Synchronizing Automata over Nested Words

Dmitry Chistikov!®™), Pavel Martyugin?, and Mahsa Shirmohammadi®

! Max Planck Institute for Software Systems (MPI-SWS),
Kaiserslautern and Saarbriicken, Germany
dch@mpi-sws.org
2 Institute of Mathematics and Computer Science,
Ural Federal University, Ekaterinburg, Russia
martuginp@gmail.com
3 University of Oxford, Oxford, UK

mahsa.shirmohammadi@cs.ox.ac.uk

Abstract. We extend the concept of a synchronizing word from deter-
ministic finite-state automata (DFA) to nested word automata (NWA):
A well-matched nested word is called synchronizing if it resets the control
state of any configuration, i.e., takes the NWA from all control states to
a single control state.

We show that although the shortest synchronizing word for an NWA
if it exists, can be (at most) exponential in the size of the NWA, the
existence of such a word can still be decided in polynomial time. As our
main contribution, we show that deciding the existence of a short syn-
chronizing word (of at most given length) becomes PSPACE-complete (as
opposed to NP-complete for DFA). The upper bound makes a connec-
tion to pebble games and Strahler numbers, and the lower bound goes via
small-cost synchronizing words for DFA, an intermediate problem that
we also show PSPACE-complete. We also characterize the complexity of
a number of related problems, using the observation that the intersection
nonemptiness problem for NWA is EXP-complete.

1 Introduction

The concept of a synchronizing word for finite-state machines has been studied in
automata theory for more than half a century [22,25]. Given a deterministic finite
automaton (DFA) D over an input alphabet X, a word w is called synchronizing
for D if, no matter which state ¢ € @ the automaton D starts from, the word w
brings it to some specific state § that only depends on w but not on ¢g. Put
differently, a synchronizing word resets the state of an automaton. If the state of
D is initially unknown to an observer, then feeding D with the input w effectively
restarts D, making it possible for the observer to rely on the knowledge of the
current state henceforth.

In this paper we extend the concept of a synchronizing word to so-called
nested words. This is a model that extends usual words by imparting a par-
enthetical structure to them: some letters in a word are declared calls and
returns, which are then matched to each other in a uniquely determined “nesting”

© Springer-Verlag Berlin Heidelberg 2016
B. Jacobs and C. Loding (Eds.): FOSSACS 2016, LNCS 9634, pp. 252-268, 2016.
DOI: 10.1007/978-3-662-49630-5_15

Synchronizing Automata over Nested Words 253

(non-crossing) way. On the language acceptor level, this hybrid structure (linear
sequence of letters with matched pairs) corresponds to a pushdown automaton
where every letter in the input word is coupled with the information on whether
the automaton should push, pop, or not touch the pushdown (the stack). Such
machines were first studied by Mehlhorn [17] under the name of input-driven
pushdown automata in 1980 and have recently received a lot of attention under
the name of visibly pushdown automata. The latter term, as well as the model of
nested words and nested word automata (in NWA the matching relation remains
a separate entity, while in input-driven pushdown automata it is encoded in the
input alphabet), is due to Alur and Madhusudan [1].

The tree-like structure created by matched pairs of letters occurs naturally
in many domains; for instance, nested words mimic traces of programs with
procedures (which have pairs of calls and returns), as well as documents in
eXtensible Markup Language (XML documents, ubiquitous today, have pairs of
opening and closing tags). This makes the nested words model very appealing; at
the same time, nested words and NWA enjoy many nice properties of usual words
and finite-state machines: for example, constructions of automata for operations
over languages, and many decidability properties naturally carry over to nested
words—a fact widely used in software verification (see, e.g., [6] and references
therein). This suggests that the classic concept of a synchronizing word may
have an interesting and meaningful extension in the realm of nested words.

Our Contribution and Discussion. Nested word automata are essentially an
expressive subclass of pushdown automata and, as such, define infinite-state tran-
sition systems (although the number of control states is only finite, the number
of configurations—incorporating the state of the pushdown store—is infinite).
Finding the right definition for a synchronizing nested word becomes for this rea-
son a question of relevance: in the presence of infinitely many configurations not
all of them may even have equal-length paths to a single designated one (this phe-
nomenon also arises, for instance, in weighted automata [5]). In fact, any nested
word w, given as input to an NWA, changes the stack height in a way that
does not depend on the initial control state (and can only depend on the initial
configuration if w has unmatched returns). We thus choose to define synchroniz-
ing words as those that reset the control state of the automaton and leave the
pushdown store (the stack) unchanged (Definition 1; cf. location-synchronization
in [5]). Consider, for instance, an XML processor that does not keep a heap stor-
age and invokes and terminates its internal procedures in lockstep with opening
and closing tags in the input; our definition of a synchronizing word corresponds
to an XML document that resets the local variables.

Building on this definition, we show that shortest synchronizing words for
NWA can be exponential in the size of the automaton (Example2), in contrast
to the case of DFA: every DFA with n states, if it has a synchronizing word, also
has one of length polynomial in n. The best known worst-case upper bound on
the length of the shortest synchronizing word is (n®—n)/6, due to Pin [20]; Cerny
proved in the 1960s [24] a worst-case lower bound of (n — 1)? and conjectured

254 D. Chistikov et al.

that this is also a valid upper bound, but as of now there is a gap between his
quadratic lower bound and the cubic upper bound of Pin (see [25] for a survey).
In the case of nested words, the exponential comes from the repeated doubling
phenomenon, typical for pushdown automata.

Although the length of a synchronizing word can be exponential, it turns
out that the existence of such a word—the shortest of which, in fact, cannot
be longer than exponential—can be decided in polynomial time (Theorem 3),
akin to the DFA case. However, generalizing the definition in standard ways
(synchronizing from a subset instead of all states, or to a subset of states instead
of singletons) raises the complexity to exponential time (Theorem4); for DFA,
the complexity is polynomial space [21,22]. The lower bounds are by reduction
from the intersection nonemptiness problem, which is known to be complete for
polynomial space in the case of DFA [14] and which we observe to be complete
for exponential time over nested words (Lemma 5).

Our main technical contribution is characterizing the complexity of deciding
existence of short synchronizing words, where the bound on the length is given
as part of the input (written in binary). In the DFA case, this problem is NP-
complete as shown by Eppstein [7], and for NWA it becomes PSPA CE-complete
(Theorem 6). We believe that both upper and lower bound techniques that we
use to prove this result are of interest.

Specifically, for the upper bound (Sect.4) we first encode unranked trees
(which represent nested words) with ranked trees. This reduces the search for a
short synchronizing nested word to the search for a tree that satisfies a number
of local properties. These properties, in turn, can be captured as acceptance by a
certain tree automaton of exponential size. We show that guessing an accepting
computation for such a machine—which amounts to guessing an exponentially
large tree—can be done in polynomial space. To do this, we rely on the concept
of (black) pebbling games, developed in the theory of computational complex-
ity for the study of deterministic space-bounded computation (see, e.g., [23,
Chapter 10]). We simulate optimal strategies for trees in such games [15], whose
efficiency is determined by Strahler numbers [11]. Previous use of this technique
in formal language theory and verification is primarily associated with deriva-
tions of context-free grammars, see, e.g., [9,10] and [11] for a survey. In this body
of work, closest to ours are apparently arguments due to Chytil and Monien [3].
We believe that our key procedure—which can decide bounded nonemptiness of
succinct tree automata—may be of use in other domains as well.

Finally, for the matching polynomial-space lower bound (Sect. 5) we construct
a two-step reduction from the problem of existence of carefully synchronizing
words for partial DFA, whose hardness is known [16]. We define an intermediate
problem of small-cost synchronization for DFA, where every letter in the alpha-
bet comes with a cost and the task is to decide existence of a synchronizing word
whose total cost does not exceed the budget. We show that this natural problem
is complete for polynomial space (this strengthens previous results from [5,12],
where costs could be state-dependent). After this, we basically simulate cost-
equipped DFA with NWA, relying on the above-mentioned repeated doubling

Synchronizing Automata over Nested Words 255

phenomenon. We find it noteworthy that this “counting” feature of nested words
alone is a ground for hardness.

We mention without proof that some of our techniques naturally extend to
(going via) tree automata over ranked trees.

2 Nested Words and Nested Word Automata

A nested word of length k over a finite alphabet ¥ is a pair u = (x,v), where
x € % and v is a matching relation of length k: a subset v C {—o0,1,...,k} x
{1,...,k, 400} such that, first, if v(¢,) holds, then ¢ < j; second, for 1 < i <
k the set (i) ef {j | v(i,7) or v(j,i)} contains at most one element; third,
whenever v(i,j) and v(i', '), it cannot be the case that i < i/ < j < j/. We
assume that v(—o00,400) never holds.

If v(i, §), the position ¢ in the word w is said to be a call, and the position j
a return. All positions from {1,...,k} that are neither calls nor returns are
internal. A call (a return) i is matched if v matches it to an element of {1, ..., k},
Le., if p(@) N{1,...,k} # 0, and unmatched otherwise. We shall call a nested
word well-matched if it has no unmatched calls and no unmatched returns.

Define a nested word automaton (an NWA) over the input alphabet ¥ as a
structure A = (Q, T, 4§, qo,Y0), where:

— (@ is a finite non-empty set of control states,
— I' is a finite non-empty set of stack symbols,
—§= (6call, 6int, 6ret)7 where
e §": (Q x ¥ — @ is an internal transition function,
o 5. Q x ¥ — @Q xT is a call transition function,
e 0™ 'x () x ¥ — @ is a return transition function,
— qo € @ is the initial control state, and
— 7o € I is the initial stack symbol.

A configuration of A is a tuple (¢,5) € Q x I'*. We write (¢,s) — (¢, ') for
a nested word w if the following conditions hold. First suppose u = (x,v) has
length 1, then:

— if 1 is an internal position, then 6™ (g, 2) = ¢’ and s’ = s;
— if 1 is a call, then §"(q,z) = (¢,y) and s’ = s7 for some y € T}
— if 1 is a return, then:

e cither §™'(vy,q,z) = ¢’ and s = ',

e or 5 (yp,q,2) =¢ and s =5 =e.

Now take as — the reflexive transitive closure of the union of — over all nested
words u of length 1; these input words on top of the arrow are concatenated
accordingly.

Alternatively, nested words can be seen as words over an extended alphabet.
Let (¥ and X) be disjoint copies of ¥ that contain letters of the form (a and
a), respectively, for each a € ¥. Then any nested word over ¥ is associated with

256 D. Chistikov et al.

a word over the nested alphabet (X U X U X). Conversely, every word w over
this nested alphabet is unambiguously associated with a matching relation v,
of length |w| where positions with elements of (X, ¥, and) are calls, internal
positions, and returns, respectively; the word w can thus be identified with a
nested word (m(w),v,,) where 7 projects letters back to ¥. The automaton A
can then be viewed as an e-free pushdown automaton over the nested alphabet
(¥UXUY) in which the direction of stack operations (i.e., whether the automaton
pushes, pops, or does not touch the stack) is determined by whether the current
position belongs to (X, X, or ¥). Such automata are known under the names
input-driven pushdown automata and wisibly pushdown automata. A path (run,
computation) of an automaton A over an input word u = ay .. .ay, where each
a; € (X UXUY), is a sequence of configurations (p;,s;), ¢ = 0,...,k, with
(pi-1,Si-1) LN (pi, s;) for all i. We will sometimes talk about words accepted
by A, in which case we implicitly assume that A comes equipped with a subset
Qf C Q; accepted are words u for which there exists a path (gg,e) —— (g, s)
with g € QF.

3 Synchronizing Words for NWA

Informally, we call a well-matched nested word u synchronizing for an NWA A
if it takes A from all control states to some single control state. Note that the
result of feeding any well-matched word to an NWA does not depend on the
stack contents; furthermore, if (g1,51) — (¢2,52) and u is well-matched, then
81 = 8o. This lets us extend the definition of — to sets of states: we write
(Q1,5) —= (Q2,s) if, first, the word u is well-matched, second, for all ¢; € Q;
there exists a g2 € Q2 such that (g1,s) — (q2,), and, third, for every state
¢2 € Qo there exists a 1 € Qy such that (¢1,5) — (q2,5). If Q; = {q;}, we
write (g;, s) instead of ({g;}, s).

Definition 1. A well-matched nested word w is synchronizing for an NWA
A = (Q,T,0,q0,7) if there exists a control state § € Q such that the relation
(@,e) = (,¢) holds.

By the observation above, u is synchronizing if and only if there exists a § € @
such that for all ¢ € Q and for all s € T* the relation (g, s) — (g, s) holds.

Remark. Definition 1 crucially relies on the nested structure of the input word,
in that this structure determines the stack behaviour of the NWA. Extending
this definition to the general case of pushdown automata (PDA) would face
the difficulties outlined in the introduction; to the best of our knowledge, no
such extension has been proposed to date. The term “synchronization” in the
context of PDA is known to be used when referring to the agreement between
the transitions taken by the automaton and an external structure [2]: in NWA,
for example, input symbols and stack actions are synchronized (in this sense).

Synchronizing Automata over Nested Words 257

Example 2. Given n > 1, we construct an NWA A, with O(logn) control
states and O(1) stack symbols such that the shortest synchronizing word for A,
has length exactly n.

Our construction is inductive. We first construct a family of incomplete
NWA B,, with stack symbols {x,y} and two designated states ¢« and ¢,. In B,,
the shortest run from ¢4 to gy is driven by some well-matched nested word w of
length n, and along this run the state g, is not visited. These NWA will be incom-
plete in the sense that their transition functions will only be partial; redirecting
all missing transitions to the initial state in would make these NWA complete.
For each n, given B,,, we construct NWA B, 4 and Ba,, 5 where the length of
the shortest run between two new states in and out is exactly 2n+4 and 2n + 5,
respectively. The construction of Bs, 44 is depicted in Fig. 1. Here the shortest
run from in to out is over call(x) - w-ret(x) - call(y) -w-ret(y) and has length 2n+4;
splitting the state ¢, into two states, with internal transitions pointing from one
to the other, gives us Ba,, 5. We call this transformation doubling. For all n > 4
the NWA B, can be constructed by several doubling transformations starting
from one of the automata By, By, Ba, B3 (which are simply NWAs with 1,2,3,4
states). The size of B, is O(logn).

For all n > 2, from the NWA B,,_5 we construct an NWA A,, where the
shortest synchronizing word has length exactly n. Figure2 shows the sketch
of the construction: there are two new letters # and £ and a new absorbing
state sync. From all states g of B,,_o, the letter # resets the NWA to in whereas

£-transitions are all self-loops except in the state out where out £, sync. All
missing transitions are directed to the state in (note that even in the case of DFA,
existence of synchronizing words in the presence of partial transition functions
is PSPACE-complete [16]; it is thus of utmost importance that our NWA are
complete). Observe that the shortest synchronizing word has length exactly n;
it is # - w - £ where w is the shortest word that takes B,,_5 from in to out.

Remark. Our Example 2 seems to use a “non-uniform” set of call, return, and
internal symbols, but this is easily remedied by making some of the symbols
indistinguishable. All call positions in the word are simply call, and all return
positions are ret; in figures, the letter in parentheses is the pushed or popped
stack symbol.

call() PR w
C call(y #,ﬁ%”"z

w = e w 3 ” 3
) e
ret(y) RN N et el |

Fig. 1. Doubling transformation Fig. 2. NWA A,, based on B,_2

258 D. Chistikov et al.

In decision problems that we study in this paper, the size of an automaton is
proportional to |T'| - |X]| - | Q).

Theorem 3. If an NWA A has a synchronizing word, then it has one of length
at most exponential in the size of A. Moreover, the existence of a synchronizing
word can be decided in time polynomial in the size of A.

This theorem extends a characterization of synchronizing automata from DFA:
an NWA A has a synchronizing word if and only if for every pair of states p, g
there exists a well-matched word u that synchronizes this pair, i.e., ({p, ¢}, ¢) =
(g,) for some q.

Theorem 4. The following decision problems, with an NWA A part of the
iput, are EXP-complete:

(1) Given a subset I C @, decide if there exists a well-matched nested word u
such that (I,€) =% (q,€) for some state G € Q.

(2) Given a subset F' C Q, decide if there exists a well-matched nested word u
such that (Q,e) — (F',¢) for some subset ' C F.

(8) Given subsets I C Q and F C Q, decide if there exists a well-matched nested
word u such that (I,&) == (F',¢) for some subset F' C F.

The corresponding decision problems for DFA are PSPACE-complete [21,22],
where hardness is by a reduction from the DFA intersection nonemptiness prob-
lem (see [26] for a more refined complexity analysis). In the NWA case, the
proofs are an easy adaptation of these arguments and are based on the following
observation, which can be proved by a translation from tree automata or by a
direct extension of Kozen’s proof [14]:

Lemma 5. The following problem is EXP-complete: Given NWA A4, ..., An,
decide if there exists a well-matched word accepted by all A;.

The following theorem is our main result.

Theorem 6. The following problem SHORT SYNCHRONIZING NESTED WORD s
PSPACE-complete: Given an NWA A and an integer £ > 1 written in binary,
decide if A has a synchronizing word u of length at most £.

The corresponding decision problem for DFA is NP-complete [7]. (Note that
deciding if the shortest synchronizing word has length exactly ¢, a related but
different problem, is DP-complete [18].) Since any DFA with a synchronizing
word has one of length cubic in its size, it does not matter for DFA if ¢ is
written in binary or in unary. In contrast, as our Example 2 shows, NWA may
need an exponentially long word for synchronization; this explains the choice of
the setting above. (In the alternative version, i.e., if ¢ is written in unary, the
problem is NP-complete: the upper bound is a guess-and-check argument, and
hardness already holds for DFA.)

Synchronizing Automata over Nested Words 259

4 Upper Bound of Theorem 6

In this section, we show that the following problem is in PSPACE: Given a
nested word automaton A and an integer ¢ > 1 written in binary, decide if there
exists a synchronizing word for A of length at most £. In fact, we can also adjust
our arguments (see Subsect. 4.2) so that they give a PSPACE upper bound for
another problem: Given a nested word automaton A, two subsets of its control
states I, F' C @), and an integer £ > 1 written in binary, decide if there exists a
well-matched word of length at most ¢ that takes all states in I to F.

The plan of the proof is as follows. We encode nested words using binary
trees (Subsect.4.1), so that runs of NWA correspond to computations of tree
automata and synchronizing words to tuples of such computations (Subsect. 4.2).
Thus the task of guessing a short synchronizing word is reduced to the task of
guessing an accepting computation of a tree automaton on an unknown binary
tree of potentially exponential size (Lemma 8); this is the same as guessing an
exponentially large binary tree subject to local conditions. We prove that it’s
possible to solve this bounded nonemptiness problem in polynomial space, even if
the tree automaton in question has exponentially many states and is only given
in symbolic form (Subsect.4.4); our solution relies on the concepts of pebble
games and Strahler numbers (Subsect. 4.3).

4.1 Binary Tree Representation of Nested Words

In this subsection we describe a representation of nested words with binary trees
used in the sequel. Because of space constraints, we only give a short summary.

Nested Words as Binary Trees. We denote the binary tree representation
of a nested word u by bin(u). The explicit construction of bin(u) is not sophisti-
cated, but we only describe the result. Nodes of bin(u) come in several different
types. We did not attempt to minimize the number of these types; different
representations are, of course, also possible.

Type Degree | Notes

call-return binary | 2 Associated with matched pair (x;,x;)

auxiliary binary |2 Corresponds to positions 7 < j

call-return unary |1 Associated with matched pair (x;,x;)
call-return leaf |0 Associated with matched pair (x;, x;), j =i+ 1
internal leaf 0 Associated with internal letter z;

We denote the set of types by Types; each type comes with a fixed degree, which
is simply the number of children of a node. Note that auxiliary binary nodes are
not associated with any letters in the nested word, although they do correspond
to pairs of positions in it.

260 D. Chistikov et al.

In general, execute the left-to-right depth-first traversal on the tree bin(u)
and spell the letters associated with the nodes in the natural way. Specifically,
at any call-return node v associated with i < j, spell “(x;” when entering and
“x;)” when leaving the subtree rooted at v; at any internal leaf associated with
i, spell “z;”. The traversal of the entire tree bin(u) spells the word u, and every
subtree spells some well-matched factor.

Claim 1. For any nested word u of length £ its binary tree representation bin(u)
has at most 20 — 1 nodes. Moreover, if bin(u) = bin(u'), then u =u'.

Trees as Terms over a Ranked Alphabet. We now switch the perspective
a little and look at binary tree representations as terms. Indeed, pick the ranked
alphabet

F C Types x ({(¥ x Z)yUXU{e}) (1)

as follows. All elements of F have rank 0, 1, or 2, according to their first (that
is, Types-) component; the rank is simply the admissible number of children
(i.e., the degree). The second component stores the associated letter or pair of
letters, if any; the value € corresponds to the undefined association mapping.
Since the Types-component already determines whether the second component
should carry a pair of call and return letters, a single letter, or €, we only take
valid combinations into F.

As this term representation is essentially the same as the binary representa-
tion defined above, we shall denote it by the same symbol bin(u); that is, bin(u)
is a term over F for any non-empty well-matched word w. In what follows, we
will mostly refer to bin(u) as a tree but treat it as a term.

4.2 From Nested Word Automata to Tree Automata

From Runs of NWA to Runs of Tree Automata. Recall the definition
of a nondeterministic tree automaton over a ranked alphabet F (see, e.g., [4]):
such an automaton is a tuple 7 = (Q, QF, A) where Q is a finite set of states,
Of C Q is a set of final states, and A is a set of transition rules. These rules
have the form f(q1,...,q,) — ¢ where ¢,q1,...,q- € @ and r > 0 is the rank of
the symbol f € F; nondeterminism of 7 means that A can contain several rules
with identical left-hand sides.

The semantics of tree automata is defined in the following manner. For any
tree t over the ranked alphabet F, we assign to any node v of ¢ a state ¢ € Q
inductively, phrasing it as “the subtree ¢, rooted at v evaluates to the state ¢”
(as the automaton is nondeterministic, the same subtree may evaluate to sev-
eral different states). The inductive assertion is that if f is the label of v, the
subtree t, evaluates to ¢, and its principal subtrees evaluate to ¢1,...,q,, then
the transition f(qi,...,q.) — g appears in A. The entire tree t is accepted if the
root of t evaluates to some final state § € OF.

Synchronizing Automata over Nested Words 261

Lemma 7. For any NWA A with states Q and for all pairs p,q € Q, there
exists a tree automaton T (P, q) over the ranked alphabet F as in (1) that has the
following property: T (p,q) accepts a tree bin(u) if and only if the NWA A has
a Tun on u that starts in state p and ends in state g. Moreover, T (p,q) can be
constructed from A in time polynomial in the size of A.

Synchronizing Words and Implicitly Presented Tree Automata. We
can now return to the synchronizing word problem. Suppose A is an NWA with
states @; now a well-matched nested word w is a synchronizing word for A if and
only if there is a state ¢ € @ such that for all ¢ the tree bin(u) is accepted by the
automaton 7 (g;, q); here we assume Q = {q1,...,¢n}. The following statement
rephrases this condition in terms of products of tree automata (the definition is
standard; see, e.g., [4, Sect. 1.3]).

Lemma 8. An NWA A with states Q = {q1,...,qn} has a synchronizing word
of length at most £ iff there exists a state § € QQ such that the product automaton
A = T(q1,q) X ... X T(qn,q) x Ny accepts some tree over F. Here Ny is a
tree automaton that only depends on £ and X and accepts the set of trees of the
form bin(u) where the nested word u has length at most £.

Note that the set of states of 2z, which we denote by £, is, in general, exponen-
tial in the size of A. Note, however, that (i) each state has a representation—
as a tuple of n states of 7T(g;,q) and a state of Ay—polynomial in the size
of A and ¢ and, moreover, that (i) the following problems can be decided in
PSPACE (and, in fact, in P, although we do not need to rely on this):

(a) given a state q € Q, decide if q is a final state of z;
(b) given a symbol f € F of rank r and states q,q1,...,q, € Q, decide if
f(41,-..,9,) — g is a transition in .

We emphasize that the complexity bounds in these properties are given with
respect to the size of A and ¢, i.e., assuming that A and ¢ (and not 23!) are
given as input. We will use these properties (i) and (4) in Subsect.4.4; for
brevity, we shall simply say that 2 is implicitly presented in polynomial space.

Claim 2. The automaton 215 from Lemma§ is implicitly presented in polyno-
mial space and does not accept any tree with more than 2¢ — 1 nodes.

The second part of the claim follows from Claim 1 in Subsect. 4.1.

4.3 Pebble Games and Strahler Numbers

In this subsection we recall a classic idea that we use in the proof of Lemma9 in
the following Subsect. 4.4. We believe that the involved concepts, albeit classic,
deserve more attention from our community than they have hitherto received.
An instance of the (black) pebble game (see, e.g., 23, Chapter 10]) is defined
on a directed acyclic graph, G. The game is one-player; the player sees the graph

262 D. Chistikov et al.

G and has access to a supply of pebbles. The game starts with no pebbles on
(vertices of) the graph. A strategy in the game is a sequence of moves of the
following kinds:

(a) if all immediate predecessors of a vertex v have pebbles on them, put a
pebble on (or move a pebble to) v;
(b) remove a pebble from a vertex v.

Note that for any source v of G, the pre-condition for the move of the first kind
is always satisfied. The strategy is successful if during its execution every sink
of GG carries a pebble at least once; the strategy is said to use k pebbles if the
largest number of pebbles on G during its execution is k. The (black) pebbling
number of G, denoted peb(G), is the smallest k for which there exists a successful
strategy for G using k pebbles.

The black pebbling number captures space complexity of deterministic com-
putations [13,19]. Intuitively, think of G as a circuit, where sources are circuit
inputs and sinks are circuit outputs; nodes with nonzero fan-in are gates that
compute functions of their immediate predecessors. A strategy corresponds to
computing the value of the circuit using auxiliary memory: pebbling a vertex
(i.e., putting a pebble on it) corresponds to computing the value of the gate
and storing it in memory; removing a pebble from the vertex corresponds to
removing it from the memory. The pebbling number is thus (an abstraction of)
the minimal amount of memory required to compute the value of the circuit.

Consider the case where the graph is a tree, G = t, with all edges directed
towards the root; this corresponds to formulas, say arithmetic expressions [§].
For trees, the pebbling number can be computed inductively [15]: if ¢ is a single-
vertex tree, then peb(G) = 1; suppose t has principal subtrees tq,...,¢; and
peb(t1) > peb(ta) > ... > peb(ty), then peb(t) = max(peb(t;) +i — 1) over
1 <4 < d. For binary trees (where all vertices have fan-in at most two, d < 2)
the pebbling number (under different names) has been studied independently
and rediscovered multiple times (although, to the best of our knowledge, no
connection with the literature on pebbling games has ever been pointed out),
see [8,11]. The value peb(t) —1 is usually called the Strahler number of the tree t
and is also known, e.g., as the Horton-Strahler number and as tree dimension;
this is the largest h such that ¢ has a complete binary tree of height i as a minor.

In the sequel, we choose to talk about Strahler numbers but use the connec-
tion to pebble games. The key observation, following from the last characteriza-
tion or from the recurrence above, is that the Strahler number of an m-node tree
does not exceed |logy(m + 1)] — 1 (this bound is tight). This value corresponds
to the pebbling strategy that, before pebbling any vertex v of indegree 2, first
(4) recurses into the subtree with the larger Strahler number; (4) places (induc-
tively) a pebble on its root and removes all other pebbles from this subtree;
and then (#4) recurses into the other subtree. We will use this strategy in the
following subsection.

Synchronizing Automata over Nested Words 263

4.4 Bounded Nonemptiness for Implicitly Presented Tree Automata

Here we combine the ideas from Subsects. 4.2 and 4.3 to prove the upper bound
in Theorem 6.

Lemma 9. For a tree automaton implicitly presented in polynomial space and
a number m written in binary, one can decide in PSPACE if the automaton
accepts some tree with at most m nodes.

It is crucial that m constitute part of the input, because for ezplicitly presented
tree automata the (non-)emptiness problem is P-complete, and an implicitly
presented automaton can be exponentially big (this would give us an EXP upper
bound, which is tight by Lemmab if no m is given). The upper bound on the
size of the tree significantly shrinks the search space, so we refer to this problem
as bounded nonemptiness. Assuming this lemma, the proof of the upper bound
of Theorem 6 goes as follows.

Proof (upper bound of Theorem6). Combine Lemmas8 and 9 with the fact
that the automaton 25 from the former is implicitly presented in polynomial
space. Indeed, suppose an NWA A with states @) and an integer £ are given. By
Lemma8, a synchronizing word for A of length at most ¢ exists if and only if
there exists a state ¢ €) such that the tree automaton 2(; accepts some tree
over the ranked alphabet JF; recall that this is the alphabet defined by (1) in
Subsect. 4.1. First note that the state ¢ can be guessed in polynomial space. Then
recall from Claim 2 in Subsect. 4.2 that 25 only accepts trees with at most 20 —1
nodes; thus deciding its emptiness reduces to deciding its bounded emptiness.
Again by Claim 2, 7 is implicitly presented in polynomial space, and thus we
can apply Lemma9 with m = 2¢ — 1. This concludes the proof. O

To prove Lemma 9, we design a decision procedure using the pebbling strategy
for trees that we discussed in Subsect. 4.3.

Proof (of Lemma9). Denote the tree automaton implicitly presented in polyno-
mial space by 2z, as above. We describe a procedure that guesses (with checks
done on the fly) an accepting computation of ;. Since the number m is given
in binary, we cannot afford to write down the entire accepted tree, as it could
take up exponential space.

However, suppose that such a tree t exists and has m’ < m nodes; we assume
without loss of generality that m = m'. Consider some pebbling strategy for ¢,
as defined in Subsect. 4.3. Our procedure will guess moves of this strategy on the
fly and simulate them; it will also guess the tree ¢ in lockstep. More precisely,
we maintain the following invariant. Take any time step and any vertex v and
denote by ¢, the subtree of ¢ rooted at v. If the pebbling strategy prescribes that
v should have a pebble, then our procedure keeps in memory a pair (q, k) where
g € 9 is a state of U5 that ¢, evaluates to, and k is the total number of nodes
in t,,. Note that any such pair (q, k) takes up space polynomial in the size of the
input: states of 25 have such representations by the assumptions of the lemma,
and k never needs to grow higher than m.

264 D. Chistikov et al.

We now describe how the moves of the strategy are simulated by our pro-
cedure. Suppose the strategy prescribes placing a pebble on a vertex v; by the
rules of the pebble game, this means that all immediate predecessors v1,...,vq
(if any) currently have pebbles on them. By our invariant, we already keep in
memory corresponding pairs (q1,%1),...,(q4,kq¢). Our procedure now guesses
the node v, i.e., its label f € F in ¢t. Then the procedure guesses a new state,
q € 9, verifies in polynomial space that f(qi,...,qq) — ¢ is a transition in 2z,
and that k = k1 +...+ kg + 1 does not exceed m. If any check is failed, the pro-
cedure declares the current nondeterministic branch rejecting; if all the checks
are passed, the procedure stores the pair (q, k). Naturally, whenever a strategy
prescribes removing a pebble from a vertex, the procedure simply erases the
corresponding pebble from the memory (in fact, since ¢ is a tree, we can assume
that every pair (g, k) is removed immediately after its use). At some point, the
procedure guesses that the strategy can terminate; this means that the root of
the tree ¢ carries a pebble. The procedure picks some pair (q, k) from the mem-
ory and verifies in polynomial space that the state q is indeed final in 2(;. This
signifies acceptance of t,.

It remains to argue that the procedure only uses polynomial space. The tree ¢
has m nodes, so, by the upper bound on Strahler numbers, the optimal strategy
needs peb(t) < |logy(m + 1)| pebbles, which is polynomial in the size of the
input. If some guessed step requires more, the strategy cannot be optimal, and
the procedure declares the branch rejecting. This completes the proof. O

The idea of the proof of Lemma9 can be distilled in a different form: We can
show that the bounded emptiness problem (are all trees up to a certain size
rejected?) is in PSPACE for succinct tree automata. These are tree automata
where the set of states, £, can be exponentially large, but does not need to be
written out explicitly, and the set of transitions and the set of final states are
represented with Boolean circuits (or, alternatively, with logical formulas over
an appropriate theory). The proof follows that of Lemma9.

5 Lower Bound of Theorem 6

The matching lower bound for the SHORT SYNCHRONIZING NESTED WORD
problem is established by a reduction from the small-cost synchronizing word
problem, which we introduce and prove PSPACE-complete below.

5.1 Small-Cost Synchronizing Words in DFA

For a deterministic finite automaton (DFA) D = (Q,A) over X, consider a
function cost : ¥ — Zs(that assigns positive costs to letters a € 3. This
function is naturally extended to finite words: cost(w - a) = cost(w) + cost(a)
where w € X*. The small-cost synchronizing word problem asks, given a DFA
equipped with a cost function and a budget € Z~(written in binary, whether
the DFA has a synchronizing word w with cost(w) < budget.

Synchronizing Automata over Nested Words 265

Table 1. Summary of the transition function ¢ of the NWA A with I' = {x,y, £,®}
constructed from the DFA D = (Q, A) over . The table specifies the endpoint of all
transitions: e.g., when A is at ¢ € @ and reads call, it pushes x and stays at q.

State) # call(y) ret(T")

] Y=X .y
€@ tg.a Pq sel-loop self-loop
force self-loop Pa y=X self-loop

for some ¢g| self-loop

For all g € Q and a € X:

tg.a self-loop Pq in o;/p:ay’(gq‘ a) self-loop
Pq self-loop Pq 1=9 self-loop

in of punish(q)
See gadget pay in Figure 4 (left) where:

e missing transitions go to state err of the same pay(q, a)
e from out, the transition ret(£) goes to A(g, a)

e from err, the transition ret(£) goes to pq

See gadget punish in Figure 4 (right) where:

e missing transitions go to state in of the same punish(q)
e from out, the transition ret(®) goes to ¢

s € pay(q, a) |self-loop Pq

s € punish(q)|self-loop Pq

Theorem 10. The small-cost synchronizing word problem is PSPACE-
complete.

The upper bound is guess-and-check: any synchronizing word w with cost(w) <
budget has |w| < budget, since cost(a) > 1 for all @ € ¥. The lower bound is by
a reduction from the careful synchronization problem. Carefully synchronizing
words [16] are a generalization of synchronizing words to finite-state automata
with a partial transition function. Theorem 10 strengthens PSPACE-hardness
results for similar models [5,12]: the key difference is that in our setting the cost
function can only depend on input letters and not on individual transitions.

5.2 Reduction to Short Synchronizing Nested Word

We prove the PSPACE-hardness of SHORT SYNCHRONIZING NESTED WORD by
a reduction from the small-cost synchronizing word problem: given a DFA D =
(Q,A) over X, cost: ¥ — Z~g, and budget € Z~¢, we find an NWA A and a
length ¢ such that D has a synchronizing word w with cost(w) < budget if and
only if A has a synchronizing nested word of length at most £.

The intuition behind the reduction is as follows. We encode the cost of each
letter a in D with the length of a particular well-matched nested word a-w, in A;
as a result, runs in D will be, in a sense, simulated by runs in A. The nested
word a - w, is associated with a special gadget that we insert as a part of A;
we denote this gadget pay(g,a) (there is a separate copy for each ¢ € Q). The
intention is that the length of a nested word read by A corresponds to the cost
of some word read by D. Obviously, there will be runs of A that have structure
deviating from the form a; - wq, - ai - Wy, ; we call such deviations cheating.
We will ensure that, along runs of interest, cheating is impossible: deviating
transitions will lead to another set of gadgets, denoted punish(q), ¢ € Q. When

266 D. Chistikov et al.

ret(£)

(1) @w‘::t” pumsh(2) @call ®).

ret(®

r
.call

NWA A

Fig. 3. An example of the reduction to the SHORT SYNCHRONIZING NESTED WORD.
For g € {1, 2}, all #-transitions from ¢ and from all states of gadgets pay(q, a), pay(q, b),
and punish(q) lead to pq. All a,b-transitions in all states are self-loops, except in
states 1,2. The NWA A has a synchronizing nested word of length 4-budget+|wpunish |41
if and only if D has a synchronizing word with cost at most budget.

a run of A is punished, it is forced to read a very long nested word wpynish, which
results in exceeding the length ¢. On the technical level, this “forcing” means
that all shorter continuations make no progress to the synchronization objective.

We now show how to construct the NWA A following this intuition; a
small example is shown in Fig.3. The set of states in A is @ U {force} U
Uyeq.aex(Pay(q, @) U{ty o })UU,cq(punish(q) U{p,}) where Q denotes, as above,
the set of states of the DFA D, and we abuse the notation by letting pay(g, a)
and punish(q) refer to the sets of states of the corresponding gadgets. The set of
stack symbols of AisT' = {x,y, £, @}; the input letters are YU{#} where # ¢ &
(as in Remark on page 6, all call and return positions are assumed to have “fake”
input letters call and ret). Table 1 describes transitions of A.

It remains to define the gadgets pay(q, a) and punish(gq). Recall that they need
to let through runs on nested words w, and wpunish; deviations are considered

ret(£) . - L ret(®) .
NWA By | NWA B,

7777777777777777 pay(q, a) L-o=2- - - SYYABm punish(q)

Fig. 4. Gadgets pay(q,a) (on the left) and punish (on the right) where By, B,, are
described in Example 2 with k£ = 4 - cost(a) — 3 and m = |wpunish| — 2

Synchronizing Automata over Nested Words 267

cheating and are handled appropriately. We base the construction of pay(q,a)
and punish(q) on the family of NWA B,, from Example 2; see Fig. 4. Each gadget
has two designated local states in and out, and the shortest run from in to out is
over the nested word that we denote by v, (where w, = call - v, - ret) in pay(q, a)
and by vpunish (Where wpunish = call-Upunish-ret) in punish(g). We pick the parameter
k = |vg| in By, in such a way that |a-w,| = |a-call-v, - ret| = 4- cost(a); note that
k =4 cost(a) — 3 > 1, since cost(a) > 1. Our choice for m in B,, will be given
below. Now recall that the NWA B, in Example2 had only partially defined
transition functions; we make them complete by directing all missing transitions
(shown as “errors” in Fig. 4) to in in punish and to new local states err in pay. Note
that this includes missing transitions on call (they all push x to the stack) and
missing transitions on ret (at every control state, there is a popping transition for
each v € T'). In contrast, on input # all transitions from pay(g,a) and punish(q)
go to the state p,.

In fact, every synchronizing word is forced to have at least one occurrence
of #, otherwise the run starting from yet another state force cannot be syn-
chronized with other runs. Therefore, every synchronizing word needs to have
at least one occurrence of wWpynish, and this determines our choice of ¢ and
|Wpunish|- It is natural to pick £ = 1 + |wpunisn| + 4 - budget; since we want to
have ¢ < 2 - |Wpunish|, We need to make sure that |wpynisn| > 4 - budget + 1. We
thus choose m 4+ 2 = |wpynish| = 4 - budget 4+ 2 and ¢ = 8 - budget + 3.

This completes the description of our reduction; we omit the proof of cor-
rectness because of space constraints. This reduction provides the lower bound
in Theorem 6.

Acknowledgements. The authors are grateful to Michael Wehar for comments.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 16
(2009)

2. Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z.
(eds.) DLT 2006. LNCS, vol. 4036, pp. 120-132. Springer, Heidelberg (2006)

3. Chytil, M.P., Monien, B.: Caterpillars and context-free languages. In: Choffrut, C.,
Lengauer, T. (eds.) STACS 90. LNCS, vol. 415, pp. 70-81. Springer, Heidelberg
(1990)

4. Comon, H., Dauchet, M., Gilleron, R., Loding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications, 12 October
2007. http://www.grappa.univ-lille3.fr /tata

5. Doyen, L., Juhl, L., Larsen, K.G., Markey, N., Shirmohammadi, M.: Synchronizing
words for weighted and timed automata. In: 34th International Conference on
Foundation of Software Technology and Theoretical Computer Science, FSTTCS,
15-17 December 2014, New Delhi, India, pp. 121-132 (2014)

6. Driscoll, E., Thakur, A., Reps, T.: OpenNWA: a nested-word automaton library.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 665-671.
Springer, Heidelberg (2012)

http://www.grappa.univ-lille3.fr/tata

268

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

D. Chistikov et al.

Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500-510 (1990)

Ershov, A.P.: On programming of arithmetic operations. Commun. ACM 1(8), 3-9
(1958)

Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: a simple
and direct automaton construction. Inf. Process. Lett. 111(12), 614-619 (2011)
Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous
shared-memory systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 124-140. Springer, Heidelberg (2013)

Esparza, J., Luttenberger, M., Schlund, M.: A brief history of Strahler numbers.
In: Dediu, A.-H., Martin-Vide, C., Sierra-Rodriguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 1-13. Springer, Heidelberg (2014)

Fominykh, F.M., Martyugin, P.V., Volkov, M.V.: P(l)aying for synchronization.
Int. J. Found. Comput. Sci. 24(6), 765780 (2013)

Hopcroft, J.E., Paul, W.J., Valiant, L.G.: On time versus space. J. ACM 24(2),
332-337 (1977)

Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October—
1 November, pp. 254-266 (1977)

Lengauer, T., Tarjan, R.E.: The space complexity of pebble games on trees. Inf.
Process. Lett. 10(4/5), 184-188 (1980)

Martyugin, P.: Computational complexity of certain problems related to carefully
synchronizing words for partial automata and directing words for nondeterministic
automata. Theor. Comput. Syst. 54(2), 293-304 (2014)

Mehlhorn, K.: Pebbling moutain ranges and its application of DCFL-recognition.
In: Proceedings Automata, Languages and Programming, 7th Colloquium,
Noordweijkerhout, The Netherland, July 14-18, pp. 422-435 (1980)

Olschewski, J., Ummels, M.: The complexity of finding reset words in finite
automata. In: Hlinény, P., Kucera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
568-579. Springer, Heidelberg (2010)

Paterson, M.S., Hewitt, C.E.: Comparative schematology. In: Record of the Project
MAC Conference on Concurrent Systems and Parallel Computation, pp. 119-127.
ACM, MIT AI Memo AIM-201 (1970). http://hdl.handle.net/1721.1/5851

Pin, J-E.: On two combinatorial problems arising from automata theory.
North-Holland Math. Stud. 75, 535-548 (1983)

Rystsov, I.LK.: Polynomial complete problems in automata theory. Inf. Process.
Lett. 16(3), 147-151 (1983)

Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5-33. Springer, Heidelberg (2005)

Savage, J.E.: Models of Computation - Exploring the Power of Computing.
Addison-Wesley, Boston (1998)

Cerny, J., Pirickd, A., Rosenauerové, B.: On directable automata. Kybernetika
7(4), 289-298 (1971)

Volkov, M.V.: Synchronizing automata and the Cerny conjecture. In: Martin-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11-27. Springer,
Heidelberg (2008)

Wehar, M.: Hardness results for intersection non-emptiness. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS,
vol. 8573, pp. 354-362. Springer, Heidelberg (2014)

http://hdl.handle.net/1721.1/5851

	Synchronizing Automata over Nested Words
	1 Introduction
	2 Nested Words and Nested Word Automata
	3 Synchronizing Words for NWA
	4 Upper Bound of Theorem6
	4.1 Binary Tree Representation of Nested Words
	4.2 From Nested Word Automata to Tree Automata
	4.3 Pebble Games and Strahler Numbers
	4.4 Bounded Nonemptiness for Implicitly Presented Tree Automata

	5 Lower Bound of Theorem6
	5.1 Small-Cost Synchronizing Words in DFA
	5.2 Reduction to Short Synchronizing Nested Word

	References

