20 30 40 50 60
 10
 20
 30

A
vg

D
eg

re
e

D

AvgDegree

D

-0.8

-0.6

-0.4

 0 10 20 30 40 50 60
 0.1

 0.2

 0.3
E

I

C
C

EI

CC

 0
 0.04
 0.08
 0.12

 0 10 20 30 40 50 60

PS
G

psG

(d) Sendmail

 0
 500

 1000
 1500

 0 10 20 30 40 50 60 70 80
 0
 2000
 4000
 6000

N
od

eN
um

E
dg

eN
umnode

edge

 6
 8

 10

 0 10 20 30 40 50 60 70 80
 10
 20
 30

A
vg

D
eg

re
e

D

AvgDegree

D

-0.8

-0.6

-0.4

 0 10 20 30 40 50 60 70 80
 0.1

 0.2

 0.3

E
I

C
C

EI

CC

 0
 0.04
 0.08
 0.12

 0 10 20 30 40 50 60 70 80

PS
G

psG

(e) OpenSSH

 300

 400

 500

 0 15 30 45 60
 800

 1200

 1600

N
od

eN
um

E
dg

eN
umnode

edge

 6
 8

 10

 0 15 30 45 60
 10
 20
 30

A
vg

D
eg

re
e

D

AvgDegree

D

-0.8

-0.6

-0.4

 0 15 30 45 60
 0.1

 0.2

 0.3

E
I

C
CEI

CC

 0
 0.04
 0.08
 0.12

 0 15 30 45 60

PS
G

psG

(f) vsftpd

Fig. 4. The number of nodes, the number of edges, the average degree, CC, EI and
PSG of six software. X axis indicates the sequence numbers of versions.

Table 2. The correlation coefficient results between PSG and other features.

Software Node Edge Ave. deg D CC EI

Linux −0.99 −0.99 −0.96 −0.96 0.42 0.41

Samba −0.11 −0.11 0.086 0.05 0.03 0.29

BIND 0.29 0.58 0.94 0.85 −0.75 0.48

Sendmail −0.80 −0.80 −0.79 −0.37 0.76 0.68

OpenSSH −0.96 −0.96 −0.85 −0.94 0.97 0.94

vsftpd −0.93 −0.92 −0.91 −0.26 −0.21 0.90

204 L. Wang et al.

3. Per the definition of PS, as the increases of the average degree, PS of a
software system would also increase. This phenomenon can be observed clearly
in BIND system (Fig. 4(c)). It is easy to understand that the more edges a
system has, the faster the propagation would be. The tendency, however, is
not apparent in other software systems. It is difficult to tell the impact of the
average degree on PSG in two cases: 1. The average degree is very stable. 2.
The average degree and node number change at the same time.

4. Previous works suggest that as CC increases the propagation scope in a
network would decrease [38]. This can be clearly observed in BIND and vsftpd.
It is not apparent, however in other systems as CC is very stable in different
versions.

3 Connectivity

In complex networks, researchers often study robustness by measuring connec-
tivity after removing nodes or edges [10,32]. As many error conditions do not
cause the crash of the whole software system, we assume that the other parts
of the software keep working. For example, when the kernel panics in a loadable
module of an Ethernet driver it can contain the failure and give out messages.
The other parts of the system cannot use this driver but may be able to access
the Ethernet device from other channels and certainly a user can continue to
work in a text editor. Thus, we adopted the same methodology to evaluate the
connectivity of call graphs in this paper.

We remove the edge to simulate the failure, and study how well the other
nodes in the call graph stay connected. Connectivity among the nodes left rep-
resents a measure of robustness of the graph under edge removal. It is not a
measure of how well the software handles crashes but how well its functions are
designed and coded to minimize the impact on the rest of the system when one
or more parts fail.

We try three strategies to attack generated call graphs. The first strategy, the
“RA removal”, removes edges randomly. The second removes edges with higher
EI s and is called the “HL removal”. The third strategy is proposed by Ref. [19]
where the edge degree is defined by Eq. (6):

ke = kv ∗ kw (6)

where the edge e connects two nodes v and w with node degrees kv and kw,
respectively. The attack strategy selects the edges in descending degrees. We
name this strategy as “ED removal”.

We select Linux 2.0.1, Samba 3.0.10, BIND 9.2.4rc5, Sendmail 8.11.3,
OpenSSH 2.5.2p1 and vsftpd 1.1.2 to compare the three strategies. Each time, 5
percent of edges are removed. We measure the change of the size of the maximal
connected subgraph, S, with Eq. (7):

S =
Na

Ni
(7)

The Influences of Edge Instability 205

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(a) Linux 2.0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(b) Samba 3.0.10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(c) BIND 9.2.4rc5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(d) Sendmail 8.11.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(e) OpenSSH 2.5.2p1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S

f

hi
ran
ed

(f) vsftpd 1.1.2

Fig. 5. Six software under three attack strategies.

where Ni and Na are the numbers of nodes in the maximal connected sub-
graph before and after the attack, respectively.

The results are shown in Fig. 5 when a fraction f of the edges is removed in
six software. In Fig. 5, it is difficult to distinguish the impact of the connectivity
between the RA and ED removal. When the call graphs undergo the HL removal
attacks, however, the sizes of maximal connected subgraph decreases rapidly. We
observed the top 20 edges with high EI in Linux and found the similar structure
as Fig. 6 when we extract all edges that directly connect to the edge with high
EI from call graph. The edges with high EI behave like some kind of “weak
ties” [15] between two parts of software modules. Removing these edges results
in quick disintegration of the call graphs.

4 Features of Call Graphs and Evolution Model

To understand how software systems evolve into particular structures, we studied
the ways new nodes were added into call graphs.

4.1 Preferential Attachment

Call graphs show that their in-degree distribution largely obeys the power-law
while the out-degree exhibits the power-law distribution with a cutoff [36]. Thus,
we investigated whether new nodes would contribute to the distributions of in-
degree and out-degree. Specifically, for in-degree distribution we would like to
know whether new nodes are more likely to be connected to existing nodes of
higher in-degrees (in terms of function calls, the functions corresponding to the
new nodes are the callers in this case). For out-degree distribution, we would like
to know whether existing nodes of higher out-degree are more likely to be con-
nected to the new nodes (the functions corresponding to the new nodes are the

206 L. Wang et al.

Fig. 6. The edge with high EI.

callees in this case). The tendency for new nodes to be connected to either high
in-degree/out-degree nodes is commonly known as “preferential attachment”.
Preferential attachment has been considered as an important factor contribut-
ing to the scale-free feature of complex networks [5]. We would like to know
whether in-degree and out-degree preferential attachments exist when the new
nodes are added.

We studied how the newly added nodes are connected to the top 5 % nodes
with the highest in-degrees and the top 5 % nodes with the highest out-degrees
in each software version. To quantify the preferential attachment tendency, we
define the concept of connecting probability (CP) as the probability that a new
node is connected to the top 5 % nodes with the highest in-degree/out-degrees.
Formally, CP can be calculated using Eq. (8):

CP =
Nc

Nt
(8)

where Nc is the number of new nodes that call the top 5 % nodes with
the highest in-degrees when we consider in-degree preferential attachment (the
resulting CP is called in-degree CP) and Nt is the total number of new nodes
in the corresponding version. When we consider out-degree preferential attach-
ment, Nc is the number of new nodes that are called by the top 5 % nodes
with the highest out-degrees and Nt stays the same (the resulting CP is called
out-degree CP). The average in-degree and out-degree CP are summarized in
Table 3. Table 3 indicates that the in-degree CP is consistently large for each
system, which suggests high in-degree preferential attachment behaviors in all
systems. Table 3 also shows that the out-degree CP is consistently lower than the
corresponding in-degree CP for each version. The out-degree preferential attach-
ment tendency, if any, seems much weaker than that of the in-degree preferential
attachment.

4.2 Callers of New Nodes

In Sect. 4.1, the out-degree CP results indicate that the top 5 % nodes with the
highest out-degrees do not call the new nodes extensively. It is interesting to

The Influences of Edge Instability 207

Table 3. Average connecting probability.

Software Linux Samba BIND Sendmail OpenSSH vsftpd

Avg. In-degree 73.06 % 60.28 % 60.36 % 60.66 % 62.46 % 64.65 %

Avg. Out-degree 4.43 % 12.35 % 5.79 % 6.99 % 10.91 % 34.32 %

know which nodes call the new nodes the most. We used Nnew and Nold to
denote the number of the new nodes that call the new nodes and the number
of the old nodes that call the new nodes in each version, respectively. We use
Rnew to quantify the ratio of Nnew to (Nnew+Nold). It can be calculated using
the Eq. (9):

Rnew =
Nnew

Nnew + Nold
(9)

Thus, we can obtain Rnew for each software version. The average Rnew of
the Linux, Samba, BIND, Sendmail, OpenSSH, and vsftpd are 47.3 %, 38.6 %,
37.6 %, 23.4 %, 41.0 %, and 29.1 %, respectively. Note that the average ratio of
the number of new nodes to that of old nodes for all Linux versions is only 1.8 %.
These results indicate that compared with old nodes, new nodes are more likely
to call new nodes. In other words, the “age” of a node is one factor to determine
whether the node calls another node in real-life software, which ultimately will
have an impact on the degree distribution.

4.3 Evolution Model for Software

The “age” of a node seemed to be critical to determine the likelihood for connect-
ing new nodes. With these observations and analysis, we propose a novel model
to compare the impact of CC and EI on propagation, in which the two prop-
erties can be tuned by changing some parameters. We build our model based
on Barabási and Albert (BA) model [6,18] and extend it to adjust clustering
coefficient and edge instability as follows:

1. In the beginning, a network consists of m0 nodes and no edges. m0 is a small
integer. In our experiments it is set to 3.

2. Add Node v (v = m0 + 1 intially).
3. Repeat the following two steps for Node v until m edges are added.

(a) Preferential attachment (PA): Each edge of Node v is then attached to
an existing node with the probability proportional to its degree and age,
i.e., the probability for Node w (w = 1, 2, ..., m0 + v - 1) to be attached
to v is

Pw =
kw

∑m0+v−1
i=1 ki

(10)

where ki = (agei)−β ∗ k
′
i. agei, with the initial value of 1, represents the

age of Node i. When a new node is added to the network, the age of each
existing node is incremented by 1. k

′
i is the degree of Node i. β controls

the influence of a node’s age.

208 L. Wang et al.

(b) Triad formation (TF): If an edge between Nodes v and w was added in
the previous PA step, then add one more edge from Node v to a randomly
chosen neighbor of Node w. If all neighbors of Node w have been connected
to Node v, go back to Step 3(a).

4. If v < |N | − m0 + 1, increment v by 1 and go back to step 2. Otherwise, the
network is generated.

In generating the network, the total number of the PA and TF steps that
produces edges for each new node is m. After one PA, we perform a TF step
with a probability of Pt. Pt is a parameter that adjusts the CC of the generated
network.

Equation (2) shows that the diameter of a graph has a major impact on PSG.
When a new edge does not cause the current diameter to exceed a threshold,
LD, the edge is added. Otherwise, the new edge is dropped and a new possible
edge is selected to repeat the above step.

Following [34], we first generate undirected graphs and then transform them
into directed graphs by making edges to start from the newly added nodes and
end at the existing nodes.

There are five parameters in our model (N, m, Pt, β, and LD). In the exper-
iments, we used N = 10000 and m = 3. To understand the effect of the Pt and
β, we select Pt and β in the ranges of 0 to 0.8 and 0 to 1.0, respectively. Figure 7
showed the relationship among PSG, CC and EI with the different Pt and β
parameters of the generated graphs by our model. We have some observations:

– Pt correlated positively with CC as shown in Fig. 7 (a) and (d).
– β correlated positively with EI as shown in Fig. 7 (b) and (e).
– β, which determines PSG of a network, has a larger impact on the propagation

than Pt, as shown in Fig. 7 (c) and (f). Thus, in our model, the propagation
scope was highly correlated with β and therefore EI but less affected by the
changes in CC.

To study the impact of EI on connectivity, we use the three strategies
to attack graphs generated by different βs. Figure 8 summarized the results.
Figure 8(a) showed that, under different βs (between 0 and 1), the effect of
node age on network structure changed significantly. The effect of the node ages
limited the preferential attachment and prevented a scale-free distribution of
connectivities [4]. It seemed to be a critical point in a network and the network
became scale-free when β was below a certain value. With large βs, the network
showed no power law characteristics and the degree became exponentially dis-
tributed. As shown in Fig. 8(a), overall and for different βs, the networks had
a good connectivity. This result was consistent with the experiments on net-
work connectivity [3]. This suggested that the network was connected under the
random attack due to the scale-free feature. When β fell between 0.4 and 0.8,
however, the degree distribution of network transited from scale-free to expo-
nential and the network more vulnerable to random attacks.

Figure 8(b) showed a fast decay for different values of β and f between 0.2
and 0.3. The network was less connected and therefore it became “harder” for

The Influences of Edge Instability 209

(a)

 0 0.2 0.4 0.6 0.8 1β 0
 0.2

 0.4
 0.6

 0.8

Pt

 0
 0.1
 0.2
 0.3
 0.4
 0.5

C
C

 0
 0.1
 0.2
 0.3
 0.4
 0.5

(b)

 0 0.2 0.4 0.6 0.8 1
β 0 0.2 0.4 0.6 0.8

Pt

-0.5

-0.4

-0.3

-0.2

-0.1

EI

-0.5
-0.4
-0.3
-0.2
-0.1

(c)

 0 0.2 0.4 0.6 0.8 1

β 0
 0.2

 0.4
 0.6

 0.8
Pt

 0

 0.1

 0.2

 0.3

 0.4

PS
G

 0
 0.1
 0.2
 0.3
 0.4

(d)

 0 0.2 0.4 0.6 0.8 1β 0
 0.2

 0.4
 0.6

 0.8

Pt

 0
 0.1
 0.2
 0.3
 0.4
 0.5

C
C

 0
 0.1
 0.2
 0.3
 0.4
 0.5

(e)

 0 0.2 0.4 0.6 0.8 1
β 0 0.2 0.4 0.6 0.8

Pt

-0.5

-0.4

-0.3

-0.2

-0.1

EI

-0.5
-0.4
-0.3
-0.2
-0.1

(f)

 0 0.2 0.4 0.6 0.8 1

β 0
 0.2

 0.4
 0.6

 0.8
Pt

 0

 0.1

 0.2

 0.3

 0.4

PS
G

 0
 0.1
 0.2
 0.3
 0.4

Fig. 7. Summary of PSG, clustering coefficient and edge instability under different
parameters. (a) CC with Pt and β, LD is 20. (b) EI with Pt and β, LD is 20. (c) PSG

with Pt and β, LD is 20. (d) CC with Pt and β, LD is 25. (e) EI with Pt and β, LD
is 25. (f) PSG with Pt and β, LD is 25.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S

f

(a)RA

β=0.0
β=0.2
β=0.4
β=0.6
β=0.8
β=1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S

f

(b)HL

β=0.0
β=0.2
β=0.4
β=0.6
β=0.8
β=1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S

f

(c)ED

β=0.0
β=0.2
β=0.4
β=0.6
β=0.8
β=1.0

Fig. 8. Three attack strategies applied to the graphs generated with Pt 0.30, LD 20
and β from 0 to 1. (a) The RA attack strategies. (b) The HL attack strategies. (c) The
ED attack strategies.

the remaining nodes to communicate with each other when the unstable edges
(the edges with the EI values close to 1) were removed.

Figure 8(b) with 8(c) showed that when β is small the HL and ED removals
had a similar effect for network connectivity. When β is large, however, the
HL removal hurt the connectivity more than ED. As β increased the distribu-
tion of degree morphs from scale-free to exponential. Under exponential degree
distribution, each node in the network has approximately the same degree, and
therefore the damage to network connectivity by ED removal was less obvious. In
HL removal, however, the EI highly affected the propagation of networks when
β increased (see Fig. 7) and the edges with high EI had a structure of “weak
ties” (see Fig. 6). Thus, removing the edges with high EI s in HL removal broke
the network into small pieces fast for all β values. HL instead of ED removal
became a good indicator for attacks when the degree distribution of networks
shifts from scale-free to exponential.

5 Related Work

Two main approaches to study change propagation in software are Impact Analy-
sis (IA) and Mining Software Repositories (MSR). IA uses dependency or trace-
ability information and MSR uses historical information [21]. An in-depth review

210 L. Wang et al.

of impact analysis for software change can be found in [24]. Mirarab et al. [27]
propose to use BBNs for impact analysis, and their approach achieves a precision
of 63 % with a recall of 26 %. Formal Concept Analysis (FCA) [14], probabilistic
approach [33], and Family Dependence Graph (FDG) [39] have been employed
for change impact analysis. In the context of complex technical systems, Giffin
et al. [13] analyze change propagation with design structure matrix (DSM) and
categorize a number of typical change patterns. Recently, Zhang et al. [40] use
requirement dependency as a tool to conduct change propagation analysis. They
investigate whether existing dependency types are sufficient for change propaga-
tion analysis. In our work, we analyze the impact of software network structures
on the change propagation without tracing the affected functions in software.

Hassan and Holt propose to determine how changes propagate with developer
information, historical co-change information of entity, code structure, and code
layout heuristic [16]. Hassan and Malik further improve the approach with an
adaptive heuristic method [17]. Zimmermann et al. [42] apply data mining tech-
niques to analyze version histories, and to uncover couplings between fine-grained
entities to guide programmers among related changes. Gall et al. [12] propose an
approach to extract software evolution patterns and dependencies from the CVS
data. Their proposed methodology, QCR, is to examine the historical develop-
ment of classes by analyzing changes of classes and common change behavior
obtained from CVS. They further [11] classify changes according to their sig-
nificance levels (low, medium, high, or crucial). In our work, we explain why
asymmetric structures inside the software are formed after analyzing call graphs
of many software system versions, and propose an evolution model capturing the
way new nodes are added during the process of software evolution. By varying
the parameters of the proposed model, we study the relationship between the
change propagation and software structure.

Asymmetric structures can increase the fragility of software [8]. Studies on the
mechanism of asymmetric software structures can help optimization of software.
Myers points out that the asymmetry typically is due to the common practice
of software reuse [29]. Others [34] argue that the asymmetry is rooted right
in the economization of development effort and related costs. Additionally [9]
notes that the out-degree of the class in the object oriented software systems is
limited by the size of the class. They have found that the limitation leads to the
asymmetry of degree distributions. We found, however, that the manner in which
new nodes are added into the call graphs during software evolution contributes
to the asymmetric feature of software, and that the asymmetric structures have
a significant impact on the change propagation of software.

Many network models have been proposed in the past decade. In BA
model [5], each newly added node is connected to nodes selected with a probabil-
ity proportional to their respective degrees. Although the degree distribution of
the BA model follows the power-law distribution, the resulting clustering coef-
ficient is much lower than those measured in software systems. In the Copying
model [22], each newly added node randomly selects a target node and connects
to it, as well as to all neighbor nodes of the target node. The Copying model has

The Influences of Edge Instability 211

a large clustering coefficient. In the process of selecting the target node in the
Copying model, however, older nodes have greater priority to be connected to
the newly added nodes. This feature is different from actual new node behavior
demonstrated in real software systems, in which new nodes are more likely to be
connected among themselves.

6 Conclusions

Using propagation scope, we quantified change propagation in different versions
of six open-source software systems. Inspired by the asymmetry of degree distri-
bution and direction of change propagation in software, we proposed the edge
instability to measure the change propagation of a call graph. We calculated the
number of nodes, the number of edges, the average node degree, the diameter,
CC, EI in the call graphs of the selected systems, and found that EI is the only
one that had a positive correlation with propagation scope in all six studied
software. To compare the impact of CC and EI on change propagation, we have
proposed a novel model allowing us to adjust these properties. Although CC is
traditionally considered one of the most important factors in the study of prop-
agation, our experimental results indicated that EI had a much bigger impact
in call graphs. Furthermore, we showed the correlation between the connectivity
of call graphs and EI, i.e., eliminating the edges with high EI breaks a network
into small pieces faster in real software and networks generated by our model.
In summary, we demonstrated that EI could be a good indicator of the change
propagation and connectivity of software networks.

Acknowledgments. This work was supported by National Natural Science Founda-
tion of China (No. 61272167).

References

1. ctags 5.8 release. http://ctags.sourceforge.net
2. Gcc 3.4 release series. http://gcc.gnu.org/gcc-3.4/
3. Albert, R., Jeong, H., Barabósi, A.: Error and attack tolerance of complex net-

works. Nature 406(6794), 378–382 (2000)
4. Amaral, L., Scala, A., Barthélémy, M.: Classes of small-world networks. Proc. Nat.

Acad. Sci. 97, 11149–11152 (2000)
5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,

509–512 (1999)
6. Barabási, A.L., Albert, R.: Emergence of scaling in random networksscience. Sci-

ence 286(5439), 509–512 (1999)
7. Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M.: Graph-based analysis

and prediction for software evolution. In: ICSM, pp. 419–429 (2012)
8. Challet, D., Lombardoni, A.: Bug propagation and debugging in asymmetric soft-

ware structures. Phys. Rev. E 70, 046109 (2004)
9. Concas, G., Marchesi, S.P.M., Serra, N.: Powerlaws in a large object-oriented soft-

ware system. IEEE Trans. Softw. Eng. 33(10), 687–708 (2007)

http://ctags.sourceforge.net
http://gcc.gnu.org/gcc-3.4/

212 L. Wang et al.

10. Crucittia, P., Latorab, V., Marchiori, M., Rapisarda, A.: Error and attacktolerance
of complex networks. Phys. A 340, 388–394 (2004)

11. Fluri, B., Gall, H.C.: Classifying change types for qualifying change couplings. In:
ICPC, pp. 35–45 (2006)

12. Gall, H., Jazayeri, M., Krajewski, J.: Cvs release history data for detecting logical
couplings. In: IWPSE (2003)

13. Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., Clakson, J.: Change
propagation analysis in complex technical systems. J. Mech. Des. 131(8), 081001-
1–081001-14 (2009)

14. Girba, T., Ducasse, S., Kuhn, A.: Using concept analysis to detect co-change pat-
terns. In: Ninth International Workshop on Principles of Software Evolution: In
conjunction with the 6th ESEC/FSE, pp. 83–89 (2007)

15. Granovetter, M.: The strength of weak ties. Am. J. Socio. 78(6), 1360–1380 (1973)
16. Hassan, A.E., Holt, R.C.: Predicting change propagation in software systems. In:

International Conference on Software Maintenance, pp. 284–293 (2004)
17. Hassan, A.E., Malik, H.: Supporting software evolution using adaptive change

propagation heuristics. In: ICSM, pp. 177–186 (2008)
18. Holme, P., Kim, B.: Growing scale-free networks with tunable clustering. Phys.

Rev. E 65(2), 026107 (2000)
19. Holme, P., Kim, B., Yoon, C.: Attack vulnerability of complex networks. Phys.

Rev. E 65(2), 056109 (2002)
20. Ichii, M., Matsushita, M., Inoue, K.: An exploration of power-law in use-relation

of java software systems. In: 19th Australian Software Engineering Conference, pp.
422–4311 (2008)

21. Kagdi, H., Maletic, J.: Software-change prediction: estimated+actual. In: Software
Evolvability, pp. 38–43 (2006)

22. Krapivsky, P.L., Redner, S.: Network growth by copying. Phys. Rev. E 71(3),
036118 (2005)

23. LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source
software. CoRR, cs.SE/0411096 (2004)

24. Lehnert, S.: A review of software change impact analysis. Technical University
Ilmenau, pages Report ilm1-200618 (2011)

25. Liu, J., Lu, K.H.J., Li, B., Tse, C.: Characterizing the structural quality of general
complex software networks. Int. J. Bifurcat. Chaos 18(02), 605–613 (2008)

26. MacCormack, A., Rusnak, J., Baldwin, C.: Exploring the structure of complex
software designs: an empirical study of open source and proprietary code. Manag.
Sci. 52(7), 1015–1030 (2006)

27. Mirarab, S., Hassouna, A., Tahvildari, L.: Using bayesian belief networks to predict
change propagation in software systems. In: ICPC, pp. 177–188 (2007)

28. Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks.
Phys. Rev. E 61(5), 5678 (2000)

29. Myers, C.R.: Software systems as complex networks: structure, function, and evolv-
ability of software collaboration graphs. Phys. Rev. E 68, 046116.1–046116.15
(2003)

30. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45,
167–256 (2003)

31. Potanin, A., Noble, J., Frean, M., Biddle, R.: Scale-free geometry in oo programs.
Commun. ACM 48(5), 99–103 (2005)

32. Albert, A.B.R., Jeong, H.: Error and attack tolerance of complex networks. Nature
406, 378–382 (2000)

The Influences of Edge Instability 213

33. Sharafat, A.R., Tahvildari, L.: Change prediction in object-oriented software sys-
tems: a probabilistic approac. J. Softw. 3(5), 26–39 (2008). (1796217X)

34. Valverde, S., Cancho, R.F., Solé, R.V.: Scale-free networks from optimal design.
Europhys. Lett. 60, 512–517 (2002)

35. Valverde, S., Solé, R.V.: Hierarchical small worlds in software architecture. cond-
mat/0307278 (2003)

36. Wang, L., Wang, Y., Zhao, Y.: Mechanism of asymmetric software structures: a
complex network perspective from behaviors of new nodes. Phys. A Stat. Mech.
Appl. 413, 162–172 (2014)

37. Wang, L., Wang, Z., Yang, C., Zhang, L., Ye, Q.: Linux kernels as complex net-
works: a novel method to study evolution. In: ICSM, pp. 41–50 (2009)

38. Wu, X., Liu, Z.: How community structure influences epidemic spread in social
networks. Phys. A 387, 623–630 (2008)

39. Yazdanshenas, A.R., Moonen, L.: Fine-grained change impact analysis for
component-based product families. In: ICSM, pp. 119–128 (2012)

40. Zhang, H., Li, J., Zhu, L., Zhu, L., Jeffery, R., Liu, Y., Wang, Q., Li, M.: Investi-
gating dependencies in software requirements for change propagation analysis. Inf.
Softw. Technol. 56(1), 40–53 (2014)

41. Zhou, T., Yan, G., Wang, B.: Maximal planar networks with large clustering coef-
ficient and power-law degree distribution. Phys. Rev. E 71(4), 046141 (2005)

42. Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S., Zeller, A.: Mining version
histories to guide software changes. IEEE Trans. Softw. Eng. 31(6), 429–445 (2005)

	The Influences of Edge Instability on Change Propagation and Connectivity in Call Graphs
	1 Introduction
	2 Change Propagation
	2.1 Propagation Scope
	2.2 Edge Instability
	2.3 Statistics with Six Open Source Software

	3 Connectivity
	4 Features of Call Graphs and Evolution Model
	4.1 Preferential Attachment
	4.2 Callers of New Nodes
	4.3 Evolution Model for Software

	5 Related Work
	6 Conclusions
	References

