
Regular Transformations of Data Words
Through Origin Information

Antoine Durand-Gasselin1 and Peter Habermehl2(B)

1 Aix Marseille Université, CNRS, Centrale Marseille, LIF UMR 7279,
Marseille, France

Antoine.Durand-Gasselin@centrale-marseille.fr
2 IRIF, Univ. Paris Diderot & CNRS, Paris, France
Peter.Habermehl@liafa.univ-paris-diderot.fr

Abstract. We introduce a class of transformations of finite data words
generalizing the well-known class of regular finite string transformations
described by MSO-definable transductions of finite strings.These trans-
formations map input words to output words whereas our transforma-
tions handle data words where each position has a letter from a finite
alphabet and a data value. Each data value appearing in the output has
as origin a data value in the input. As is the case for regular trans-
formations we show that our class of transformations has equivalent
characterizations in terms of deterministic two-way and streaming string
transducers.

1 Introduction

The theory of transformations of strings (or words) over a finite alphabet has
attracted a lot of interest recently. Courcelle [8] defined finite string transforma-
tions in a logical way using Monadic second-order definable graph transductions.
Then, a breakthrough was achieved in [9] where it was shown that these transfor-
mations are equivalent to those definable by deterministic two-way finite trans-
ducers on finite words. In [1] deterministic streaming string transducers (SST)
on finite words were introduced. This model is one-way but it is equipped with
string variables allowing to store words. It is equivalent [1] to the deterministic
two-way finite transducers and to MSO-definable transformations. Interestingly,
the motivation behind SST was the more powerful SDST model [2]. SDST work
on data words, i.e. words composed of couples of letters from a finite alphabet
and an infinite data domain. However, they do not have the same nice theoretical
properties as SST, for example they are not closed under composition because
SDST have data variables allowing to store data values and compare data values
with each other. Furthermore, there is no equivalent logical characterization.

This work was supported in part by the VECOLIB project (ANR-14-CE28-0018)
and by the PACS project (ANR-14-CE28-0002).
A. Durand-Gasselin—Part of this work was done while this author was at Technical
University Munich.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Löding (Eds.): FOSSACS 2016, LNCS 9634, pp. 285–300, 2016.
DOI: 10.1007/978-3-662-49630-5 17

286 A. Durand-Gasselin and P. Habermehl

In this paper, analogously to the case of string transformations of finite words,
we obtain a class of transformations of finite data words which has an MSO
characterization as well as equivalent characterizations in terms of deterministic
two-way transducers and streaming transducers. To achieve this, we allow storing
of data values in the transducers but not comparison.

As an example we consider the transformation taking a finite input word over
{#, a, b} starting and finishing with a #, together with associated data values
from the integers, like

(
#ab#abb#
124 5 671 4

)
and produces as output the word where (1)

#’s are left unchanged, and between successive #’s (2) words w in {a, b}∗ are
transformed into wRw where wR denotes the reverse image of w, and (3) the data
value associated to each a is the value of the first # and the value for b’s is the
value of the second #. So, the output for the example word is

(
#baab#bbaabb#
15115 5 445544 4

)
.

It is clear how a deterministic two-way transducer with the ability of storing
data values can realize this transformation: it stores the first data value (1) in
a data variable while outputting

(
#
1

)
, then goes to the second #, stores the

corresponding data value (5) in a second data variable, and goes back one by
one while producing

(
ba
51

)
. Then, it turns around at the first #, goes again to the

second # producing
(
ab
15

)
and restarts the same process.

Now, to realize this transformation with a deterministic streaming string
transducer one has to make with the fact that they can only go through the
input word once from left to right. Nevertheless we will introduce a model which
can realize the described transformation: in between two #′s it stores the so-far
read string and its reverse in a data word variable. As the data value of the
second #′ is not known in the beginning it uses a data parameter p instead. For
example, before the second #, the stored word will be

(
baab
p11p

)
. When reading the

second #, it then replaces p everywhere by 5 and stores the result in another
data word variable. The same repeats for the rest of the word until the end is
reached and the output contained in a data word variable.

The same transformation can also be described logically. To define trans-
formations on data words, a natural choice would be to use transducers with
origin information and their corresponding MSO transductions studied in [6].
Basically, their semantics also takes into account information about the origin
of a letter in the output, i.e. the position in the input from which it originates.
Obviously, this can be generalized to data values by defining the data value of
each output position as the data value in the input position from where the out-
put originated. This definition is however not expressive enough to handle our
example, since an input position can only be the origin of a bounded number of
output positions but the data values attached to (unboundedly many) a’s and
b’s between two successive #’s come from the same two input positions.

Therefore, in this paper, we first introduce a logical characterization of word
transformations with generalized origin information. Our logical characterization
is an extension of classical MSO transductions with an additional functional
MSO defined relation that maps each element of the interpretation (symbols
of the output word) to an element of the interpreted structure (symbols of the
input word). This generalization naturally defines transformations of data words;

Regular Transformations of Data Words Through Origin Information 287

the data value at a given position of the output is the data value carried at
the corresponding position in the input. This suffices to define the previously
described example transformation.

Interestingly, our class of transformations is captured by a natural model of
deterministic two-way transducers extended with data variables whose values can
neither be tested nor compared. By adding data word variables (as in streaming
string transducers) containing data values and parameters, we then manage,
while preserving determinism, to restrict that model to a one-way model. Data
parameters are placeholders for data values which can be stored in data word
variables and later replaced by concrete data values. We show that this one-way
model can be captured by MSO to achieve the equivalence of all three models.

2 MSO Interpretations with MSO Origin Relation

2.1 Words, Strings and Data Words

For S a set of symbols, we denote by S∗ the set of finite words (i.e. the set of
finite sequences of elements of S) over S. Given a word w, we can refer to its
length (|w|), its first symbol (w[0]), the symbol at some position i < |w| in the
word (w[i]), some of its subwords (e.g. w[i:j] with 0 ≤ i ≤ j < |w|, the subword
between positions i and j) etc. In this paper, we only consider finite words.

An alphabet (typically denoted Σ or Γ) is a finite set of symbols. Further-
more, we use a (potentially infinite) set of data values called Δ. In the sequel,
we use string to refer to a (finite) word over a finite alphabet and data word to
refer to a word over the cartesian product of a finite alphabet and a set of data
values. Since symbols of data words consist of a letter (from the finite alphabet)
and a data value, we can naturally refer to the data value at some position in a
data word, or the string corresponding to some data word. Conversely a string
together with a mapping from its position to Δ forms a data word.

A string w (over alphabet Σ) is naturally seen as a directed node-labeled
graph (rather than considering edges only connecting two successive positions,
we take the transitive closure: thus the graph is a finite linear order). The graph
is then seen as an interpreted relational structure whose domain is the positions
of w, with a binary edge predicate <, and a monadic predicate for each letter
of Σ. We denote SΣ the signature consisting of </2 and σ/1 for each σ ∈ Σ.

Any string over alphabet Σ is an interpretation over a finite domain of SΣ ,
conversely any interpretation of SΣ is a string if (1) its domain is finite, (2) <
defines a linear order and (3) at every position exactly one monadic predicate
holds. We remark that (2) and (3) can be expressed as monadic second order
(MSO) sentences. Two interpretations are isomorphic iff they are the same string.

With this logic based approach we have a very simple classical characteriza-
tion of regular languages: a language L over alphabet Σ is regular iff there exists
an MSO sentence ϕ (over signature SΣ) such that the set of interpretations of
SΣ with finite domain satisfying ϕ is the set of strings in L.

288 A. Durand-Gasselin and P. Habermehl

2.2 MSO Interpretations

Using this model theoretic characterization of strings, we can define a class of
transformations of strings. For the sake of clarity we consider transformations
of strings over alphabet Σ to strings over alphabet Γ . We now define an MSO
interpretation of SΓ in SΣ , as |Γ |+2 MSO formulas over signature SΣ : ϕ< with
two free first-order variables and ϕdom and (ϕγ)γ∈Γ with one free first-order
variable. Any interpretation IΣ (of the signature SΣ) defines an interpretation
of the structure SΓ : its domain is the set of elements of the domain of IΣ

satisfying ϕdom in IΣ , and the interpretation of the predicates over that domain
is given by the truth value of each of the other MSO formulas.

An important remark is that if the interpretation IΣ has finite domain, then
so will the constructed interpretation of SΓ . Also, since we can express in MSO
(over the signature SΓ) that the output structure is a string (with (2) and (3)),
we can also express in MSO over the signature SΣ that the output structure is a
string, hence we can decide whether for any input string our MSO interpretation
produces a string.

Above, we presented the core idea of Courcelle’s definition [8] of MSO graph
transductions. Courcelle further introduces the idea of interpreting the output
structure in several copies of the input structures. To define such a transduction,
we need to fix a finite set C of copies, the domain of the output structure will
thus be a subset of the cartesian product of the domain of the input structure
with the set of copies. The transduction consists of |C|2 + (|Γ | + 1)|C| + 1 MSO
formulas over the input structure:

– the sentence ϕindom that states whether the input structure is in the input
domain of the transduction,

– formulas ϕc
dom (with one free first-order variable) for each c in C, each stating

whether a node x in copy c is a node of the output structure,
– formulas ϕc

γ (also with one free first-order variable), for each c ∈ C and each
α ∈ Γ which states whether a node x in copy c is labelled by α,

– and formulas ϕc,d
< (with two free first-order variables, namely x, y) that states

whether there exists an edge from x in copy c to y in copy d.

The semantics of these transformations naturally provides a notion of origin:
by definition a node of the output structure is a position x in the copy c of the
input structure (such that ϕc

dom(x) is true).

2.3 Transduction of Data Words

Data words cannot be represented as finite structures (over a finite signature)
but they can be seen as strings together with a mapping of positions to data
values.

To define a data word transduction, we take a string transduction that we
extend with an MSO relation between positions in the input word and positions
in the output word. Formally we extend the definition of MSO transduction with
|C| MSO formulas (with two free first-order variables) ϕc

orig(x, y), which we call

Regular Transformations of Data Words Through Origin Information 289

the origin formulas, stating that position x in copy c (in the output string)
corresponds to position y in the input string. We further impose that for any
input word in the domain of the transformation and any x and c ∈ C such that
x in copy c is in the output of the transformation, there exists exactly one y that
validates ϕc(x, y). We remark that this restriction can be ensured in MSO (over
the input structure). Then, the data value at each output position is defined to
be the data value at the corresponding input position.

We call MSOT the class of string transformations defined as MSO inter-
pretations, and MSOT+O the class of data word transformation defined as
MSO interpretations together with origin formulas. We remark that this def-
inition of origin captures the usual origin information in the sense of [6] by
fixing ϕc

orig(x, y) ≡ (x = y).

2.4 The Running Example

Two copies suffice to define the transformation for the running example. For
clarity, we do not represent the ordering relation <, but rather the successor
relation.

input: # b a a b # b b a a b b #

copy 1: # b a a b # b b a a b b #

copy 2: b a a b b b a a b b

ϕindom states the input word starts and ends with a #. ϕ1
dom(x) is true (every

node in the first copy is part of the output), while ϕ2
dom(x) = ¬#(x) tests the

letter in the input at that position is not a #. The labeling formulas are the
identity (ϕ1

a(x) = a(x),...) —the behaviour of the formula outside the output
domain is considered irrelevant. ϕ1,1

< (x, y) = x < y, and ϕ2,2
< (x, y) checks if there

is a #-labeled position between position x and y (in the input): if so it ensures
that x < y, if not it ensures x > y. ϕ1,2(x, y) and ϕ1,2(x, y) also distinguish cases
whether there is a #-labeled position between x and y or not.

The origin information MSO formulas happen here to be the same for the
two copies ϕi(x, y) making cases on the letter x: if it is an a (resp. a b) it ensures
y is the first #-labeled position before (resp. after) position x.

2.5 Properties

Defining word transformations through MSO interpretations yields some nice
properties:

Theorem 1. MSOT+O is closed under composition.

Proof. MSOT is naturally closed under composition: given 2 mso transduc-
tions T1 and T2, (using C1 and C2 copies) we can define T1 ◦ T2 as the MSO-
interpretation T1 of the MSO-interpretation T2 of the original structure, which
is an MSO-interpretation over C1 × C2 copies.

290 A. Durand-Gasselin and P. Habermehl

In order to show the compositional closure of MSOT+O, it now suffices to
define the origin information for the composition of two transductions T1 and T2

in MSOT+O. It is clear how to define formulas ϕc
orig that relate a position in

the output with a position in the input, from the origin formulas of T1 and T2.
We just need to show these origin formulas are functional; a fact that we easily
derive from the functionality of the origin formulas of T1 and T2.

The (MSO)-typechecking problem of a transformation is defined as follows:

Input: Two MSO sentences ϕpre, ϕpost and an MSOT+O transformation T
Output: Does w |= ϕpre imply that T (w) |= ϕpost?

It consists in checking whether some property on the input implies a property
on the output, those properties are here expressed in MSO.

Theorem 2. MSO-typechecking of MSOT+O is decidable.

Proof. An MSO formula can not reason about data values. Therefore it is suf-
ficient to show that MSO-typechecking of MSOT is decidable. Since the output
is defined as an MSO interpretation of the input, it is easy to convert an MSO
formula on the output into an MSO formula on the input. We just need to check
whether the input property implies that converted output property, on any input
word, which is checking the universality of an MSO formula over finite strings.

2.6 MSO k-types

Since we present a generalisation of the classical MSO string transductions, the
machine models that are expressively equivalent to our logical definition will be
extensions of the classical machine models.

To show later that these logical transformations are captured by finite state
machines, we use the notion of MSO k-types. We crucially use this notion (more
precisely Theorem 3) to prove in Sect. 3 that we only need a finite number of
data variables (Lemma 1) to store data values originating from the input.

Given a string w, we define its k-type as the set of MSO sentences of quantifier
depth at most k (i.e. the maximum nesting of quantifiers is at most k) that hold
for w. A crucial property is that the set of MSO k-types (which we denote
Θk) is finite and defines an equivalence relation over strings which is a monöıd
congruence of finite index. We refer the reader to [11] for more details.

These k-indexed congruences satisfy the following property: two k-equivalent
strings will satisfy the same quantifier depth k MSO sentence.

We can extend this notion to MSO formulas with free first-order variables.

Theorem 3. Given two strings w1 and w2 each with two distinguished positions
x1, y1 and x2, y2. (w1, (x1, y1)) and (w2, (x2, y2)) satisfy the same MSO formulas
with quantifier depth at most k and two free first order variables if:

– w1[x1] = w2[x2] and w1[y1] = w2[y2]
– x1, y1 and x2, y2 occur in the same order in w1 and w2 (with the special case

that if x1 = y1, then x2 = y2).

Regular Transformations of Data Words Through Origin Information 291

– The k-types of the two (strict) prefixes are the same, and the k-types of the
two (strict) suffixes are the same, as well as the k-types of the two (strict)
subwords between the two positions.

Proof. Immediate with Ehrenfeucht-Fräıssé games.

3 Two-Way Transducers on Data Words

Two-way deterministic transducers on strings are known to be equivalent to MSO
string transductions [9]. Since we process data words and output data words, we
will naturally extend this model with a finite set of data variables. Notice that
the data values in the input word do not influence the finite string part of the
output. Therefore the transition function of the transducer may not perform any
test on the values of those data variables. However the output word will contain
some (if not all) data values of the input word, therefore the model may store
some data value appearing in the input word in some variable, and when an
output symbol is produced, this is done (deterministically) by combining some
letter of the output alphabet together with the data value contained in some
data variable.

We start by defining the classical two-way deterministic finite-state trans-
ducers (2dft) (with input alphabet Σ and output alphabet Γ) as a deterministic
two-way automaton whose transitions are labeled by strings over Γ . The image
of a string w by a 2dft A is defined (if w admits a run) as the concatenation of
all the labels of the transitions along that run.

Definition 1. A 2dft is a tuple (Σ,Γ,Q, q0, F, δ) where:

– Σ and Γ are respectively the finite input and output alphabets (�,� /∈ Σ)
– Q is the finite set of states, q0 the initial state, and F the set of accepting

states
– δ : Q×(Σ∪{�,�}) → Q×{+1,−1}×Γ ∗ is the (two-way, Γ ∗-labeled) transition

function

A (finite) run of a 2dft A over some string w is a finite sequence ρ of pairs of
control states Q and positions in [−1, |w|] (where −1 is supposed to be labeled by
� and |w| by �), such that: ρ(0) = (0, q0), ρ(|ρ|−1) ∈ N× F and at any position
k < |ρ| − 1 in the run, if we denote ρ(k) = (ik, qk) and ρ(k + 1) = ik+1, qk+1, we
have that δ(qk, w(ik)) = (qk+1, ik+1 − ik, uk+1) for some uk+1 ∈ Γ ∗. Informally
+1 corresponds to moving to the right in the input string and −1 to moving to
the left. The output of A over w is simply the string u1u2 . . . u|ρ|−1. We denote
T (A) the (partial) transduction from Σ∗ to Γ ∗ defined by A.

Notice that not every input string admits a finite run (since the transducer
might get stuck or loop), but if w admits a finite run, it is unique and has length
at most |Q|(|w|+2), as this run visits any position at most |Q| times. Therefore a
run can also be defined as a mapping from positions of �w� to Q≤|Q| (sequences
of states of length at most |Q|).

The next theorem states the equivalence between transformations defined by
this two-way machine model and the logical definition of string transformations.

292 A. Durand-Gasselin and P. Habermehl

Theorem 4 [9]. Any string transformation from Σ∗ to Γ ∗ defined by a 2dft can
be defined as an MSO interpretation of Γ ∗ in Σ∗ and vice versa.

Now we define our two-way machine model, two-way deterministic finite-state
transducer with data variables (2dftv) for data word transformations. We simply
extend the 2dft by adding some data variables whose values are deterministically
updated at each step of the machine.

Definition 2. A 2dftv is a tuple (Σ,Γ,Δ,Q, q0, F, V, μ, δ) where:

– Σ and Γ are respectively the input and output alphabets (�,� /∈ Σ),
– Δ is the (infinite) data domain,
– Q is the finite set of states, q0 the initial state, and F the set of accepting

states,
– V a finite set of data variables with a designated variable curr ∈ V ,
– μ : Q × Σ × (V \ {curr}) → V is the data variable update function,
– δ : Q × (Σ ∪ {�,�}) → Q × {+1,−1} × (Γ × V)∗ is the (two-way, (Γ × V)∗-

labeled) transition function.

We can define the semantics of a 2dftv like the semantics of an 2dft by
extending the notion of run. Here, a run is labeled by positions and states but
also by a valuation of the variables, i.e. a partial function β which assigns to
variables from V values from Δ. This partial function is updated in each step
(while reading a symbol different from the endmarkers � or �) according to μ and
additionally to the variable curr the current data value in the input is assigned.
The output is obtained by substituting the data variables appearing in the label
of the transition relation by their value according to β which we suppose to be
always defined (this can be checked easily). Then, naturally a 2dftv defines a
transduction from words over Σ × Δ to words over Γ × Δ.

We call 2DFTV the class of all data word transductions definable by a 2dftv.

Theorem 5. MSOT+O is included in 2DFTV.

The challenge to show the theorem is to be able to extend the MSOT to
2DFT proof from [9], so as to be able to also carry in data variables all the
necessary data values needed in the output.

We recall the key features in the proof of [9]. First, 2dft’s are explicitly
shown to be composable [7], which gives regular look-around (the ability to
test if the words to the left and to the right of the reading head are in some
regular languages) for free: a first pass rewrites the input right-to-left and adds
the regular look-ahead, and the second pass re-reverses that word while adding
the regular look-back. It is then possible (by reading that regular look-around)
to implement MSO-jumps. Given an MSO formula ϕ with 2 free variables, an
MSO-jump ϕ from position x consists in directly going to a position y such that
ϕ(x, y) holds. Using MSO-jumps 2dft can then simulate MSO transformations.

We show thereafter how to extend such a 2dft that takes as input the (look-
around enriched) string and produces its image, to a 2dftv. The proof is then

Regular Transformations of Data Words Through Origin Information 293

in three steps: first we show that a finite number of data variables is needed,
then we briefly describe how to update those data variables: each transition of
the 2dft being possibly replaced by a “fetching” of exactly one data variable,
and finally it is easy to see how to compose the preprocessing 2dft with that
produced 2dftv.

To store only a finite number of data values, we will only store those which
originate from a position on one side of the currently processed position and
that are used on the other side of the currently processed position. The following
lemma ensures a bound on the number of data variables.

Lemma 1. Let w be a data word, x a position in w, and T a transducer. Denote
k the quantifier depth of origin formulas. There are at most |Σ||Θk|2 positions
z > x such that there exists a position y < x in some copy c such that ϕc

orig(y, z)
holds, i.e. that the data value carried by y in copy c is that of z.

Proof. By contradiction, we use the pigeon hole principle. We can find two dis-
tinct positions z and z′ such that the type of the subword between x and z and
x and z′ is the same, and the type of the suffix from z is the same as the type
of the suffix from z′.

Let y a position, left of x where the data value of z is used, thus ϕc
orig(y, z)

holds. We apply Theorem3 to (w, (y, z)) and (w, (y, z′)) and therefore ϕc
orig(y, z′)

also holds, which contradicts the functionality of the relation ϕorig.
�
It seems appropriate to name our data variables using MSO types. The data

variables are thus Σ × Θk × Θk × {l, r}, (σ, τ1, τ2, l) denoting the data variable
containing the data value from the position y (in the input word which is labeled
by σ), left (l) of current positions, such that the prefix up to y has type τ1, and
the subword between y and current position has type τ2.

With an appropriate value of k′ (greater than k) the knowledge of the k′-
types of the prefix and suffix of the word from the currently processed position,
informs us for each data variable whether it contains a value or not, whether it
is used at the current position and most importantly to which data variable the
value should be transfered when a transition to the right (or the left) is taken.

Notice that when the 2dft performs a transition to the right, four things can
happen (only 2 and 3 are mutually exclusive):

1. A data value from a previous position was used for the last time and should
be discarded

2. The current data value has been used earlier and will not be used later (and
should be discarded)

3. The current data value may be used later and was not used before (and thus
should be stored)

4. A data value from a next position is first used (and thus should be stored)

The challenging part is the case (4), as we would need to fetch the data value
which we suddenly need to track. The new value is easily fetched through an
MSO jump (to the right) which is a feature introduced by [9] allowing to jump

294 A. Durand-Gasselin and P. Habermehl

to a position in the input specified by an MSO formula. In turn this jump is
implemented (thanks to the look-around carried by the input word) as a one-
way automaton that goes to the right until it reaches the position where the data
value is, and a one-way automaton that goes (left) from that position back to the
original position. The challenge is to be able to return to the current position.
Thanks to our definition, we can also describe an MSO jump that allows the
return: if we had to fetch a new data value, it is because it was first used at
the position we want to jump back to. Such a position can easily be expressed
uniquely with an MSO formula from the position we fetched our data value. We
remark that we cannot fetch data values on a per-needed basis (an MSO jump
to the position where the data is, is possible, but going back with an MSO-jump
is not), which indicates we need data variables.

In the 2dft, any transition for which case (4) happens (this information is
contained in the look-around) is replaced by two automata that go fetch (and
back) that newly needed data value.

Finally we present how this conversion should work on our example. We
need to consider 1-types. Θ1 is 2Σ : each characterizing exactly which letters are
present in the word. This means hundreds of data variables, but at any point
for this transformation, no more than 2 data values will be stored. So long as
we read a’s we should not have fetched the data value of the following #-labeled
position. When a b is read, we fetch that data value and then we can return back
to our original position: it is the first position (after the last #) in the word that
contains a b.

4 One-Way Transducers

4.1 Streaming String Transducers with Data Variables
and Parameters

We first define sstvp, i.e. streaming string transducers with data variables and
data parameters. They have the features of streaming string transducers [1,2]
extended with data variables and data parameters. Notice that in contrast to the
streaming data-string transducers from [2] sstvp can not compare data values
with each other.

Intuitively, sstvp read deterministically data words and compute an output
data word. They are equipped with data variables which store data values, para-
meters which are placeholders for data values and data word variables containing
data words which in addition to data values can also contain data parameters.
These data parameters can be replaced by data values subsequently.

Definition 3. A sstvp is a tuple (Σ,Δ, Γ,Q,X, V, P, q0, v0, δ, Ω) where:

– Σ and Γ are respectively the input and output alphabets,
– Δ is the (infinite) data domain,
– Q is the finite set of states and q0 ∈ Q the initial state,
– X is the finite set of data word variables,

Regular Transformations of Data Words Through Origin Information 295

– V is the finite set of data variables with a designated variable curr ∈ V ,
– P is the finite set of data parameters (P ∩ Δ = ∅),
– v0 : X → (Γ × P)∗ is a function representing the initial valuation of the data

word variables.
– δ is a (deterministic) transition function: δ(q, σ) = (q′, μV , μX , μP) where:

• μV : (V \ {curr}) → V is the update function of data variables,
• μX : X → (X ∪ (Γ × (V ∪ P)))∗, is the update function of data word

variables,
• μP : P × X → P ∪ V is the parameter assignment function (dependent on

the data word variable).
– Ω : Q → ((Γ × V) ∪ X)∗ is the partial output function.

The streaming string transducers of [1,2] were defined by restricting updates
to be copyless, i.e. each data word variable can appear only once in an update μX .
Here, we relax this syntactic restriction along the lines of [5] by considering only
1-bounded sstvp’s: informally, at any position the content of some data word
variable may only occur once in the output. This allows to duplicate the value
of some data word variable in two distinct data word variables, but the value of
these variables can not be later combined. It is clear that this condition can be
checked and a 1-bounded sstvp can be transformed into a syntactically copyless
sstvp one [5].

Now, we define the semantics of sstvp. A valuation of data variables βV for an
sstvp is a partial function assigning data values to data variables. A valuation
of data word variables βX is a function assigning words over Γ × (Δ ∪ P) to
data word variables. Then, a configuration of an sstvp consists of a control state
and a valuation of data and word variables (βV , βX). The initial configuration
is (q0, β0

V , v0), where β0
V is the empty function. When processing a position i in

the input word in some state q, first curr is set to the data value at that position
in the input, then the data word variables are updated according to μX , then
the data words contained in data word variables are substituted according to μP

and finally data variables are updated according to μV .
Formally, if δ(q, a) = (q′, μV , μX , μP), then from (q, βV , βX) at position i

with a letter (a, d) one goes to (q′, β′′
V , β′′′

X) where:

– β′′
V = β′

V · μV , where β′
V = βV [curr �→ d].

– β′
X = βX · μX

β′′
X(x) = β′

X(x)[v ← β′
V (v)]v∈V

β′′′
X (x) = β′′

X(x)
[
p ←

{
μP (x, p) if μP (x, p) ∈ P
β′

V (μP (x, p)) if μP (x, p) ∈ V

]

For each two data word variables x, x′, we say that x at position i flows to
x′ at position i + 1 if x ∈ μX(x′). The notion of flow can be easily extended by
transitivity, the copylessness restriction forbids that the value of some data word
variable at some position i flows more than once to some data word variable at
position j > i. When reaching the end of the input word in a configuration (q, β),

296 A. Durand-Gasselin and P. Habermehl

Fig. 1. The sstvp for the running example

a sstvp produces β(Ω(q)) if Ω(q) is defined. Then, naturally a sstvp S defines a
transduction from words in Σ × Δ to words in Γ × Δ.

The sstvp for our running example is given in Fig. 1. All data word variables
are initialized with the empty word. By convention, a variable which is not
explicitly updated is unchanged. We omit these updates for readability.

Theorem 6. Equivalence of two sstvp is decidable.

To prove this theorem we can generalize the proof of decidability of equiva-
lence of SST [2], a reduction to reachability in a non-deterministic one-counter
machine. Given two transducers we choose non-deterministically an input string,
and one conflicting position in each of the two images (of the transducers): either
they are labeled by different letters, or with attached data value originating from
two distinct positions in the input word. We keep track in the counter of the
difference between the number of produced symbols which will be part of each
output before the corresponding conflicting position. Therefore, if the counter
reaches 0 at the last letter of the input, the two transducers are different.

We call SSTVP the class of all data word transductions definable by a sstvp.

4.2 From Two-Way to One-Way Transducers

Theorem 7. 2DFTV is included in SSTVP.

Proof. (Sketch) We use ideas of [1] (based itself on Shepherdson’s translation
from 2DFA to DFA [10]) where two-way transducers are translated into stream-
ing string transducers. As they translate two-way transducers to copyless stream-
ing string transducers they have to go through an intermediate model called
heap-based transducers. Since we relax the copylessness restriction to 1-bounded-
ness we can directly translate 2dftv to sstvp. Furthermore, we have to take care
of the contents of data variables of the 2dftv. For that purpose we use data
variables and data parameters of the sstvp.

Since an sstvp does only one left-to-right pass on the input word, we can-
not revisit any position. As we process a position we need to store all relevant
information about that position possibly being later reprocessed by the two-way

Regular Transformations of Data Words Through Origin Information 297

transducer. The two-way transducer may process a position multiple times (each
time in a different state) each time with a different valuation of data variables and
producing some different word: for each state, we need to store in an appropriate
data word variable the corresponding production, the valuation of data variables
being abstracted with data parameters. Notice that not all these data word vari-
ables will be used in the output. Given a 2dftv A = (Σ,Γ,Δ,Q, q0, F, V, μ, δ),
over which we assume all accepting runs end on the last symbol, we define an
sstvp B = (Σ,Γ,Δ,Q′,X, V ′, P, q′

0, v0, δ
′, Ω) as follows:

– Q′ = Q × [Q → (Q × 2V)]

A state of the one-way transducer consists of a state of the two-way transducer
and a partial mapping from states to a pair of a state and a set of variables. As
a position i+1 is processed, the state of B contains the following information:
in which state A first reaches position i and for each state q of A what would
be the state of A when it reaches for the first time position i+1 had it started
processing position i from state q: this part is the standard Shepherdson’s
construction. The function is partial, as from position i from some states A
might never reach position i + 1 (getting stuck).
We remark that along the subrun from position i (in state q) to position i+1,
the A might store some data values in some data variables. The set of data
variables denotes the set of data variables the two-way transducer has updated
along that run.

– X = xl ∪ {xq | q ∈ Q}
At position i, variable xl will store the word produced by A until it first
reaches position i. Variable xq will store the word produced from position i
in state q until position i + 1 is first reached.

– V ′ = V ∪ {vq | v ∈ V, q ∈ Q}
At position i + 1, data variable v will contain the value of variable v of A as
it first reaches position i + 1. Assume that B reaches position i in some state
(q, f) with f(q′) = (q′′,W), and v ∈ W . Then variable vq′ will contain the
last value stored in v when A processes from position i in state q′ until it first
reaches position i + 1.

– P = {pv,q | v ∈ V, q ∈ Q}
At position i, parameter pv,q will be present only in data word variable xq,
representing that along the run of A the data value from data variable v at
position i in state q was output before i + 1 was first reached. Such a symbol
needs to be present in xq, but the data value is not yet known, hence it is
abstracted by the data parameter pv,q.

It is then easy to see how to define q′
0 and δ′ so as to preserve these invariants.

As B can not see �, B must maintain the possible output in an extra variable,
where it is supposed that the next symbol would be �.

We now detail an example (see Fig. 2) so as to give an intuition how δ′(q, σ)
is built: we will specifically focus on the value of xq1 . We denote f the second
component of q and we assume that f(q2) = (q3, {v1, v2}), f(q4) = (q5, {v2, v3}).

298 A. Durand-Gasselin and P. Habermehl

Fig. 2. An example to illustrate the transformation from A to B.

Furthermore, we assume that in A, δ(q1, σ) = (q2,−1, (γ, v2)) and δ(q3, σ) =
(q4,−1, (γ′, v2)(γ′′, v3)) and finally that δ(q5, σ) = (q6,+1, (γ′′′, v2)). Also read-
ing σ in q1 and q3 assigns the current data value to v1 (i.e. μ(q1, σ, v1) =
μ(q3, σ, v1) = curr), other data variables are not modified (i.e. μ(q1, σ, vi) =
μ(q3, σ, vi) = vi).

By the aforementioned invariants, from state q1, A will first reach the follow-
ing position in state q6 (from the σ-labeled position in state q1, it first goes left,
reaches it again in state q3, goes left again, arrives in state q5 and then moves
to the right in state q6).

If we abstract the data values, the content of the data word variable xq1

will thus be (γ, ?)xq2(γ
′, ?)(γ′′, ?)xq4(γ

′′′, ?). Now we detail data attached to the
produced letters, and the parameter assignments in the data word variables:

γ will be given the data parameter p2,q1 .
In xq2 : since a data value is assigned to v1 between q1 and q2, p1,q1 should

be substituted by that data value (which is curr) in xq2 . Other parameters in
xq2 (which are all of the form pi,q2) are substituted by the corresponding pi,q1 .

γ′ will be given the data value v2,q2 and (because v3 has not been assigned a
data value since q1) γ′′ will be assigned the data parameter p3,q1 .

In xq4 : as a data value was assigned to v2 between q2 to q3, parameter p2,q4

will be substituted by that value i.e. v2,q2 ; parameter p1,q4 will be substituted
by curr and all other parameters (which are of the form pi,q4) will be assigned
the corresponding data parameters pi,q1 .

γ′′′ should be assigned data value v2,q4 .
Therefore by reading a σ in B, we reach a state whose second component

maps q1 to (q6, {v1, v2, v3}), v1,q1 ← curr, v2,q1 ← v2,q4 , v3,q1 ← v3,q4 .

4.3 From One-Way Transducers to MSO

In order to conclude that the three models of data word transformations are
equivalent, it remains to show that our MSO transductions with MSO origin
information capture all transformations defined by the one-way model.

Theorem 8. SSTVP is included in MSOT+O.

Regular Transformations of Data Words Through Origin Information 299

The proof is very similar to that of encoding finite state automata in MSO.
Usually to show that MSO captures string transformations defined by a one-way
model one defines an output graph with Γ -labeled edges and ε-edges. We directly
give a proof that builds a (string) graph whose nodes are Γ -labeled.

Given an sstvp S we fix the set of copies C as the set of occurrences of
symbols of Γ in the variable update function.

Since S is deterministic, we will write an MSO sentence ϕ that characterizes
a run of a word in S. This formula will be of the form ∃X1, . . . Xnψ, such that
given a word w (in the domain of the transformation), there exists a unique
assignment of the Xi such that ψ holds. These second order variables consist of:

– Xq for q ∈ Q: position i ∈ Xq iff processing position i yielded state q.
– Xr for every word variable r: position i ∈ Xr iff the content of variable r will

flow in the output
– Xr1,r2 for every pair of distinct word variables r1, r2: position i ∈ Xr1,r2 iff

the content of variable r1 will flow in the output before the content of the
variable r2 that will also flow in the output.

Our sequential machine model allows easily to write such a formula ψ. With the
formula ψ, we can write formulas ϕindom, (ϕc

dom)c∈C , (ϕc
γ)c∈C , and (ϕc,d

<)c,d∈C .
We remark that second order variables Xr1,r2 have a unique valid assignment
because of the (semantic) copylessness of sstvp. These variables are typically
used to define ϕc,d

< .
To hint how to build formula ϕc

orig(x, y) we state the following simple lemma
about runs of sstvps.

Lemma 2. Given an sstvp S, an input word w and position x that produces a
symbol γ ∈ Γ that will be part of the output.

– Either γ is produced with a data variable (namely v):
In this case, there exists a unique position y ≤ x where the data value curr
was stored in some data variable and that data variable flows to data variable
v at position x.

– or γ is produced with a data parameter (namely p):
In this case, there exists a unique position z such that the data parameter
attached to γ is some pm at position z and that pm is assigned a variable vm

(or curr) at position z. There exists a unique position y ≤ q such that at
position y the data value curr was put in some data variable, which flows to
a data variable vm at position z.

The notion of “flow” is easily expressed with ψ and second order existential
quantification. The copyless semantics of sstvps ensures that to each (output)
symbols, exactly one data value (or equivalently a unique position from the
input word) is assigned to. This allows to build MSO formulas ϕc

orig that have
the desired functional property.

300 A. Durand-Gasselin and P. Habermehl

5 Conclusion

Finite string transformation have been generalized to infinite string transforma-
tions [5] and tree transformations [3,4]. It would be interesting to extend our
results to these settings by adding data values and defining transformations via
origin information. Furthermore, it would be interesting to study the pre-post
condition checking problem along the lines of [2], i.e. the problem to check that
given a transducer is it the case that each input satisfying a pre-condition defined
via some automata-model is transformed into an output satisfying a similarly
defined post-condition.

References

1. Alur, R., Černý, P.: Expressiveness of streaming string transducers. In: FSTTCS,
vol. 8, pp. 1–12 (2010)

2. Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: POPL, pp. 599–610 (2011)

3. Alur, R., D’Antoni, L.: Streaming tree transducers. In: Czumaj, A., Mehlhorn, K.,
Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 42–53.
Springer, Heidelberg (2012)

4. Alur, R., Durand-Gasselin, A., Trivedi, A.: From monadic second-order definable
string transformations to transducers. In: 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS, pp. 458–467. IEEE Computer Society (2013)

5. Alur, R., Filiot, E., Trivedi, A.: Regular transformations of infinite strings. In:
Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS, pp. 65–74. IEEE Computer Society (2012)

6. Bojańczyk, M.: Transducers with origin information. In: Esparza, J., Fraigniaud, P.,
Husfeldt,T.,Koutsoupias, E. (eds.) ICALP2014,Part II. LNCS, vol. 8573, pp. 26–37.
Springer, Heidelberg (2014)

7. Chytil, M., Jákl, V.: Serial composition of 2-way finite-state transducers and simple
programs on strings. In: Salomaa, A., Steinby, M. (eds.) Automata, Languages and
Programming. LNCS, vol. 52, pp. 135–147. Springer, London (1977)

8. Courcelle, B.: Monadic second-order definable graph transductions: a survey. The-
oret. Comput. Sci. 126(1), 53–75 (1994)

9. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2, 216–254 (2001)

10. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959)

11. Thomas, W.: Ehrenfeucht games, the composition method, and the monadic theory
of ordinal words. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in
Logic and Computer Science. LNCS, vol. 1261, pp. 118–143. Springer, Heidelberg
(1997)

	Regular Transformations of Data Words Through Origin Information
	1 Introduction
	2 MSO Interpretations with MSO Origin Relation
	2.1 Words, Strings and Data Words
	2.2 MSO Interpretations
	2.3 Transduction of Data Words
	2.4 The Running Example
	2.5 Properties
	2.6 MSO k-types

	3 Two-Way Transducers on Data Words
	4 One-Way Transducers
	4.1 Streaming String Transducers with Data Variables and Parameters
	4.2 From Two-Way to One-Way Transducers
	4.3 From One-Way Transducers to MSO

	5 Conclusion
	References

