
Type Error Diagnosis for Embedded DSLs
by Two-Stage Specialized Type Rules

Alejandro Serrano(B) and Jurriaan Hage

Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

{A.SerranoMena,J.Hage}@uu.nl

Abstract. In the functional programming world, it is common to embed
a domain specific language (DSL) in a general purpose language. Unfor-
tunately, the extra abstraction layer provided by the DSL is lost when a
type error occurs, and internals leak to users of the DSL.

This paper presents specialized type rules, a way to influence which
part of the program is blamed and how the particular error message
is worded. These type rules match part of the programming language
abstract syntax tree (AST) and guide the type checker in order to pro-
vide custom diagnostics. Our goal is to enable DSL writers to keep their
high-level abstractions throughout the whole development experience.
Specialized type rules have already been considered in the literature: we
enhance them by providing a mechanism to allow type rules to depend
on partial type information.

The technique presented in this paper can be readily applied to any
type engine which uses constraints to perform its duty. We refine the
workings of the type engine by including a second gathering pass in case
an error is found. In that second pass, partial type information can be
used to select a type rule. In particular, we have implemented our tech-
niques in a type engine based on the OutsideIn(X) framework, which
underlies the Haskell GHC compiler since version 7.

1 Introduction

Domain specific languages (DSLs) are a widely used technique, whose advan-
tages are well-known: they solve a particular problem in an effective way with a
language that is close to the domain of the experts, and are thus more likely to
be used by experts, even those without prior programming experience. Examples
abound, ranging from SQL for database processing to describing drawings [28]
and even music harmony analysis [15].

Creating a standalone DSL involves developing a lot of tooling, including a
parser, a code generator and static analyzers for the desired domain. Frame-
works have been designed to help developers in this task [25]. This approach is

This work was supported by the Netherlands Organisation for Scientific Research
(NWO) project on “DOMain Specific Type Error Diagnosis (DOMSTED)”
(612.001.213).

c© Springer-Verlag Berlin Heidelberg 2016
P. Thiemann (Ed.): ESOP 2016, LNCS 9632, pp. 672–698, 2016.
DOI: 10.1007/978-3-662-49498-1 26

Type Error Diagnosis for Embedded DSLs 673

called external. Other authors [14] advocate instead embedding DSLs in a general
purpose language, in order to reuse part of the machinery which is already imple-
mented, and to allow an easy combination of DSLs. This embedded approach is
common in the functional programming world.

Taha [24] describes four characteristics of a good DSL: (1) the domain is
well-defined, (2) the notation is clear, (3) the informal meaning is clear, and
(4) the formal meaning is clear and implemented. This overlooks one important
feature of a good DSL: its implementation should communicate with the user
using terms from the specific domain. Otherwise, the encoding into the host
language leaks in warnings and type error messages.

Unfortunately, the converse situation is the rule when working with embed-
ded DSLs: error messages are phrased in terms of the underlying general purpose
language. The nice abstraction provided by the DSL is broken and the internals
of the library are exposed to users of the DSL. As a concrete example, consider
a DSL for extensible records in Haskell, similar to Vinyl.1 This sort of libraries
mandates fields to be declared beforehand, as follows.

name = Field :: Field "name" String
age = Field :: Field "age" Integer

Each of the fields has the same representation in memory, but are given different
types in the type annotation found after the :: symbol.

Afterwards, it becomes possible to build records with any desired combina-
tion of fields. To do so, we use RNil to represent a record without any field,
which we populate by adding new fields and their data using RCons, as in:

john = RCons name "John" (RCons age 30 RNil)
emily = RCons name "Emily" RNil

The key point of this library is the definition of a strongly-typed get function,
which given a field and a record, returns the value associated with such field. By
strongly-typed we mean that it should reject code such as get age emily, where
a field is requested from a record which does not contain it. This is achieved in
the aforementioned library, by leveraging Haskell’s type system.

get :: Elem (Field f t) fs ∼ True ⇒ Field f t → Record fs → t

You can read this signature as ensuring that given a field named f with a type
t and a record whose list of fields is fs, the field is an element of the list fs.2

This works perfectly for type-correct programs. However, the type error message
produced by GHC 7.8 for get age emily is far from perfect:

Couldn’t match type ’False with ’True

1 https://hackage.haskell.org/package/vinyl.
2 Elem is a so called “type family”, a restricted version of a type-level function, and

the relation ∼ means “equality on types”. In Haskell, Booleans are available at the
type level via a technique called data type promotion.

https://hackage.haskell.org/package/vinyl

674 A. Serrano and J. Hage

Expected type: ’True
Actual type: Elem (Field "age" Integer) ’[Field "name" String]

In the expression: get age emily

In order to understand such a message, the user of the DSL needs to know about
the internals of the library. Even more problematic, the library uses advanced
type-level concepts from Haskell which the user may not know about. The direct
consequence is frustration with either the language, the library, or both. In con-
trast, a good error message would take into account the domain knowledge and
be phrased similarly to:

Cannot find field "age" in the record ’emily’

A first advantage of this message is that internals of the library are hidden
from the user. The user of the DSL also profits from better guidance to fix the
problem.

In order to get domain specific error messages, DSL writers need to be able
to hook into the compiler and massage the messages before they are shown to
the user. Several approaches are described in the literature, such as the post-
processing of messages [2] and inspection of the type engine trace [20]. In our
work, we build upon the concept of specialized type rules [11]. In short, a special-
ized type rule is the description of how to type a concrete piece of syntax, thereby
overriding the default behaviour of the type engine for such an expression.

A specialized type rule which improves the message for get age emily is:

(1) rule field not present
(2) case get ·#field ·#record

(3) when#record ∼ Record fs,Elem #field fs ∼ False {
(4) #field ∼ Field f t ,

repair {"Cannot find field" f : ty "in the record"#record : expr }
}

The rule consists of four fragments (1)–(4). Fragment (1) is merely an identifier,
which is used by the system to provide information about the rule, such as
failing the soundness check (Sect. 5). For example, had we mistaken writing
Recor instead of Record , the system would show:

Rule field_not_present is not sound

alongside with information to help fixing the problem.
Fragment (2), headed by case, contains the description of which code pieces

are matched by the rule. In this fragment, · indicates that any expression might
be found in that position. Alongisde them, #id is used to give a name to a
node of the AST, so that we can refer to it in the rest of the rule. This example
matches any application of the get function to at least two arguments.

The fragment (4), syntactically indicated between braces, mandates the com-
piler to produce an error message, built from various literal strings, the type of
the field and the expression which encodes the record.

Type Error Diagnosis for Embedded DSLs 675

Ingredients comparable to (1), (2) and (4), with a slightly different syntax,
were already available in the type rules of [11]. Our contribution is to allow type
rules to match and fire only in certain typing contexts. For example, fragment (3)
of the previous example, indicates that this specialized type rule shall only be
applied when the compiler can prove that the field is not available in the given
record (at type-level, this is encoded as Elem #field fs being equal to False).

As described in Sect. 4.1, being able to apply a specialized type rule only
when some typing information is known to hold has a number of interesting use
cases. For example, a custom error message can be given for a specific instance
of a Haskell type class. Also, common failure patterns can be detected and a fix
can be suggested to the DSL user.

Being able to use typing information in specialized type rules requires changes
to the type engine, as described in Sect. 4. Our approach is to perform type check-
ing in two stages, in which a satisfiable subset of information from the first stage
is used to select specialized type rules in the second stage. Furthermore, we want
to ensure that the DSL writer does not render the type system unsound with a
specialized type rule. Thus, we need to introduce soundness checks (Sect. 5).

A prototype implementation for a type system similar to that in the Haskell
GHC compiler (including type classes, type families and higher-rank polymor-
phism) is available at http://cobalt.herokuapp.com.

2 Constraint-Based Type Inference

An integral part of most compilers involves performing a set of analyses on the
input code, in order to detect ill behavior or prepare for optimization and trans-
formation. Many of these analyses are described using a type system, which
assigns types to constructs in the programming language. Statically-checked
strong type systems, such as that of Haskell or ML, prevent many kinds of errors
from arising at run-time. By using the type system, DSL writers can dictate how
their DSL should be used.

Throughout this paper, we shall refer to the piece of software dealing with
types as the type engine. As a first task, the type engine should be able to check
that types match in the correct way: if the programmer has specified that an
expression has an integral type, 3.5 should not be a valid value for such an
expression. In many cases tagging every expression with a type is not neccessary
in a program: the engine is able to reconstruct which types should be given to
each expression via a process called inference.

There are several possible ways in which a type engine can be structured.
One way is to traverse the Abstract Syntax Tree (AST) of the program, building
the corresponding type at each step. This path is taken by the classical W and
M implementations of the Hindley-Milner type system [3,16]. However, these
syntax-directed algorithms are known to introduce some problems related to
error reporting, in particular a bias coming from the fixed order in which they
traverse the tree [19].

Another approach is to structure the engine around the concept of constraints.
Instead of a single pass, the engine operates in two phases: in a first phase,

http://cobalt.herokuapp.com

676 A. Serrano and J. Hage

AST Traversal Constraints Solver

Axioms

Error

OK

Fig. 1. Common structure of a constraint-based type engine

the AST is traversed and all the constraints that types must satisfy are gathered.
Afterwards, a solution for those constraints is found. If the set of constraints hap-
pens to be inconsistent, we know that a type error exists in the program. This
structure is shown in Fig. 1.

A constraint-based approach to typing is shown by Heeren et al. [11,13] to
be a good choice as a basis for domain specific error diagnosis. The main reason
is that these systems do not impose a strict order on the whole process. Further-
more, once all constraints are gathered, the solver may have a more holistic view
on the structure of the program. For example, it may decide to show a different
error for a given identifier based on its use sites. Other advantages of constraint-
based type engines are discussed in [21] and include better modularity and a
declarative description, instead of an operational one. The main disadvantage of
constraint-based approaches to typing is some extra overhead.

2.1 Syntax-Directed Constraint Gathering

We assume constraint gathering to be a syntax-directed process, which traverses
the code being analyzed in a top-down fashion, and builds a constraint set
bottom-up. The constraint generation judgement

Γ � e : τ � C

represents that under an environment Γ the expression e is given a type τ subject
to the constraints C. Note that Γ and e are the inputs in the process, whereas
τ and C are the outputs.

Figure 2 shows the constraint generation rules for a simply-typed λ-calculus
with let, a subset of the full Haskell language. The details on how to type full
Haskell using constraints (which we implement in our prototype) are described
in [26] as an instance of the general OutsideIn(X) framework.

As an example of this judgement, consider the following piece of Haskell,
which returns the string representation of the successor of a given number n:

f = λn → show (n + 1)

In Fig. 3 the full derivation tree of its constraint set is given. We have omitted
the v : τ ∈ Δ leaves and the name of the rules applied at each step, in order to
fit the entire tree on the page.

Type Error Diagnosis for Embedded DSLs 677

v : ∀a.Q ⇒ τ ∈ Γ α fresh
var

Γ v : [a α]τ [a α]Q

α fresh Γ, x : α e : τ C
abs

Γ λx.e : α → τ C

α fresh Γ e1 : τ1 C1 Γ e2 : τ2 C2
app

Γ e1 e2 : α C1 ∧ C2 ∧ τ1 ∼ τ2 → α

Γ e1 : τ1 C1 Γ, x : τ1 e2 : τ2 C2
let

Γ let x = e1 in e2 : τ2 C1 ∧ C2

Fig. 2. Constraint generation rules for a simply-typed λ-calculus with let

.

.

.

Δ show : ε → String
Show ε

.

.

.

Δ (+) : δ → δ → δ
Num δ

Δ n : α

Δ (n+) : γ
Num δ ∧ δ → δ → δ ∼ α → γ

.

.

.

Δ 1 : τ
Num τ

Δ n + 1 : β
Num δ ∧ δ → δ → δ ∼ α → γ ∧ Num τ ∧ γ ∼ τ → β

Δ show (n + 1) : ξ
Show ε ∧ Num δ ∧ δ → δ → δ ∼ α → γ ∧ Num τ

∧ γ ∼ τ → β ∧ ε → String ∼ β → ξ

Γ λn → show (n + 1) : α → ξ
Show ε ∧ Num δ ∧ δ → δ → δ ∼ α → γ ∧ Num τ

∧ γ ∼ τ → β ∧ ε → String ∼ β → ξ

Note: in the derivation tree, we use Δ to mean Γ, n : α in order to fit the whole tree in the page.

Fig. 3. Constraint derivation tree for λn → show (n + 1)

2.2 Solving Order Matters

Once the constraints are gathered, it is time for the solver to perform its magic.
In full generality, a solver is represented by a judgement of the form

A � Q � Qr, θ

which encodes that under some set of axioms A, the set of constraints Q has a
solution given by a substitution θ and a set of residual constraints Qr. It must
be the case that the conjunction of the axioms A and the residual constraints Qr

imply an instance of the original constraints θQ. We furthermore assume that a
special constraint ⊥ exists, which is returned when the constraint set Q is found
to be inconsistent.

Continuing with the previous example, the type engine needs to solve the
constraint set obtained from the gathering process:

Q = Show ε ∧ Num δ ∧ δ → δ → δ ∼ α → γ
∧ Num τ ∧ γ ∼ τ → β ∧ ε → String ∼ β → ξ

678 A. Serrano and J. Hage

In the Haskell Prelude, the Num type class is declared as:

class Show a ⇒ Num a where
(+) :: a → a → a
(∗) :: a → a → a
...

Which means that the set of axioms A in which the constraints are to be solved
includes, at least, ∀a.Num a =⇒ Show a, that is, every Num instance is
guaranteed to have a corresponding Show instance. Under these circumstances,
the solver returns the following result:

A � Q � Num δ, [α
→ δ, β
→ δ, γ
→ (δ → δ), τ
→ δ, ε
→ δ, ξ
→ String]

In particular, for the Haskell program this means that the inferred type is:

∀d.Num d ⇒ d → String

But what if solving a set of constraints results in ⊥, that is, if the set is found
to be inconsistent? In that case, we need to generate an error message to show
to the user. This entails pointing at one or several constraints from the original
set as responsible for the inconsistency: this process is called blaming. Note that
for the same set of constraints, several ways to blame might be possible. For
example, take:

Q = α ∼ Bool ∧ α ∼ Int ∧ α ∼ Char

It is clear that these constraints form an inconsistent set. If we decide to blame
the first two constraints, the error message to show is:

Cannot unify Bool with Int

But if we choose the first and the third to blame, we get:

Cannot unify Bool with Char

Furthermore, if these constraints come from different expressions, different points
in the program would also be blamed for this type violation.

The dependence of error messages on the internal workings is known in the
literature as the bias problem. To a certain extent, this problem is unavoidable,
since every solver and blamer needs to be implemented in a deterministic way
in order to be executed by a computer. Our aim is to look at the reverse side of
the coin: how can certain orderings in the solving of constraints help us in giving
the desired error message for a given class of expressions?

2.3 Constraint Scripts

In order to be more precise about how blaming needs to be processed in the
system, we need to depart from the model in which constraints form an unordered
set into one in which they form a partial ordering. Formalizations of this kind

Type Error Diagnosis for Embedded DSLs 679

have already been considered in [9]. In this paper we use a simplified version of
those, consisting of three combinators:

Constraints C :: = . . . Defined by the type system
Messages M :: = . . . Defined by the implementation

Constraint scripts S :: = C |SM |�S1, . . . , Sn
 |S1 � S2

·M The label combinator annotates a constraint script with information about
the error message to show when the script is found to be unsatisfiable. The
exact shape of the labels in implementation-defined: in this paper we use
simple strings for ease of presentation.

�. . .
 When several scripts need to be satisfied, the join combinator specifies that
at blaming, no preference should be given to any of the contained scripts.

� The ordered combinator introduces asymmetry in blaming. If the combi-
nation of the constraints in the two scripts gives rise to an inconsistency,
then the second one should be blamed.

If we use a constraint script instead of a simple set for the problem of three
different types equated to a variable α, we can be much more precise about the
error message. One possibility is to have:

Q = (α ∼ Bool � α ∼ Int) � α ∼ Char

The inconsistency is found then at the stage when the constraints α ∼ Bool and
α ∼ Int are merged, and thus the message about not being able to unify Bool
with Int should be generated. If we want a custom message, we can go one step
further and write a constraint script:

Q = (α ∼ Bool � α ∼ Int)"A Boolean cannot be an Int, sorry" � α ∼ Char

One small glitch is that now we need to update the rules from Fig. 2 to
produce constraint scripts instead of mere sets. The simplest approach is to
change all conjunctions ∧ into the join �·
 combinator. However, the implementor
of the programming language may want to add some default asymmetries, e.g.,
giving preference to blaming constraints from e rather than from b in when using
the let x = e in b construct.

3 Specialized Type Rules

Specialized type rules enter the scene in the aforementioned constraint generation
phase, by replacing one of the default rules with a DSL-writer-provided one. On
the surface they are like any other type rule: each of them matches a syntactic
form, and produces a constraints script based on those of its subcomponents.

In many cases, including Fig. 2, the gathering of constraints from an expres-
sion is syntax-directed. That is, at most one rule matches a certain set of shapes
for expressions. The addition of specialized type rules breaks this property: each

680 A. Serrano and J. Hage

of them overlaps with one or more default type rules in a certain context. Thus,
at each point of the AST, the type engine needs to decide whether a specialized
type rule shall be used instead of the default one.

In our work, each rule defines when to be fired by two elements. The first,
encoded in the case fragment of the specialized type rule, is a syntactic one: the
expression is verified to have a specific shape. After that check, there might be a
second check based on typing information, which is given in the when fragment
of the specialized type rule. Implementation of that second check needs a two-
stage type engine; we defer its explanation to Sect. 5.

The way in which a shape is conveyed to the type engine is via an expression
matcher. Expression matchers form a subset of the term language, enlarged with
metavariables for naming subexpressions. We need these metavariables to refer
to the constraints and types of subexpressions of the expression being matched.
In our prototype, expression matchers follow this grammar:3

m ::= x Term variable
| m1 m2 Application
| · Match anything
| m#id Metavariable

The reader may notice that we do not include λ-abstractions and let blocks as
constructs that a specialized type rule is able to match upon. We have not yet
found any use case in which the DSL writer might need to alter the constraint
scripts associated to those constructs. Furthermore, matching only on application
alleviates us from including special syntax for changing the environment in a type
rule: in applications the environment is simply inherited from the parent.

Note also that the system does not consider terms equated under β-reduction
or let-inlining. For example, the code let x = map (+1) in x [1, 2, 3] is not
matched by a specialized type rule with a case fragment map ·#fn ·#lst . There
are two reasons which incidentally strengthen the decision of taking a completely
syntactic approach instead of taking into account some rules of computation:

1. Different modes of use of the same function may correspond to different inten-
tions on the part of the user. Thus, it makes sense to provide different spe-
cialized type rules for those different scenarios.

2. A simpler matching procedure is more predictable. If we take β-reduction or
let-inlining into account, the DSL writer might be surprised that a rule fires
(or does not) for a specific expression.

Also, one can always write an extra rule that matches on map with only one
parameter.

Once a specialized type rule is found to match an expression, the fragment
between braces is executed in order to build a constraint script. We could have
used the combinators from last section to define the scripts directly, but they are

3 In the implementation, m#id is written as #id@(m), with the special case ·#id being
written simply as #id.

Type Error Diagnosis for Embedded DSLs 681

too low-level to be easily usable by DSL writers. Instead, our prototype defines
a higher-level language for constraint scripts which is then translated to the
low-level one. The grammar is as follows:

Section section ::= ε Empty script
| instr section Unannotated instruction
| instr error {M∗} section Annotated instruction
| repair {M∗} section Reparation

Instruction instr ::= C∗ Constraint with identifiers
| constraints #id Reference
| merger {section} Nested section

Merger merger ::= join | ordered
The basic blocks of constraint scripts are, of course, constraints themselves.

What distinguishes constraints C from the C∗ mentioned in the grammar above
is the ability to refer to the types of subexpressions named by a metavariable in
the case fragment. For example, when in the introduction we wrote #field ∼
Field f t , the identifier #field refers to the type that is assigned to the first
argument to the get function.

In most cases, a specialized type rule needs to refer to the constraint scripts of
one or more subexpressions in order to build the script for the entire expression.
The syntax for such a reference is constraints followed by the metavariable
representing the subexpression in the matcher.4 As an example of references, we
can reformulate the rule app for application from Fig. 2 as:

rule application
case ·#f ·#x {

constraints#f ,
constraints#x ,
#f ∼ #x → alpha

}

But wait a moment, we have three constraint scripts here: constraints#f ,
constraints#x , and #f ∼ #x → alpha; which combinator is chosen to put
them together? By default, � is chosen; it is the most common choice when
providing specialized type rules for DSLs. This choice can be reverted, though,
by enclosing a section with a new merger : join switches to �·
, and ordered to
� again.

Constraint scripts may also specify a custom error message tied to a combi-
nation of constraints. In the high-level syntax error is used. As in the case of
constraint scripts, the syntax of error messages is defined by the implementation.
In our case, the syntax is:

4 Thus, metavariables introduced in the matcher can refer inside a constraint script
to types or other scripts depending on the context in which they occur.

682 A. Serrano and J. Hage

Message M∗ ::= M∗
1 M∗

2 Concatenation
| "string" Literal string
| τ : ty Type
| #id : expr Expression

Sometimes, we want a specialized type rule to always generate an error mes-
sage. One possibility would be to attach the message, using error, to an incon-
sistent constraint (such as Int ∼ Bool). Given the usefulness of this scenario, we
have included specialized syntax for this task: repair.

The translation from the high-level constraint script language to the low-level
one is unsurprising. The full details of the translation can be found in [22].

3.1 Example DSLs

We have already introduced extensible records à la Vinyl as an example of a
DSL which benefits from specialized type rules. In this section we introduce two
examples coming from libraries which are commonly used by Haskell program-
mers: a database mapper called Persistent5, and declarative vector graphics from
the Diagrams6 embedded DSL. Both libraries target a specific domain with their
own terms; this makes them a perfect target for specialized type rules.

Note that in the examples we sometimes use type signatures which are simpler
than their counterparts in libraries, in order to keep the irrelevant details out
and obtain manageable specialized type rules.

Persistent [23]. The designers of this database mapper took a very type-safe
approach: each kind of entity in the database is assigned a different Haskell type.
Several advanced type-level techniques are used throughout its implementation:
the result is a very flexible library, which unfortunately suffers from complicated
error messages.

Apart from separating different entities via different types, Persistent imposes
a strict distinction between: (1) values which are kept in the database, and
which correspond to normal Haskell data types, (2) keys that identify a value
in the database (like primary keys in SQL databases), which always have a Key
type tagged with the kind of value it refers to, and (3) entities, which are a
combination of key and value.

One important operation in Persistent is updating an entity in the database:

replace :: MonadIO m ⇒ Key e → e → m Result

Based on its intended usage, there are two scenarios which benefit from domain
specific type rules. One is using a non-Key value as first argument; based on
previous experience with other libraries, the user of the DSL may expect that
something like an Integer is to be given at that position. We can point to infor-
mation about what a Key in Persistent represents. Another error which benefits
5 http://hackage.haskell.org/package/persistent.
6 http://projects.haskell.org/diagrams/.

http://hackage.haskell.org/package/persistent
http://projects.haskell.org/diagrams/

Type Error Diagnosis for Embedded DSLs 683

Fig. 4. Rendering of circle 2 # fc green ||| pentagon 3 # lc blue(Color figure online)

from a domain specific perspective is using a Key a along with a value of a
different type b, e.g., using a key for a Task when you need one for a Person. A
specialized type rule encompassing these use cases looks like:

rule replace key
case ((replace#r ·#key)#p ·#value)#e {

join {constraints#key , constraints#value },
#key ∼ Key v error { #key : expr "should be a Key."

"Did you forget a wrapper?"},
v ∼ #value error {"Key type" v : ty "and value type"#value : ty

"do not coincide"},
join {
constraints#r ,
#p ∼ #value → m Result ,
#e ∼ m Result ,MonadIO m

}
}

This rule brings to the table an issue which we did not have to deal with before: a
specialized type rule needs to ensure that all subexpressions (i.e., all nodes in the
AST) are given types. Thus, although our focus is on the first three instructions,
we also need to give types to the function replace, to the partially applied replace
#key and finally to the whole expression. This is mandated by the soundness
check from Sect. 5, although we are currently investigating ways to add these
structural constraints automatically.

Diagrams [28]. This library was originally developed by Brent Yorgey, and aims
to provide a way to construct pictures in a compositional way, by combining
simple pictures into more complex ones. For example, this code taken from the
tutorial defines a simple picture as a LaTEX image. The result is given in Fig. 4.

import Diagrams.Backend .PGF
import Diagrams.Prelude
drawing :: Diagram PGF
drawing = circle 2# fc green ||| pentagon 3# lc blue

The reader may notice that the drawing function has in its type a tag PGF indi-
cating the back-end used to render it. Other possibilities include SVG, GTK+

684 A. Serrano and J. Hage

or the Cairo graphics library. One invariant of the library is that you can only
compose drawings that use the same back-end. This is a sensible use case for a
specialized type rule:7

rule combine diagrams
case (((|||)#r ·#d1)#p ·#d2)#e {

join {
ordered {constraints#d1 , #d1 ∼ Diagram b1 }
ordered {constraints#d2 , #d2 ∼ Diagram b2 }

},
b1 ∼ b2 error { #d1 : expr "and"#d2 : expr

"use different back-ends"},
join {

#r ∼ Diagram b1 → Diagram b1 → Diagram b1 ,
#p ∼ Diagram b1 → Diagram b1 ,
#e ∼ Diagram b1

}
}

In this case, we use join and distinct type variables to make the type checking of
each argument not influenced by the other. Then, we check that both back-ends
coincide, if that fails we give a custom error message. As in the previous example,
we need to incorporate types for each subexpression in the AST, something we
do in the last join section.

4 Two-Stage Specialized Type Rules

The methodology described up to now does not include the when mechanism
needed to make the extensible records specialized type rule, as described in the
introduction, work. Before describing our solution, it is worthwhile to describe
the disadvantages of the most obvious technique to reach this goal: when we
need to decide whether to apply rule R or not, we look at the constraints gath-
ered prior to that point and check whether those imply the ones in the when
fragment. The disadvantages can be summarized as:

(1) The traversal of the tree, the process responsible for gathering the constraints
for a given expression, becomes very complex: you need to move back and
forth between the traversal itself and the constraint solver.

(2) It is not clear how the gathering should proceed if during the process the
solver finds an inconsistency, that is, a type error.

(3) The decision of whether to apply a specialized type rule will be biased by
the order in which constraints are gathered. If this is done bottom up, then
we are constrained to know information only about subexpressions, whereas

7 The actual type of (|||) is more general than shown in this example. We take care of
this fact in Sect. 4.1.

Type Error Diagnosis for Embedded DSLs 685

Errors

TraversalAST
Constraint

Script Solver

Axioms

OK

Checker

Domain Specific
Type Rules

Pruner

Satisfiable Set of Constraints

Fig. 5. Enhanced constraint-based type engine

some more information might come from later use sites. Traversing in a
top down fashion only moves the bias on to the other direcion. It might be
possible to sketch a bidirectional solution, but this seems both complicated
and unpredictable.

Our solution is to use two stages, each of then comprising constraint gathering
and solving, instead of a single one in which interleaving is possible. This new
architecture for the type engine is depicted in Fig. 5. In the case of successful
completion of the type checking and inference procedure, the type engine shall
still work as in Fig. 1. However, if an error is found in the process, we prepare
for a second stage by pruning the set of constraints C1 obtained in the first
stage until they become a satisfiable set S1, and then use that set as input to
a second gathering from which we obtain a new set of constraints C2. The new
gathering pass uses those pruned constraints to decide whether to apply or not
each specialized type rule.

Note that in the second traversal of the AST we still need to call the solver
in order to know whether the constraints in a given when fragment hold or not.
The difference with the alternative described at the beginning of the section is
that now the sets of constraints S1 and C2 coming from different stages are kept
separate: solving is done over S1, new constraints are gathered in C2. Further-
more, we know that the constraints S1 which we query form a satisfiable subset,
since we pruned them. This relieves us from dealing with issue (2).

Our two-stage approach still suffers from bias. However, this bias is no longer
structural: it is not related to the traversal of the AST, but rather to the opera-
tion of a pruner which decides which satisfiable subset of constraints to return,
an easily replaceable part of the system. The pruner is now the part of the sys-
tem which decides, in the presence of a type error, which constraints from the
inconsistent set are kept for the second stage.

We think that this is a good choice for two reasons: first, at the stage in which
the pruner is executed, it profits from a global view on the solving process, and
might decide to select a different set of constraints depending on how many times

686 A. Serrano and J. Hage

those constraints were used, in how many inconsistencies they are involved, and
similar statistics. A second reason is that the pruner can be easily replaced with
another one, maybe one tailored for a specific domain.

Formally, in order to implement two-stage specialized type rules, we replace
the constraint generation judgement Γ � e : τ � C with a more informed one,

Γ, S � e : τ � C

where S is a set of constraints known to be satisfiable. This set S can be used as
part of the input for the solver in order to check whether a given constraint set
Q from a when fragment holds under that assumptions by checking A ∧ S �
Q � ε, θ.8 That is, to know whether a specialized type rule must be triggered.
The complete pipeline has now become:

– Gather constraints under an empty known satisfiable set of constraints: Γ, ε �
e : τ1 � C1. Only specialized type rules without when fragments play a role
in this first stage.

– Try to solve the constraints A � C1 � C ′
1, θ1. If C ′

1 is empty, then solving
was succesful and θ1 is the sought-for substitution. We do not need a second
stage of typing, and the compiler can proceed with the following stages.

– Otherwise, there is an error in the expression e, and we need to start the
second stage. First, we prune C1 to a satisfiable subset S1.

– Gather constraints under this subset: Γ, S1 � e : τ2 � C2. At this point, new
specialized type rules, those with a when fragment, may be triggered.

– Solve the constraints again A � C2 � C ′
2, θ2. It must still be the case that

⊥ ∈ C ′
2, but a different set of specialized type rules may now have been used,

changing which constraints are blamed for the problem.
– If the part of the script being blamed contains a custom error message, this

message is printed by the compiler. The compiler falls back to the default error
message for a given type error when the constraint script did not generate a
custom message.

We are now in a position of describing what happens exactly when get age
emily from the introduction is type-checked. In the first pass we obtain a set of
constraints which include:

C1 = #field ∼ Field "age" Integer
∧ #record ∼ Record [Field "name" String]
∧ Elem #field [Field "name" String] ∼ True

In the solving phase Elem #field [Field "name" String] ∼ True is rewritten
to Elem (Field "age" Integer) [Field "name" String] ∼ True and then by the
definition of the Elem type family, first to Elem (Field "age" Integer) [] ∼ True
and eventually to False ∼ True. This last constraint equates two different type
constructors, and is by injectivity, inconsistent.
8 It is important that the obtained residual set of constraints is empty and not simply

different from ⊥, because in other case we would be checking only the compatibility
of Q with S instead of its entailment.

Type Error Diagnosis for Embedded DSLs 687

As we explained above, before we perform gathering in the second stage, we
need to make the set of constraints satisfiable by pruning it. How this is achieved
is explained in Sect. 4.2. Here we will take as granted that such a procedure exists.
If we take out the last constraint, we can reestablish satisfiability.

S1 = #field ∼ Field "age" Integer
∧ #record ∼ Record [Field "name" String]

The second constraint gathering phase takes this new S1 as extra input. At
some point, we need to decide whether to apply the specialized type rule from
the introduction to get age emily . The particular when fragment reads:

Q = #record ∼ Record fs ∧ Elem fs ∼ False

The call to the solver returns the following result:

S1 � Q � ε, [fs
→ [Field "name" String]]

The fact that the residual set is ε means that S1 does indeed entail the constraints
in the when fragment. Thus, that rule will be applied instead of the default one.
As a result, the constraint script generated for the expression is:

(#field ∼ Field f t) � ⊥Cannot find field "age" in the record emily

It is clear that the blame for the inconsistency in this case must go to the explicit
⊥ constraints. The message that the user of the DSL sees is the one attached to
that constraint, which is the one we desired.

4.1 Improving the Example DSLs

In this section we return back to the Persistent and Diagrams DSLs, enhanc-
ing their specialized type rules with when fragments. Both examples showcase
scenarios where our two-stage approach enables giving a more informative error
message than otherwise.

Type Rules for Specific Instances. We have to admit at this point that we made
quite a big simplification when explaining the Diagrams (|||) combinator. Its
type is not simply

(|||) :: Diagram b → Diagram b → Diagram b

as we implied. Instead, the actual type (in version 1.3) is

(|||) :: (InSpace V2 n a,Num n, Juxtaposable a,Semigroup a) ⇒ a → a → a

This generality allows the same combinator to be used with any type whose
values can be put side by side (as witnessed by Juxtaposable) in a 2-dimensional
space (as witnessed by InSpace V2 n a). Diagram b is an instance of those type
classes, as are lists of diagrams, and diagrams with a modified origin.

688 A. Serrano and J. Hage

If we use the specialized type rule given in Sect. 3.1, we get a custom error
message for the Diagram b case. But it comes with an undesired side-effect: we
can no longer use the (|||) function on other values which are not Diagrams.9

Instead, we want to obtain a custom error message when the arguments are
known to be Diagrams, but not for any other type. We can do so by moving
some of the constraints to the when fragment:

rule combine diagrams v2
case (((|||)#r ·#d1)#p ·#d2)#e

when#d1 ∼ Diagram b1 , #d2 ∼ Diagram b2 {
join {constraints#d1 , constraints#d2 },
b1 ∼ b2 error { #d1 : expr "and"#d2 : expr "use diff. back-ends"},
join {

#r ∼ Diagram b1 → Diagram b1 → Diagram b1 ,
#p ∼ Diagram b1 → Diagram b1 ,
#e ∼ Diagram b1

}
}

The (|||) function shows an important trade-off to be made in languages which
support a large degree of abstraction, like Haskell. On one side, one would like
to make libraries as general as possible, so they can be reused in many different
scenarios. On the other hand, this usually implies a more complicated type,
which results in more complicated error messages.

Haskell’s libraries and language extensions provide even more compelling
examples: we have fmap, which applies to every Functor and it is thereby very
general, and map, which is the restriction of fmap to lists. One of the reasons
why beginners are first introduced to map is that error messages with fmap can
be quite scary, since they involve type classes, a concept more advanced than
lists. With our system in place, a specialized type rule can be defined to regain
the error messages of map when fmap is used with lists:

rule fmap on lists
case ((fmap#f ·#fn)#p ·#lst)#e

when#lst ∼ [a] {
constraints#fn,
#fn ∼ s → r error { #fn : expr "is not a function"},
constraints#lst ,
#lst ∼ [b],
s ∼ b error {"Domain type" s : ty "and list type" b : ty

"do not coincide"},
join {

#f ∼ (s → r) → [s] → [r],
#p ∼ [s] → [r], #e ∼ [r]

}
}

9 The type rule is sound but not complete. Sect. 5 explains how completeness is auto-
matically checked by our system.

Type Error Diagnosis for Embedded DSLs 689

In the same way that we declared special type rules for fmap, we can do so
for many other Applicative, Monad , Foldable, Traversable and Monoid -related
functions when they apply to specific types. The functions map and fmap can
now be merged without compromising the quality of type errors, and the same
applies to filter and mfilter , mapM in its list-oriented and Traversable-oriented
incarnations, and so on. We think that two-stage specialized type rules may have
also eased the transition in the GHC base libraries to Foldable and Traversable.10

The same tension occurs with the reintroduction of monad comprehensions
[5,27]. On the one hand, they generalize a useful construct from lists to other
monads. On the other hand, error messages become less clear. As a compromise,
GHC includes monad comprehensions, but they must be explicitly turned on.

Suggesting Reparations. As part of its duty as a database library, Persistent
includes functionality to query a data source. One of the most common functions
to perform queries is selectList , which returns the results of the query as a list
of Entitys (as in our previous usage of Persistent, we assume a simpler type
signature in order to focus on the aspects of our specialized type rules):

selectList :: MonadIO m ⇒ [Filter v] → [SelectOpt v] → m [Entity v]

Values of type Filter v describe those constraints that an entity must satisfy in
order to be returned by the call to selectList . For example, one can check that
a field in the row has a given value by using:

selectList :: MonadIO m ⇒ [Filter v] → [SelectOpt v] → m [Entity v]

Values of type Filter v describe those constraints that an entity must satisfy in
order to be returned by the call to selectList . For example, one can check that
a field in the row has a given value by using:

(≡ .) :: PersistField t ⇒ EntityField v t → t → Filter v

Unfortunately, the name of (≡ .) is very close to the standard equality operator
(≡) and it is easy to confuse one for the other. This is a case where, by using
our domain knowledge, we can suggest the user of the DSL how to fix the error.

The incorrect expression is of the form field ≡ value, and we write a special-
ized type rule for this particular kind of expression. In the when fragment we
check whether the first argument is of type EntityField v t . If so, it is very likely
that the user intented to use (≡ .) instead. This is the specialized type rule:

rule wrong eq filter
case (≡) ·#field ·#value

when#field ∼ EntityField #value t {
repair {"Database field"#field : expr " is being compared."

"Did you intend to use (==.) instead?"}
}

10 Arguments for and against generalizing list functions in Haskell’s Prelude have been
given at https://ghc.haskell.org/trac/ghc/wiki/Prelude710.

https://ghc.haskell.org/trac/ghc/wiki/Prelude710

690 A. Serrano and J. Hage

4.2 Implementing Pruning

Up to now, we have assumed that one can prune any inconsistent set of con-
straints into a satisfiable subset. This is a fair assumption: many algorithms can
be found in the literature to compute them [1,7]. Even better: many algorithms
give us not only any satisfiable subset, but a maximal subset. That is, a subset
such that adding any other of the original constraints makes it inconsistent.

The problem with these techniques is that they are non-deterministic: run-
ning them over an inconsistent set of constraints returns a maximal satisfiable or
minimal unsatisfiable subset, but there is no direct way to influence which. We
have discussed the importance of blaming the right constraint in order to obtain
the desired diagnosis for a specific scenario, and described constraint script com-
binators to encode preferences. In this section we describe how to incorporate
pruning into the solving phase to obey those preferences.

The solution is to replace the sequential pipeline of solving, and then prun-
ing in case of inconsistency with an interleaving of those two processes. This
combined process is defined by a judgement of the form

A � S,M � Qr, θ, E
which, compared with the judgement in Sect. 2.2, has one more input and one
more output.11 The extra input keeps track of the current error message to be
shown in case an inconsistency is found at that point. The extra output is a set
of pairs Q
→ M which saves those error messages obtained up to that moment
along with the constraints which led to them. Another important difference is
that Qr is always a satisfiable set of constraints.

The description of the process as implemented in our prototype is given
in Fig. 6. For most constraint script combinators, two rules are given: the one
suffixed with fail corresponds to finding an inconsistency, otherwise the cor-
responding ok rule is applied. The first two rules, single ok and single fail,
handle the base case of a single constraint. When the constraint does not lead to
an inconsistency (⊥ �∈ Cr), we can return the residual constraints as satisfiable
subset, with no errors attached. When the single constraint is inconsistent (like
Int ∼ Bool), the only possible pruning is an empty set of constraints. This is
exactly what singlefail does.

More than one inconsistency may be found in this process, coming from
pruning different subsets of constraints from the script. In order to know which
error message to associate with each inconsistency, the judgement uses the extra
input M . This current message is updated whenever we find an annotation in a
script by the message rule. Remember that a reparation instruction such as

repair {"my message"}
leads to a constraint script ⊥"my message". Using only these three rules, we can

see that the result of combined solving and pruning is:

A � ⊥"my message",M � ∅, ε, {⊥
→ "my message"}
11 A summary of all the judgements used for gathering and solving throughout this

paper is given in Fig. 7.

Type Error Diagnosis for Embedded DSLs 691

Fig. 6. Combined constraint script solving and pruning

The last output, the list of errors, contains the message we gave in the type rule.
The case of combining several constraint scripts, either using �·
 or � is a bit

more involved. In both cases, we start by considering the solving and pruning
of the constraint scripts being combined. Each of those executions will return
a satisfiable residual subset, a substitution and a list of errors. We need to put
together all those residual subsets, but we also need to ensure that substitution
are compatible among themselves. In order to do so we ask the constraint sys-
tem to include a intern operation which internalizes a substitution as a set of
constraints (in our case, each α
→ τ is translated into α ∼ τ). At the end, we
might end up being consistent or inconsistent. In the first case, we just pop the
errors found in the children; but when an inconsistency is found, we need to first
perform pruning.

Pruning is the point where the difference between �·
 and � needs to manifest
itself. In the first case, the pruner should treat all constraints equally, without any
specific preference for blaming. On the other hand, � imposes such a preference,
which the pruner should take into account when performing its task. In the
rules in Fig. 6, we encode these two modes of operation as two operations that
the pruner needs to define: prune for no preference, aprune to blame constraints
from its second argument preferably than from the first one.

692 A. Serrano and J. Hage

Original Enlarged Changes

Gathering Γ e : τ C Γ, S e : τ C
Added satisfiable constraint set S
Returns a script instead of a set

Solving A C Cr, θ C, M Cr, θ, E
Cr and θ are pruned to satisfiability
Keeps track of current message M
Returns a list of errors E

Fig. 7. Summary of judgements used in the paper

In both operations, the result is a triple 〈Q↑, θ↑, Q⊥〉. The first two elements
are the pruned set of constraints and the pruned substitution, which are now
known to be satisfiable. The last element is composed of those constraints which
are blamed for the error. The set Q⊥ is saved along with the current error
message in order to be shown to the user once the solving is finished.

At the end of Sect. 2.3 we looked at the following constraint script:

(α ∼ Bool � α ∼ Int)"A Boolean cannot be an Int, sorry" � α ∼ Char

Using the rules from Fig. 6, we arrive to the point of applying the � case:

A � α ∼ Bool � α ∼ Int, "A Boolean cannot be an Int, sorry" � Cr, θ, E
Both branches are consistent, with the residual satisfiable subset being equal to
the original set. Thus, we need to check what is the result of the solver for the
combined set:

A � α ∼ Bool ∧ α ∼ Int � ⊥, θ

It is inconsistent, so we need to prune the set:

aprune(α ∼ Bool, α ∼ Int) = 〈α ∼ Int, ε, α ∼ Bool〉
The corresponding operator from the pruner preferred the second constraint to
the first, as the semantics of � mandate. The blamed constraint is put into the
error list along with the current message:

E = [α ∼ Int
→ "A Boolean cannot be an Int, sorry"]

There are benefits to making the pruner a parameter of the solver. First of
all, we can reuse work on maximal satisfiable subsets, improving the pruning as
the state of the art advances in this respect. Furthermore, it opens the door to
using heuristics for blaming [8] and even to use domain-specific pruners which
understand the most common source of errors for a given domain.

5 Soundness and Completeness

Specialized type rules are intended to offer guidance to the type engine in order
to provide better error diagnosis. However, a DSL writer should not be able

Type Error Diagnosis for Embedded DSLs 693

to subvert the type system using this kind of rule, especially if this happens
inadvertedly. For that reason, type rules are checked for soundness by the checker
prior to the AST traversal, as Fig. 5 shows. A nice feature of our design is that
we do not need to change the solver in order to make this soundness check.

Consider first those specialized type rules without a when fragment. Given
such a rule, the initial step is to generate an expression which represents all
the possible instances of the rule. This is achieved by building an expression e
equal to the one in the case fragment, but where unconstrained subexpressions
are replaced by fresh metavariables with fresh types assigned to them. Then, we
generate two constraint scripts:

– Swith, by traversing e taking into account the specialized type rule we are
checking at that moment,

– Snone, by traversing e using only the default type rules.

One small detail is needed to make this process work: we need to ensure that
type variables assigned to each subexpression in the AST are stable under dif-
ferent traversals. This is not hard to accomplish, but deviates from the standard
approach of generating completely fresh variables in every traversal.

Intuitively, we want to check whether the constraints in the set gathered using
the specialized type rule, Swith, imply the conjunction of the constraint in the
set obtained using only the default rules, Snone. However, our constraint solving
judgement cannot use a constraint script as part of the set of assumptions (the
argument at the left of the � symbol). Thus, we need to flatten the script back
to a set, via the following auxiliary operation:

flatten(C) = C
flatten(SM) = flatten(S)
flatten(�S1, . . . , Sn
) =

∧
flatten(Si)

flatten(S1 � S2) = flatten(S1) ∧ flatten(S2)

In this form, if we want to check whether Swith entails Snone given some axioms
A, we can use A ∧ flatten(Swith) � Snone � S′, θ. In particular, we must verify
that S′ is empty. This approach does not work in the extreme case of ⊥ ∈
flatten(Swith). In that case, it is automatically the case that Snone is implied
(“ex falso quodlibet”). This is summarized in a new judgement A � S1 ⇒ S2:

⊥ ∈ flatten(S1)
A � S1 ⇒ S2

A ∧ flatten(S1) � S2 � ε, θ

A � S1 ⇒ S2

By using A � Swith ⇒ Snone we check for soundness. This means that type
rules which are stricter than the defaults are allowed. One example is a type rule
which restricts the type of fmap from Functor f ⇒ (a → b) → f a → f b to
(a → b) → [a] → [b]. If we want to keep the type exactly the same, the domain
specific type rules must also be checked for completeness: this can be done easily
by using the converse implication: A � Snone ⇒ Swith.

694 A. Serrano and J. Hage

The definition of ⇒ explains why we need to type every node in the AST
when developing a specialized type rule. In the default gathering scheme, Snone

contains typing information for all those nodes. Had we not included those in
Swith, some leftover constraints remain in the residual set, which we need to be
empty in order to check the implication.

The novel feature of our specialized type rules is the dependence on a typing
context. When a specialized type rule includes a when fragment, the previous
direct approach is not enough. First of all, since the soundness check has no
associated context, such specialized type rules would never be applied if when
fragments are taken into account during traversal. Thus, when gathering con-
straints for the soundness check we refrain from looking at when fragments.
However, checking the implication A � Swith ⇒ Snone is not correct in this
scenario, since the constraints in Swith are only valid in a specific context. The
solution is to take the constraints as additional axioms.

To illustrate, consider our running example, a specialized type rule for exten-
sible records. This rule only fires in a specific typing context:

case get ·#field ·#record

when#record ∼ Record fs,Elem #field fs ∼ False {...}
The expression which is generated in this case is get x1 x2, where the xi are
fresh metavariables. In addition, two scripts Swith and Snone are generated by
traversing the expression with and without the specialized type rule in place. But
it is not correct to check whether A � Swith ⇒ Snone, since the type rule is only
supposed to be valid when the field cannot be found in the record. The correct
property to check is A ∧ τ2 ∼ Record fs ∧ Elem τ1 fs ∼ False � Swith ⇒ Snone,
where τ1 and τ2 are the types assigned to the #field and #record subexpressions,
respectively.

More generally, let Swith be the script obtained from the application of the
domain specific type rules, Qwith the checks that would have been made in order
to apply those rules, and Snone the script obtained by the default traversal.
Previously, we ensured that the following relations held between those scripts:

A � Swith ⇒ Snone (soundness) A � Snone ⇒ Swith (completeness)

The change is to add Qwith to the list of axioms:

A ∧ Qwith � Swith ⇒ Snone (soundness)
A ∧ Qwith � Snone ⇒ Swith (completeness)

In that way, we ensure that the check is performed only for the cases in which
the type rule can be applied.

6 Related Work

The system presented in this paper has a unique feature compared to other
approaches to domain specific error diagnosis: using a satisfiable subset of con-
straints obtained from solving to trigger (more) specialized to type rules.

Type Error Diagnosis for Embedded DSLs 695

Helium. Our domain specific type rules were directly inspired by those found
in the Helium compiler [10–13]. There are however several differences between
their work and ours.

First of all, Helium focuses on the problem of providing good error messages.
Apart from domain specific type rules, Helium uses heuristics to guide the blam-
ing process and try to ensure that the messages shown to the user are the most
helpful to fix errors. Our work focuses instead on giving DSL writers the tools
to tailor error messages to the needs of the particular specific domain. For that
reason, our focus is only on enhancing type rules.

Some of Helium heuristics involve reparation. A siblings heuristics is described
in [13], which suggests replacing a function call with another function if the first
one cannot be correctly type but it is possible in the second case. One example is
replacing (++) by (:) or vice versa, a common error for beginner programmers. As
seen in Sect. 4.1, our specialized type rules can handle this case using a different
approach. The main disadvantage of our system is that type rule descriptions
are much longer than siblings enumeration.

Another important difference lies in the source language that is addressed.
Whereas Helium supports only Haskell 98 constructs, we support a wider range
of Haskell features such as type families and multiparameter type classes within
the same framework. This implies that the constraints involved in our type rules
are more complicated than those in Helium. Furthermore, Helium heuristics are
tied to a representation of the constraint solving process using type graphs.
Our system, being based on OutsideIn(X) is extensible, and could be used to
accomodate type system enhancements such as units of measure [6].

GHC. From version 8 on, GHC supports custom type errors for instance and
type family resolution [4]. For example, you can define:

instance TypeError (Text "Cannot ’Show’ functions." :$$:
Text "Perhaps there is a missing argument?")

⇒ Show (a → b) where ...

Then, when a constraint like Show (Int → Bool) is found by the solver, it is
rewritten to TypeError (Text ...). The compiler knows that when such a con-
straint is in the set, it should produce an error message with the given text.

The main advantage of this approach is that it reuses type-level techniques,
leveraging the abstraction facilities that Haskell provides for type programming.
However, these combinators cannot influence the ordering of constraint solving,
which is an important feature for precise error messages, as explained in Sect. 2.2.

Idris. The support for custom error messages in Idris [2], a dependently typed
language with a syntax similar to Haskell’s, is based on post-processing the errors
generated by the compiler prior to showing them to the user. There is no way
to influence the actual type inference and checking process. We discussed in this
paper the importance of this influence: our get age emily example cannot be
expressed using only post-processing. As future work we want to experiment

696 A. Serrano and J. Hage

with adding a post-processing stage to our own type engine, and see how it
interacts with the rest of the system.

Scala. An instrumented version of the Scala compiler geared towards type feed-
back is described in [20]. Starting with low-level type checker events, a derivation
tree is built on demand. Custom compiler plug-ins are able to inspect this tree
and generate domain specific error messages. This approach is strictly more
powerful than Idris’, but still cannot influence the way in which the type engine
performs inference.

SoundExt. Language extensions are defined in SoundExt [17] by rewriting to
a core language plus specific type rules for the new construct. As in our work, the
system checks for the soundness of the new type rules before they can be applied.
However, the authors mention that two sound language extensions might result
in an unsound combination, thus requiring extra checks when put together. In
our case, the way the soundness check is performed ensures that if all specialized
type rules pass the test, they can be freely combined

Racket. The programming environment offered by Racket is well-known for its
focus on students [18]. Their notion of language levels, where only some con-
structs of the full Racket language are available, could be simulated using pur-
posefully incomplete type rules.

7 Conclusion and Future Work

We have shown how a second stage in the type checking and inference process can
be used in a constraint-based type engine to introduce custom error messages
for DSLs. The way in which that information is conveyed to the compiler is
via specialized type rules. The ability to depend on partial type information is
provided in a dedicated fragment of the type rule.

Right now, our prototype only compiles programs for a specific subset of
Haskell. We aim to implement our ideas in an actual Haskell compiler, and
evaluate the power of specialized type rules for realistic libraries and programs.

In the future, we want to ease the description of specialized type rules in
several ways. Right now there is no way to abstract common type rule patterns,
although one may expect very similar looking rules for a big library. We aim
to introduce parametrized type rules, which can be reused in different contexts
by providing the missing moving parts. Another possibility is to help the DSL
writer by giving a way to obtain the default type rule for a given expression.
That type rule can later be refined by changing the priorities for blaming and
adding custom error messages.

Another area which we aim to research is how tools can aid in the process of
writing and understanding specialized type rules. For example, a graphical user
interface might help when writing complicated expression matchers. Another
interesting tool is a type rule debugger, which shows which rule has been applied
at each point in the tree, in order to diagnose problems when a rule is applied
unexpectedly more or less often than expected.

Type Error Diagnosis for Embedded DSLs 697

References

1. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

2. Christiansen, D.R.: Reflect on Your Mistakes!. Lightweight Domain-Specific Error
Messages, Presented at TFP (2014)

3. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1982, NY, USA, pp. 207–212. ACM, New York (1982)

4. Diatchki, I.: Custom type errors. https://ghc.haskell.org/trac/ghc/wiki/Proposal/
CustomTypeErrors

5. Giorgidze, G., Grust, T., Schweinsberg, N., Weijers, J.: Bringing back monad com-
prehensions. In: Proceedings of the 4th ACM Symposium on Haskell, Haskell 2011,
NY, USA, pp. 13–22. ACM, New York (2011)

6. Gundry, A.: A typechecker plugin for units of measure: domain-specific constraint
solving in GHC haskell. In: Proceedings of the 8th ACM SIGPLAN Symposium
on Haskell, Haskell 2015, NY, USA, pp. 11–22. ACM, New York (2015)

7. Haack, C., Wells, J.B.: Type error slicing in implicitly typed higher-order lan-
guages. Sci. Comput. Program. 50(1–3), 189–224 (2004)

8. Hage, J., Heeren, B.: Heuristics for type error discovery and recovery. In: Horváth,
Z., Zsók, V., Butterfield, A. (eds.) IFL 2006. LNCS, vol. 4449, pp. 199–216.
Springer, Heidelberg (2007)

9. Hage, J., Heeren, B.: Strategies for solving constraints in type and effect systems.
Electron. Notes Theor. Comput. Sci. 236, 163–183 (2009)

10. Heeren, B., Hage, J.: Type class directives. In: Hermenegildo, M.V., Cabeza, D.
(eds.) PADL 2004. LNCS, vol. 3350, pp. 253–267. Springer, Heidelberg (2005)

11. Heeren, B., Hage, J., Swierstra, S.D.: Scripting the type inference process. In:
Proceedings of the Eighth ACM SIGPLAN International Conference on Functional
Programming, ICFP 2003, NY, USA, pp. 3–13. ACM, New York (2003)

12. Heeren, B., Leijen, D., van IJzendoorn, A.: Helium, for learning Haskell. In: Pro-
ceedings of the 2003 ACM SIGPLAN Workshop on Haskell, Haskell 2003, NY,
USA, pp. 62–71. ACM, New York (2003)

13. Heeren, B.J.: Top Quality Type Error Messages. Ph.D. thesis, Universiteit Utrecht,
The Netherlands, September 2005

14. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv.
28(4es), Article No. 196 (1996). http://dl.acm.org/citation.cfm?id=242477

15. Koops, H.V., Magalhães, J.P., De Haas, W.B.: A functional approach to automatic
melody harmonisation. In: Proceedings of the First ACM SIGPLAN Workshop on
Functional Art, Music, Modeling & Design, FARM 2013, pp. 47–58. ACM (2013)

16. Lee, O., Yi, K.: Proofs about a folklore let-polymorphic type inference algorithm.
ACM Trans. Program. Lang. Syst. 20(4), 707–723 (1998)

17. Lorenzen, F., Erdweg, S.: Modular and automated type-soundness verification for
language extensions. In: Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2013, NY, USA, pp. 331–342. ACM,
New York (2013)

18. Marceau, G., Fisler, K., Krishnamurthi, S.: Mind your language: on novices’ inter-
actions with error messages. In: Proceedings of the 10th SIGPLAN Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software,
Onward! 2011, NY, USA, pp. 3–18. ACM, New York (2011)

https://ghc.haskell.org/trac/ghc/wiki/Proposal/CustomTypeErrors
https://ghc.haskell.org/trac/ghc/wiki/Proposal/CustomTypeErrors
http://dl.acm.org/citation.cfm?id=242477

698 A. Serrano and J. Hage

19. McAdam, B.J.: On the unification of substitutions in type inference. In: Hammond,
K., Davie, T., Clack, C. (eds.) IFL 1998. LNCS, vol. 1595, pp. 137–152. Springer,
Heidelberg (1999)

20. Plociniczak, H., Miller, H., Odersky, M.: Improving human-compiler interaction
through customizable type feedback (2014)

21. Pottier, F., Rémy, D.: The essence of ML type inference. In: Pierce, B.C. (ed.)
Advanced Topics in Types and Programming Languages, chapter 10, pp. 389–489.
MIT Press, Cambridge (2004). http://dl.acm.org/citation.cfm?id=1076265

22. Serrano, A., Hage, J.: Specialized type rules in Cobalt. Technical report, Depart-
ment of Information and Computing Sciences, Utrecht University (2015)

23. Snoyman, M.: Developing Web Applications with Haskell and Yesod. O’Reilly
Media Inc, USA (2012)

24. Taha, W.: Plenary talk III domain-specific languages. In: ICCES 2008, Inter-
national Conference on Computer Engineering Systems, 2008, pp. xxiii–xxviii.
November 2008

25. Voelter, M.: DSL Engineering - Designing, Implementing and Using Domain-
Specific Languages. CreateSpace Independent Publishing Platform, Hamburg
(2013)

26. Vytiniotis, D., Peyton Jones, S., Schrijvers, T., Sulzmann, M.: OutsideIn(X): mod-
ular type inference with local assumptions. J. Funct. Program. 21(4–5), 333–412
(2011)

27. Wadler, P.: Comprehending monads. In: Proceedings of the 1990 ACM Conference
on LISP and Functional Programming, LFP 1990, NY, USA, pp. 61–78. ACM,
New York (1990)

28. Yorgey, B.A.: Monoids: Theme and variations. In: Proceedings of the 2012 Haskell
Symposium, Haskell 2012, NY, USA, pp. 105–116. ACM, New York (2012)

http://dl.acm.org/citation.cfm?id=1076265

	Type Error Diagnosis for Embedded DSLs by Two-Stage Specialized Type Rules
	1 Introduction
	2 Constraint-Based Type Inference
	2.1 Syntax-Directed Constraint Gathering
	2.2 Solving Order Matters
	2.3 Constraint Scripts

	3 Specialized Type Rules
	3.1 Example DSLs

	4 Two-Stage Specialized Type Rules
	4.1 Improving the Example DSLs
	4.2 Implementing Pruning

	5 Soundness and Completeness
	6 Related Work
	7 Conclusion and Future Work
	References

