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Abstract. The question of whether a given subspace of Qd can be
reached from a starting vector using linear transformations from a given
finite set is well known to be undecidable in dimension 3 and above.
We show that, in contrast, the invariance problem, i.e. the question of
whether it is possible to remain inside a given subspace indefinitely using
linear transformations from a given finite set, is decidable.

1 Introduction

The classic subspace reachability problem for matrix semigroups is the following.

– Given: A finite set A ⊆ Md(Q) of matrices, a linear subspace U ⊆ Qd, and a
vector x0 ∈ Qd.

– Question: Starting from x0, can we reach U by applying a finite sequence
of matrices from A? That is, do there exist M1, . . . ,Mk ∈ A such that
Mk · · · M1x0 ∈ U?

This problem is known to be undecidable for d ≥ 3 [11]. In this paper, we
consider a temporal dual, the invariance problem:

– Given: A finite set A ⊆ Md(Q) of matrices, a linear subspace U ⊆ Qd, and a
vector x0 ∈ Qd.

– Question: Starting from x0, can we remain in U indefinitely, using matrices
from A? That is, does there exist a sequence M1,M2, . . . such that, for all
k ∈ N, Mk ∈ A and Mk · · · M1x0 ∈ U?

The main result of this paper is that, unlike the reachability problem, the invari-
ance problem is decidable.

The temporal duality becomes clearer when thinking about the negation of
the properties: Consider the infinite-state transition system S = (Qd, x0, A) with
transitions Qd → Qd defined by the given set A of matrices, and the formula
ϕU ≡ r1 · x = . . . = rk · x = 0 defining the subspace U in terms of a basis
(r1, . . . , rk) of its orthogonal complement, then a solution to the reachability
problem is a counterexample to the LTL assertion S � �¬ϕU (stating that
S will always be outside U), while a solution to the invariance problem is a
counterexample to the LTL assertion S � ♦¬ϕU (stating that S will eventually
be outside U). Note the existential character of the problem: we are asking about
satisfiability of the invariant. The universal version (the question of validity) can
easily be shown to be also decidable; see Sect. 4.3.
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As a technical aside, when we talk about a matrix semigroup in this paper,
we mean a sub-semigroup G of Mn(Q) equipped with a particular generating set
A. For the reachability problem, this detail is irrelevant (all that is required is
the existence of some M ∈ G with Mx0 ∈ U), but it matters for the invariance
problem. Consider the case x0 = (1, 1, 0)T , U = {(x, y, 0)T | x, y ∈ Q}, and
A1 = {M1,M3}, A2 = {M2,M3}, where

M1 =

⎛
⎝

0 1 0
1 0 0
0 0 1

⎞
⎠ ,M2 =

⎛
⎝

0 0 1
0 1 0
1 0 0

⎞
⎠ ,M3 =

⎛
⎝

1 0 0
0 0 1
0 1 0

⎞
⎠ .

Both A1 and A2 generate the natural permutation representation of the symmet-
ric group S3, but the invariance problem for x0, U,A1 has a solution Mω

1 ∈ Aω
1 ,

while there is no solution for x0, U,A2.

1.1 Attacking the Invariance Problem

There is an intuitively obvious approach to the invariance problem, which pro-
ceeds as follows:

– Expand the tree of words w ∈ A∗.
– Abort any branch M1 . . . Mk with Mk · · · M1x0 /∈ U ; if there are no more

branches left, then there is no solution.
– If for some branch M1 . . . Mk we have Mk · · · M1x0 = 0, we have a solution,

since 0 ∈ U is fixed by any M ∈ A (i.e. M1 . . . Mkw will do for any w ∈ Aω).

However, this method is not complete. The result which allows us to fix it is a
pumping lemma for solution prefixes: there is a bound N depending only on |A|
and dim U such that any word w ∈ Aω has a prefix uv � w with

– |uv| ≤ N , and
– (u, v) is dominating in a sense defined below, which in particular implies that

v is nonempty and if w is a solution to the invariance problem, then so is uvω.

Once we have this, the decision problem reduces to checking finitely many pairs
(u, v), as in the algorithm in Fig. 1.

Example 1. Let x0 = (1, 0, 0, 0)T ∈ Q4, U = {(x, y, z, 0)T | x, y, z ∈ Q}, and
A = {P,Q,R} with

P =

⎛
⎜⎜⎝

1 2 0 0
0 0 1 2
2 1 0 0
0 0 2 1

⎞
⎟⎟⎠ , Q =

⎛
⎜⎜⎝

0 −1 0 2
−1 0 2 0
2 0 −1 0
0 2 0 −1

⎞
⎟⎟⎠ , R =

⎛
⎜⎜⎝

0 0 −1 2
−1 0 2 0
0 1 0 0
2 0 0 −1

⎞
⎟⎟⎠ .

Figure 2 shows the beginning of a breadth-first exploration for this example; one
solution to the invariance problem is the periodic sequence PQR(RPPQPQ)ω,
corresponding to the dominating prefix (PQR,RPPQPQ).
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Fig. 1. Finding a trace remaining inside U , starting from x0. Exploration follows a
breadth-first strategy in order to find a minimal-length solution. The details of the
notions of pumpability and dominating prefix, and proof that such a prefix exists for
any sufficiently long branch, are given in Sects. 2 and 3.

Fig. 2. The first few layers of the running example
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2 Preliminaries

2.1 Setting

Throughout this paper, we work within Qd for some d ∈ N. We assume the linear
subspace U ⊆ Qd, starting vector x0 ∈ U , and finite non-empty set of matrices
A ⊆ Md(Q) to be arbitrary but fixed, subject to the non-triviality condition

MU � U for all M ∈ A.

If there is some M violating this condition, then Mω is a trivial solution to
the invariance problem.

We use A∗ and Aω for the sets of finite and infinite words over A, respectively,
and ε for the empty word. For x ∈ Qn, S ⊆ Qn, and w = M1 . . . Mk ∈ A∗,
w(x) := Mk · · · M1x and w(S) := {w(x) | x ∈ S}. A word p ∈ A∗ is a prefix
of w = M1 . . . Mk ∈ A∗ (resp. w = M1M2 . . . ∈ Aω), denoted by p � w, iff
p = M1 . . . Mj for some j ≤ k (resp. some j ∈ N).

Definition 1. Let w = M1 . . . Mk ∈ A∗. Associated with w are the following
subspaces of Qn:

– the source space S(w) = {x ∈ Qn | p(x) ∈ U for each prefix p � w}, and
– the target space T (w) = w(S(w)).

The following elementary properties of S( ), T ( ) are used throughout the
proof of the main result:

Lemma 1. For all u, v, w ∈ A∗,

(i) S(uv) = {x ∈ S(u) | u(x) ∈ S(v)} ⊆ S(u), with equality iff T (u) ⊆ S(v),
(ii) T (uv) = v(T (u) ∩ S(v)) ⊆ T (v), with equality if T (u) ⊇ S(v),
(iii) dim T (uvw) ≤ dim T (v).

Proof

(i) Since any prefix of uv is either a prefix of u or a word of the form up, where
p is a prefix of v, we have

S(uv) = {x ∈ Qn | p(x) ∈ U for all p � uv}
= {x ∈ Qn | p(x) ∈ U for all p � u and p(u(x)) ∈ U for all p � v}
= {x ∈ Qn | x ∈ S(u) and u(x) ∈ S(v)},

which is obviously a subspace of S(u). Equality holds iff for all x ∈ S(u),
u(x) is in S(v), iff T (u) ⊆ S(v).

(ii) Using uv(x) = v(u(x)), we get

T (uv) = v(u(S(uv)))
= v(u({x ∈ S(u) | u(x) ∈ S(v)}))
= v({u(x) | x ∈ S(u) and u(x) ∈ S(v)})
= v(T (u) ∩ S(v))
⊆ v(S(v)) = T (v).

If T (u) ⊇ S(v), the inclusion in the last line holds with equality.
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(iii) By (ii), T (uvw) ⊆ T (vw), and we have

dim T (uvw) ≤ dim T (vw)
= dimw(T (v) ∩ S(w))
≤ dim w(T (v))
≤ dim T (v),

where in the last step we use that dim f(V ) ≤ dim V for any linear map f
and vector space V . 
�

If w = M1M2 . . . ∈ Aω is an infinite word, then due to Lemma 1(i), the
source spaces of its prefixes form a descending chain S(ε) ⊇ S(M1) ⊇ . . .; since
the lattice of subspaces satisfies the descending chain condition, this chain has a
limit, S(w), the space of all vectors whose w-orbit remains in U . The invariance
problem obviously amounts to checking the existence of an infinite word w with
x0 ∈ S(w).

Definition 2. A word q ∈ A∗ is pumpable if q �= ε and T (q) ⊆ S(q).
A dominating prefix of a (finite or infinite) word w is a pair (p, q) such that

pq is a proper prefix of w and q is pumpable.

Any word which has a dominating prefix can then be disregarded due to the
following lemma.

Lemma 2. Let p, q ∈ A∗. If q is pumpable, then

(i) S(qk) = S(q) for all k ≥ 1,
(ii) S(pqk) = S(pq) for all k ≥ 1, and
(iii) if pq is a prefix of a word w ∈ Aω, and w is a solution to the invariance

problem for x0, U,A, then so is pqω.

Proof

(i) We use induction on k. The assertions holds trivially for k = 1; for the
step k → k + 1, from T (q) ⊆ S(q) = S(qk) we get, using Lemma 1(i), that
S(q) = S(qqk) = S(qk+1).

(ii) From (i) and Lemma 1(i) we have
S(pq) = {x ∈ S(p) | p(x) ∈ S(q)} = {x ∈ S(p) | p(x) ∈ S(qk)} = S(pqk).

(iii) S(pqω) is the limit of (S(pqk))k≥1, which by (ii) equals the constant
sequence (S(pq))k≥1, and therefore S(pqω) = S(pq). Since pq is a prefix
of w, and x0 ∈ S(w), we get
x0 ∈ S(w) ⊆ S(pq) = S(pqω). 
�

Our goal now is to show that there is a bound N such that any word w with
|w| > N has a dominating prefix (p, q) with |pq| ≤ N .

Definition 3. A word w ∈ A∗ is

– essential if it has no dominating prefix,
– S-minimal of dimension k if S(w) � S(p) for each proper prefix p � w and

dim S(w) = k,
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– T -minimal of dimension k if k = dim T (w) < dim T (p) for each proper prefix
p � w,

– S-essential (resp. T -essential) of dimension k if it is both essential and S-
minimal (resp. T -minimal) of dimension k.

We will omit the dimension for the last three properties when it is irrelevant.

Example. Continuing from the partial exploration shown in Fig. 2, Table 1 con-
tains the source and target spaces for some selected words occurring in the tree,
and whether or not they are S-minimal. All the words in the figure are essential.

Table 1. Some source and target spaces occurring in the running example

w S(w) T (w) S-minimal

ε {(x, y, z, 0)T } {(x, y, z, 0)T } yes, dimension 3

P {(x, y, 0, 0)T } {(x + 2y, 0, 2x + y, 0)T } yes, dimension 2

Q {(x, 0, z, 0)T } {(0, 2z − x, 2x − z, 0)T } yes, dimension 2

R {(0, y, z, 0)T } {(−z, 2z, y, 0)T } yes, dimension 2

PQ {(x, y, 0, 0)T } {(0, 3x, 3y, 0)T } no

QR {(x, 0, z, 0)T } {(z − 2x, 4x − 2z, 2z − x, 0)T } no

PQP {(x, 0, 0, 0)T } {(6x, 0, 3x, 0)T } yes, dimension 1

PQR {(x, y, 0, 0)T } {(−3y, 6y, 3x, 0)T } no

PQRQ {(x, 0, 0, 0)T } {(0, 6y,−3x, 0)T } yes, dimension 1

The plan now is to prove that there are only finitely many essential words,
using the following factorization.

Definition 4. The S-factorization F (w) of a word w ∈ A∗ is a finite sequence of
nonempty finite words defined as follows. If w = ε, then F (w) = (). For w �= ε, let
p � w be the shortest prefix of w for which S(p) = S(w), and (q1, . . . , qk) = F (q),
where q is the suffix with w = pq; then F (w) = (p, q1, . . . , qk). Note that since
we require MU � U for all M ∈ A, we have U = S(ε) � S(w) for all w �= ε,
which ensures that p �= ε.

For infinite w ∈ Aω, we get an infinite version of this factorization by core-
cursively defining F (w) = (p1, p2, . . .), where p1 is the shortest prefix of w with
S(p1) = S(w), and (p2, . . .) = F (q) for the infinite suffix q with w = pq.

Note that actually computing the infinite factorization (even incrementally)
would generally not be feasible (since a decrease in dimension S(uM) � S(u)
could occur after an arbitrarily long prefix u, we could not determine p1 based
on any finite prefix u, unless S(u) happens to be {0}), but we will just need
its existence and some of its properties. However, in case w is periodic, we can
compute F (w):
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Example 2. Consider the word w = uvω with u = PQR, v = RPPQPQ
from Example 1. A quick calculation gives that S(v) = T (v) = S(vω) =
{(0, 0, z, 0)T | z ∈ Q}. Since u(x0) ∈ S(v), we get that x0 ∈ S(p), and therefore
dim S(p) ≥ 1, for any prefix p � w.

On the other hand, since P,Q,R are invertible, we have that dimS(pv) =
dim T (pv) ≤ dim T (v) = 1 for any word p, so that the dimension of each factor in
F (w) must be 1. Since w is periodic, the same will be true for the factorization.
In fact, we get

F (PQR(RPPQPQ)ω) = (PQR,RP, PQ,PQR,PPQ,PQR, . . .)

3 Deciding Satisfiability

We now show that there are only finitely many essential words, and derive upper
bounds on their number and length, from which the main result follows.

3.1 Finiteness of the Set of Essential Words

Lemma 3. If w ∈ A∗ is S-minimal of dimension k, then it is also T -minimal
of some dimension j ≤ k. As a direct corollary, if w is S-essential of dimension
k, then it is also T -essential of some dimension j ≤ k.

Proof. That dim T (w) ≤ dim S(w) follows directly from T (w) = w(S(w)). If
w = ε, then it is trivially T -minimal.

Otherwise, w = vM for some v ∈ A∗ and M ∈ A. By Lemma 1(iii), it suffices
to show dim T (w) < dim T (v). Since w is S-minimal, S(w) = S(vM) � S(v),
and thus T (v) � S(M) by Lemma 1(i). Therefore

dim T (vM) = dimM(T (v) ∩ S(M)) by Lemma 1(ii)
≤ dim (T (v) ∩ S(M))
< dim T (v),

i.e. w is T -minimal.
The corollary follows by just adding non-existence of dominating prefixes of

w to both the assumption and conclusion. 
�
Theorem 1. Let w = vM be a non-empty essential word, where v ∈ A∗ and
M ∈ A. Let the S-factorization of v be F (v) = (p1, . . . , pm). Then

(i) each pi is T -essential,
(ii) if w is T -minimal of dimension k, then each pi is T -minimal of some dimen-

sion di > k, and
(iii) pi �= pj for i �= j.
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Proof

(i) By construction of the S-factorization, each pi is S-minimal. By Lemma 3,
it is also T -minimal.
Suppose pi is not essential, then it has a dominating prefix (r, s). This
implies that (p1 . . . pi−1r, s) is a dominating prefix for the essential word w,
contradiction.

(ii) We already have that each pi is S-minimal and thus T -minimal by Lemma 3;
it remains to show dim T (pi) > dim T (w). This follows because pi is a factor
of v, so dim T (pi) ≥ dim T (v) by Lemma 1(iii), and dimT (v) > dim T (w)
due to T -minimality of w.

(iii) Suppose pi = pj for some i < j. By the definition of F (v) we then have
S(pi . . . pm) = S(pi) = S(pj) = S(pj . . . pm) ; furthermore, since the spaces
(S(pi . . . pk)) form a descending chain, we have in fact S(pi) = S(pi . . . pk)
for all i ≤ k ≤ m, and in particular S(pi) = S(pi . . . pj−1) = S(pi . . . pm).
This implies

T (pi . . . pj−1) ⊆ S(pj . . . pm) by Lemma 1(i)
= S(pj)
= S(pi)
= S(pi . . . pj−1).

Therefore (p1 . . . pi−1, pi . . . pj−1) is a dominating prefix for w, contradic-
tion. 
�

This theorem allows us to prove finiteness of the set of essential words by
induction on the codimension c(w) := dimU − dim T (w). It also enables us to
derive upper bounds on their number and length, for which we need the following
definition.

Definition 5

– The arrangement function a : N → N is given by

a(n) =
n∑

i=0

n!
i!

;

it is the number of sequences from a set of n elements with no repeated element.
Note that a(n)/n! converges to Euler’s number e from below, in particular
a(n) ≤ 3n! for all n.

– The numbers Ni for i ∈ N are defined by Ni =

{
1 for i = 0
|A| · a(Ni−1) otherwise.

– The numbers Li for i ∈ N are defined by Li =

{
0 for i = 0
Ni−1Li−1 + 1 otherwise.

Theorem 2. We have the following bounds on the numbers and lengths of essen-
tial words w, based on their codimension c(w) = dimU − dim T (w).
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(i) There are at most Ni T -essential words w of codimension c(w) ≤ i.
(ii) A T -essential word of codimension i has length ≤ Li.
(iii) There at most N1+dimU essential words, and none of them is longer than

L1+dimU .

Proof

(i) We proceed by induction on i. For i = 0, the empty word ε is trivially T -
essential. Since T (ε) = U and ε � w for all w ∈ A∗, it is the only T -essential
word of dimension dimU , i.e. codimension 0.
For i → i + 1, by the induction hypothesis there are at most Ni T -essential
words of codimension c(w) ≤ i. By Theorem 1, any T -essential word w
of codimension i + 1 has a factorization w = p1 . . . pnM in which the pj

are pairwise distinct and T -essential of codimension ≤ i, and M ∈ A. The
number of such factorizations is at most |A|·a(Ni) = Ni+1, and they include
the ones for words of codimension ≤ i, giving the upper bound Ni+1 for the
number of T -essential words w of codimension c(w) ≤ i + 1.

(ii) As in (i), we argue inductively using Theorem 1. For i = 0, the only T -
essential word ε of codimension 0 has length 0 = L0.
For i → i+1, the decomposition in Theorem 1 consists of at most Ni words,
each of length at most Li, plus the final letter, giving a total length of at
most NiLi + 1 = Li+1.

(iii) As in (i) and (ii), we get from Theorem 1 that any non-empty essential
word has a factorization into (at most NdimU ) pairwise T -essential words
of length at most LdimU and a single trailing M ∈ A. The number of such
factorizations is at most N1+dimU , and their length is bounded by L1+dimU ,
by the same argument as before. 
�

3.2 Decidability of the Invariance Problem

The main result now follows immediately from the bounds established in the
previous section.

Theorem 3. Algorithm 1 terminates. It returns FAIL if and only if there is no
solution to the invariance problem.

Proof. Let w = M1M2 . . . ∈ Aω be any infinite word. By Theorem 2, w has an
essential prefix m(w) = M1 . . . Mk of maximal length |m(w)| ≤ L1+dimU (note
that the empty word is always essential, so m(w) exists). Then M1 . . . Mk+1

has a dominating prefix (p, q). We must have that pq = m(w) and there is no
shorter dominating prefix, since otherwise m(w) would also fail to be essential.
Due to the properties of dominating prefixes, x0 ∈ S(m(w)) if and only if pqω is
a solution to the invariance problem. Therefore we have two cases.

If there is no solution to the invariance problem, then for any branch w, x0

cannot be in S(m(w)), i.e. the branch will be discarded before reaching depth
|m(w)| ≤ L1+dimU . By König’s lemma, only finitely many words are explored,
and the algorithm returns FAIL.
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If there is a solution w, then x0 ∈ S(p) for every prefix p � w, and the
algorithm keep exploring until it reaches depth |m(w)| for one such w, at which
point the dominating prefix is discovered and returned. 
�

4 Further Remarks and Variations

4.1 Computing All Possible Initial Vectors

The algorithm we gave can be easily adapted to solve the following, more general
problem:

– Given: A finite set A ⊆ Md(Q) of matrices, and a subspace U ⊆ Qd.
– Question: From which starting vectors x0 can we remain in U indefinitely,

using matrices from A? That is, for which x0 ∈ Qd does there exist a sequence
M1,M2, . . . such that, for all k ∈ N, Mk ∈ A and Mk · · · · · M1x0 ∈ U?

Essentially, all that has to be changed is to remove the special treatment of x0

and collect all the pairs which would have been returned into a set P , as in
Fig. 3.

Fig. 3. Finding all starting vectors from which the invariance problem has a solution.

4.2 Locations

The transition system (Qd, x0, A) can be extended using a finite set L of control
locations, giving (L × Qd, (l0, x0), T ) for a finite set T ⊆ L × Mn(Q) × L. The
main properties of words w ∈ A∗ can still be used as before, the main difference
being that a pumpable word q is now additionally required to label a cycle in
the location graph.

The algorithm then proceeds as before, except that nodes are labeled with
states (l, x) ∈ L × Qd, and only successors using matrices which are available in
l are considered.
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4.3 The Universal Version

The question whether the invariant given by U is valid, i.e. whether w(x0) ∈ U
for all w ∈ A∗, is also decidable, and is in fact easier than the problem we have
dealt with in the previous sections. Again, the basic idea is to expand the tree
of words w ∈ A∗ in a breadth-first order. While doing so, we can

(i) as soon as we encounter a counterexample w(x0) /∈ U , return w;
(ii) cut any branch v if v(x0) is a linear combination of vectors we have previously

explored.

The reason for (ii) is that, if y := v(x0) = λ1x1+· · ·+λnxn, then due to linearity
for any w ∈ A∗, w(y) = λ1w(x1) + · · · + λnw(xn); in particular, if w(y) /∈ U
for some w ∈ A∗, then there is some i for which w(xi) is also not in U . Since
we use breadth-first search, xi = ui(x0) for some word ui which is smaller than
v in the length-lexicographic order. Thus for any counterexample which we lose
by discarding y, there is a length-lexicographically shorter one. In particular, if
there are any counterexamples, then the length-lexicographically minimal one
among them cannot be lost and will be found by the search.

Fig. 4. Checking validity of the invariant U , starting from x0.

5 Summary and Future Work

5.1 Summary

We presented a solution to the invariance problem for matrix semigroups, i.e. the
question of an infinite sequence of matrices satisfying a given linear invariant.
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We gave an algorithm to find a solution if one exists, and proved its termina-
tion. The latter relied on the analysis of various properties of words in matrix
semigroups and their interaction. In particular, we showed that for any finite set
A of matrices and subspace U , there is a bound N such that any word of length
> N has a dominating prefix, reducing the problem to a finite one (Fig. 4).

5.2 Related Work

Matrix semigroups are a rich source of problems [3,11], including many surpris-
ingly complicated decision problems. Among these are the scalar reachability
problem (undecidable in dimension 3 and above [3]), which is the problem of
reaching a subspace of codimension 1 from a starting vector using matrices from
a given semigroup, and the vector reachability problem, in which the target is
a single vector. A special case of the latter, for a single generating matrix, is
the orbit problem which was shown to be decidable by Kannan and Lipton [5].
A closely related problem to the universal version of the invariance problem
(Sect. 4.3) is the question of boundedness, which is undecidable [1].

One source of the complexity of such problems is that, in contrast to similar
models like vector addition systems [4,6,9], the behaviour of matrix semigroups
has inherently nonlinear aspects; for example, the simple 3-dimensional matrix⎛
⎝

1 2 1
0 1 1
0 0 1

⎞
⎠ has the orbit {(n2, n, 1)T | n ∈ N}. This ability to reflect polynomial

relationships connects problems like scalar reachability to known undecidable
ones, like solvability of diophantine equations [10].

This complexity extends to various related models. Polynomial Register
Machines [2] generalize vector addition systems with polynomial update func-
tions (with integer coefficients); while this leads to undecidability in most cases,
in dimension 1 reachability turns out to be decidable (in fact PSPACE-complete).
Iteration of piecewise affine maps [7,8], similarly to matrix semigroups, involves
a choice between affine-linear transformations, but this choice is deterministic
based on the current variable values; the (vector) reachability problem is unde-
cidable in general, but decidability is still open in dimension 1.

5.3 Future Work

There are a number of interesting ways to extend these results. Among them
are:

Complexity Bounds. From the proof of decidability we get the upper bound
L∞ ≤ 1+NdimU (1+NdimU−1(. . . (1+N0) . . .) for the exploration depth, where
N0 = 1 and Ni+1 ≤ 3 · |A| ·Ni!, for a total of dimU nested factorials. This implies
a complexity upper bound of O(2L∞) for the algorithm. It would be interesting
to see how much this can be improved, and what lower bounds can be found.
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Polyhedral Invariants. The invariant in this paper was given as a linear subspace
U , corresponding to a conjunction of linear equations. Generalizing this to linear
inequalities leads to the question of whether we can find a sequence of matrices
from A which allows us to remain inside a given polyhedron. This adds significant
complications; in particular, it is not the case that a descending sequence of
polyhedra P0 ⊇ P1 ⊇ . . . stabilizes after finitely many steps, so notions like the
S-factorization cannot simply be translated to this setting. It is not clear at all
whether this more general question is decidable.

Guards. The control structure of the transition system (Qd, x0, A) is relatively
simple in that any transition is enabled at any time. Adding control location
already changes this, but the values of the vector x in a state (l, x) still have no
influence on the control flow. This changes with the introduction of application
conditions or guards: linear equations or inequalities which have to be satisfied
before the associated transition can be taken. Note that equation guards can be
translated into extra dimensions in such a way that guard violations translate
into (extended) invariance violations, so that they don’t increase expressivity;
inequalities on the other hand make for an interesting addition.

Games. Since both the existential and (as seen in Sect. 4.3) the universal version
of the invariance problem are decidable, it is natural to ask what can be done
about an alternating version. This would amount to considering games in which
two players �,♦ take turns applying matrices from given sets A�, A♦ to the
current vector x, with the goal of preserving and violating the invariant U ,
respectively.
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