
Chapter 9
Model Evaluation

The preceding chapters gave an overview of the climate system and its components as
well as a primer on how we simulate those components, but even so we’ve just
skimmed the surface. Why should we trust a climate model? Generally, we gain trust
in a model through evaluation and validation of the model. We then use the model to
make projections of the future. In this chapter, we describe the basics of how climate
models are evaluated and how they are tested. The language and terms used in this
discussion can be confusing. For example, the terms validation and evaluation are
often used to mean different things, and a projection is not the same as a forecast.We
will see why shortly. Testing models is a critical part of the development process.

9.1 Evaluation Versus Validation

Evaluation is the process of understanding a model and how well it works for a
specific purpose. It is the process of ascertaining the value of a model. Since a
model (whether a blueprint or a physical model of an object like a car or an engine)
is a representation of an object, it is usually not an exact replica in some way. In
other words, the model contains some simplifications. Validation is the process of
ascertaining or testing the “truth” of a model. And since all models are incomplete
representations of reality, we are not really seeking a perfect representation of the
truth. Instead, we are seeking the value to be found in an imperfect representation
provided by a model. Often the key aspect of value comes from knowing how good
or bad the model is relative to observations. The goal is really to figure out what
value a model has (by evaluation). The value depends on the application, as we
make clear in this and later chapters.

Look at common models in the world around us. A picture, even a photo, is an
imperfect representation of a three-dimensional object, but our brains use pictures
as a model to understand objects. The picture or model is not the actual object. It
might be a scale model of a building, or a schematic picture of two parts of a piece
of furniture that will fit together. Thus, all models are incomplete or wrong in some
way. For example, you can’t sit in a scale model of a chair, and the
strength-to-weight ratio of a scale model is probably very different from that of the
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actual chair. But most models are useful, even if they are wrong in some way. They
tell us something about the object or system being represented. In other words, a
model of a structure is built so that we can better understand what something will
look like. Schematic diagrams help us understand how to put two pieces together.
We evaluate models to understand how well they represent particular aspects of the
system: These representations have value. The better the model for a particular
metric, the greater its value for a particular purpose.

9.1.1 Evaluation and Missing Information

The evaluation process is usually indirect, and there is often uncertainty in what we
are evaluating the model against. We have to evaluate a climate model against the
climate system using imperfect and incomplete or missing information. Generally,
we do not have a complete and accurate description of the climate system. Because
climate is a statistical measure (the distribution), we have to build up statistics. Our
statistics may not be complete, especially for extreme events. For instance, what is a
1 % chance of having a certain amount of rain (a lot or a little) in a season? If we
only have 50 years of records, we do not really know: The lowest or highest
seasonal rainfall is a 2 % chance if it is random (1/50).

We generally have distributions that are not well described. We may be missing
critical information. For climate, we need information in the past, and we cannot go
back and collect more information. If we are concerned with the climate some-
where, but we have no records, it is hard to describe the distribution of climate. This
is incomplete information that cannot be taken again.

In addition to the lack of information, the observations we do have are generally
not perfect: Observations contain errors. If the errors in observations are known, they
can be corrected for. A great deal of work is done to test and evaluate observations to
understand errors and ensure accuracy. Where it can be difficult is if the errors are
unknown, and if the errors (particularly unknown errors) change over time.

A good example of observational error is the measurement of temperature. Of
course records can simply be missing: There were no records of temperature before
a practical thermometer was invented and used in the Middle Ages.1 Galileo Galilei
was one of the first, in the late 16th or early 17th century, to develop a liquid-filled
tube that changed volume with temperature. But it took another 100 years or so to
agree on a standard unit of measurement. Daniel Fahrenheit (1724)2 and Anders
Celsius (1742)3 both proposed scales that are still in use (with some variations)

1For a description of the development of the thermometer, see McGee, T. D. (1988). Principles
and Methods of Temperature Measurement. New York: Wiley Interscience.
2If your Latin is good, see Fahrenheit, D. G. (1724). “Experimenta et Observationes de
Congelatione aquae in vacuo factae.” Philosophical Transactions of the Royal Society, 33(381–
391): 78. doi:10.1098/rstl.1724.0016.
3Described in Benedict, R. P. (1984). Fundamentals of Temperature, Pressure, and Flow
Measurements, 3rd ed. New York: Wiley.
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today. But thermometers have changed over time, and although temperature records
exist back to 1800 or so, their accuracy is very different from thermometers in use
today. Even modern instruments are different from each other and change over time
(discussed later in this chapter). How does this affect climate records? Suppose a
temperature measurement is conducted over many years at the same place. Suppose
there is a systematic error, maybe the liquid in the thermometer doesn’t rise or
expand as expected, and it reads a colder temperature than the true temperature. If a
new and more accurate thermometer replaces it, then the more recent records will
record a higher temperature, and we might conclude the temperature has warmed.
But the error in the measurement has just changed.

To evaluate a climate model, we simulate the climate of a particular point in the
system with a model and then compare that simulation against a set of observations.
Recall that climate is the distribution of something like temperature or precipitation
at a particular point. Thus, models are evaluated against the distribution of possible
states, not just the mean state. Often what we really care about is how the model
simulates extreme events such as floods, heat waves, droughts, or tropical cyclones.
We may not care about the mean.

We construct a distribution of temperature or precipitation observations to
compare our model against. But those observations may have either systematic
errors (like a bias in the observation, shifting the mean of the distribution), or there
may be random errors in the observed distribution (see Chap. 1). The observed
distribution may be undersampled, particularly for extreme events (see Fig. 9.1).
Figure 9.1a is a sparse distribution. There are a small number of points (25) drawn
randomly from a distribution, where the probability (vertical axis) of a value
(horizontal axis) is what we want to find out. The distribution has a most likely
value at 100. Figure 9.1b shows the probability distribution function from the
sparse sample: There are no points greater than 104 or less than 97. Figure 9.1c
shows 3000 samples from the same distribution, whose probability distribution
function is represented in Fig. 9.1d. Now it is clear the most likely value is 100, and
a small but significant number of points have values less than 97 or greater than
104. The problem represented in this figure is similar to the question: If we are
trying to represent the extremes of a distribution that occur infrequently (once every
100 or 500 years, for example, like for a “500-year flood”), how do we know what
those probabilities are from 50 years of data? This is a problem particularly for
understanding and evaluating extreme events.

What does it mean to evaluate a model for prediction? If the model is wrong in
some way, you need to know that. The key question is whether the model is
accurate for what you want to predict. If you want to predict the climate in the
tropics, you might not need a detailed model of sea ice or of snow cover. If you are
in polar regions, it is critical to have a detailed representation of snow and how it
absorbs and reflects energy from the sun. But the climate system is interconnected,
so there are limits to what can be ignored, and climate models seek to represent
consistently the entire possible set of states of the system. Here’s another example.
Say that you want to predict the weather for a few days. You can probably fix the
carbon dioxide concentration in the model. You may also not need to worry about
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small errors in the energy budget in such a model. We need to evaluate models for a
purpose and assess whether they are useful for a particular purpose. The weather
prediction model that does not conserve energy may be fine for 48-h forecasts, but it
is likely not a great climate model.

Evaluation of models also involves comparison of different models. There are
about 25 different climate models of varying complexity that help inform our
understanding of global climate. In Chap. 11, we discuss details of how these
models are related or independent, but they represent the best estimates of the
climate system. Each estimate will be different since the representation of the
system is quite different. We can also evaluate models against each other.

9.1.2 Observations

For models, the primary evaluation method is to evaluate the processes or results of
models against observations. Observational uncertainty is a key problem.
Observations are biased due to sampling uncertainty (gaps in records), as illustrated
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Fig. 9.1 Sampled distributions. Points representing individual observations are randomly sampled
from a distribution with a mean of 100 and a standard deviation of 2. a Sample with 25 points.
b The probability distribution function (PDF) of these points. c Same distribution with a sample of
3000 points. d The PDF of these points
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in Fig. 9.1, but also due to systematic errors in measurement. It is often as important to
know the uncertainty of a measurement as it is to know the numeric value of the
measurement. Sometimes, knowing the uncertainty is even more valuable: If you do
not understand the uncertainty in an observation, it is not possible to understand if a
model is statistically the same (correct) or different (wrong) compared to an obser-
vation. If the mean temperature is 68 °F (20 °C), and a model predicts 72 °F (22 °C),
is the model wrong? If the expected error or uncertainty in the observation is ±4 °F
(2 °C) or larger, the model is correct. If the observed uncertainty is smaller than ±4 °F
(2 °C), then the model is wrong.

Figure 9.1 addressed the sampling uncertainty of not knowing the “true” dis-
tribution. Figure 9.2 illustrates the difference in distributions. If there is a lot of
variability or spread about the mean (which can be measured statistically by the
standard deviation; see Chap. 10) in the model and observations, then the model is
not statistically different from the observations at some level of probability.
Separating the black and blue curves is hard; separating the red and blue curves is
easier, even though the red and black curves have the same mean.

Scientists often try to estimate a confidence level, or confidence interval, for a
distribution as a way of understanding the expected error. If an observation has
uncertainty, a 95 % confidence interval indicates we are 95 % certain to be within a
given range. In Fig. 9.1d, this range is about 95–105, so 5 % of the observations fall
outside this range. When comparing models to observations, if the confidence
interval for the model overlaps the observation, then the model is not significantly
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Fig. 9.2 Probability distribution functions. Different symmetric distributions: Broad with the
same width (black and blue) but different means and sharply peaked (red) but with a different
standard deviation. Red mean of 9 and standard deviation of 1.5. Black, mean of 9 and standard
deviation of 3, Blue mean of 11 and standard deviation of 3
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different (statistically) from the observation. Often the model statistics are better
known (sampled) than observation statistics (the observations are sparse). For
example, if we have 25 years of observations, we get the samples in Fig. 9.1a. But
with a model, we can run it for 3,000 years to get the samples in Fig. 9.1c.

Models are evaluated not just on the mean state, but also on their representation
of variability. Refer to the distribution functions in Fig. 9.2. You can match a
distribution function mean value (the black curve) with another distribution with the
same mean, but very different width or variance (the red curve). Even the shape can
be different (symmetric or skewed). The mean may be the same for the red and
black curves in Fig. 9.2, but the black curve has twice the spread of the red curve
(higher variance). Thus, the black curve has a higher probability of extreme events
than the narrow red distribution. Even if the means are similar, if the distribution
represents temperature, for example, the climate is a lot different.

The key to evaluating models is to collect observations and the uncertainty in the
observations, and then compare the model as closely as possible to the observa-
tions. Getting the different statistics (mean, variability) correct is critical. Which
statistics are important will depend on the application.

It is also critical to compare like elements of a model with their corresponding
observations. One should not compare apples with oranges, meaning like for like
comparisons are critical. What does this mean in the context of climate observations?

Often observations are not what we think they are. Most observations contain a
model themselves. Consider the following examples, all of which are trying to
measure the same thing: the surface temperature of the ocean.

1. A liquid thermometer contains a substance like alcohol or mercury that expands
and contracts with temperature. This thermometer measures expansion (vol-
ume). To convert this change into a reading, the thermometer needs a scale: a
model for how the material should expand or contract with temperature. Put
alcohol (often colored red) in a mercury thermometer (silver liquid), and you get
the wrong answer.

2. An electronic thermometer contains a piece of metal (called a thermocouple)
that has different electrical properties (usually resistance) with temperature. This
thermometer measures electrical resistance. The device has a “model” of how a
different resistance corresponds to temperature. The model has uncertainty in it.
How much? That may or may not be known.

3. A satellite orbiting the earth sees the emission of the sea surface at a given
wavelength of light as an electronic current generated when a number of pho-
tons (light particles) of a given wavelength (in the infrared, in this case) hit the
detector (usually like a fancy digital camera). The detector converts photons into
electrical charge (current). This thermometer measures electrical current. The
number of photons received is a function of the surface temperature of the ocean
over a given volume, but also of the atmosphere above it. A model is built to
understand the temperature. It is supposed to correspond to the electronic or
liquid thermometer stuck into the ocean at the same point, or at all points over
the region where the satellite is sensing.
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4. You can also build a thermometer like the satellite that senses energy in a
distinct wavelength to read the temperature (an infrared thermometer). This
device may perform more like the satellite, but it is seeing only a few square feet
(1 square meter) of ocean, whereas a satellite may be collecting photons from
many square miles. This thermometer also measures electrical current.

All of these measurements contain models that translate a measurement (volume,
resistance, current) into temperature. These observation models are different, and
they may contain errors. These errors may be due to the imprecise nature of
measuring volume for example, or they may result from the distribution of tem-
peratures in the field of view of the satellite.

Each observation is measuring a different mass of water. For example, the
thermometer is measuring the small region of water around the “bulb.” The ther-
mocouple has a similar sampling area, but maybe a different response time to reach
a constant temperature, and maybe it is stuck deeper or shallower in water. The
infrared thermometer may measure a region that is 1–20 ft (0.3–6 m) across on the
surface rather than, say, 1–3 in. below it, and the satellite is measuring the surface
emission of maybe 0.6–30 miles (1–50 km) of the ocean. Even if all of these
temperatures are correct, they measure the thermal energy of different water
molecules.

So what temperature does a climate model use for the ocean surface? The model
might have a temperature of the top layer of the ocean, but that layer might be 30 ft
(10 m) thick. A satellite or infrared thermometer at the surface sees the emission
from just a small thickness of the surface. As anyone who has been in a stratified
lake or ocean knows, the average temperature of a thick layer of water below the
surface may be much colder than the temperature at the top. The model is repre-
senting the heat content of the entire layer. Often models have a “skin” temperature
to more closely match observations. Another way to do the comparison is to
estimate not the temperature from the model, but rather the thermal emission of
photons that would result from that temperature, and this can be compared directly
to the satellite values before a temperature conversion.

The direct simulation of an observation (simulated numbers of photons, as in the
example above) is a particularly useful means of comparison when comparing
complex observations. Consider the properties of clouds. The model that the
satellite uses to turn photons in a wavelength into a description of a cloud (like the
amount of liquid water) can be used in reverse to take the climate model cloud and
determine how many photons at a wavelength it should emit. This makes the
comparison more robust (like comparing red apples to green apples).

The process of evaluating a model, and especially a climate model, thus has
several steps. First is to collect observations and then to analyze and understand the
observations. Understanding includes accuracy of the observations, and the
uncertainty in the observations, which comes from the length of the observational
record (the sampling in time) and the sampling in space as well. There are likely to
be many different observations to compare with a model. Some observations may
be the same quantity, such as several sets of temperature observations. Some
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observations will be different quantities, such as temperature, precipitation, wind, or
soil moisture. Once we have a set of comparisons with observations, we know how
different a model is from observations in many ways. We can decide the value of
the model and whether the model is adequate by having a value higher than some
threshold, such as a sufficiently low error in comparison to an observation. And if
not, or if we are not satisfied, then we seek to improve the model. In a theoretical
sense, since all models are wrong in some way, they can always be improved. Of
course, the same could be said for observations. Understanding the uncertainty in
the observations, including the models that go into the observations, and the dif-
ference between what the observations and the model represents is critical for
evaluation.

9.1.3 Model Improvement

Specifically for climate models, there are many different ways to approach model
improvement. The methods come from an understanding of where the model error
comes from. Models are a series of components (atmosphere, ocean, land) coupled
together. Each component model is a series of processes (e.g., radiative heating,
motions, transformations of water, plant growth) described by parameterizations of
processes (condensation, evapotranspiration, etc.). The processes themselves may
not be represented well. Perhaps the major issue is not describing the basic physics
or chemistry of a problem, but rather the variability below the model scale. An
example might be a chemical reaction with a defined reaction rate. These rates are
measured usually in a laboratory with pure substances. But approximating the same
rate in a large volume of atmosphere, which is not well mixed, may be very difficult
to get right. Thus, parameterizations of processes can be improved, often with
detailed observations of the world around us to see if we can reproduce particular
times and places. Comparisons can be made for individual events, or for many
events to generate an “observed” and “simulated” climate (or climatology) of a
particular place or many places.

Model errors (model uncertainty) can also arise from the complex coupling of
the system rather than from individual processes. Individually the atmosphere can
be driven by surface observations, or it can be coupled to the land and ocean. Often
there are errors in the coupling or the translation that can lead to biases. More
frequently, there are biases in one component or process that affect others, and often
compensating errors arise where one process may be too large, and a competing
process too small, with the result being right, but for the wrong reasons. For
example, if there are too many clouds shading an ice-covered surface, but the
surface is darker than it should be, then you can get the right surface energy
balance, but for the wrong reason. The model appears fine compared to observa-
tions. But how this incorrect balance changes may be different. The hope is that
with sufficient observations (e.g., also measuring the brightness or albedo of the
surface), these biases can be eliminated.
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When evaluating models, we typically find that they differ from each other, as
well as from the observations. This is actually useful. Different climate models
contain different representations of different processes, coupled together in different
ways. It is not surprising that answers will be statistically different when compared.
This applies not just to large-scale climate predictions like the global average mean
temperature well into the future, but also to evaluation of individual events. The
differences are useful, in the same way that the different models of temperature from
a mercury thermometer or an infrared thermometer may be useful for understanding
the uncertainty and variability of temperature.

9.2 Climate Model Evaluation

It is not always straightforward to envision how a climate model is evaluated. The
concept of evaluation involves comparing a climate model to observations. Climate
is a distribution, so the process of evaluation is a comparison of distributions, for
example, a distribution of temperature, between a model and a set of observations.
We have discussed how observations are taken, but how are climate model data
generated to create a distribution? There are different ways to perform a simulation
experiment that integrates a climate model. Since climate models are computer
programs, performing a simulation is usually called running the model (as in
running a computer program).

Climate models are generally run in different ways for evaluation against
observations in the present and past, than for prediction of the future (for which
there are no observations). We discuss some of these ways in the sections that
follow. The different types of simulations are designed to test different parts of
climate models against different types of observations. Understanding the ways that
simulations are run is important for understanding and evaluating model output, and
for understanding the results.

9.2.1 Types of Comparisons

There are several different types of simulations for evaluation of climate models.
Typically parts of a climate model (like the atmosphere) are constrained in some
way (some inputs are specified, such as the ocean surface temperature beneath the
model) to evaluate them against some type of observations for the present or the
past. These can be observations of individual events or case studies. They can also
be representations of climate (averages, variability) over short or long periods of
time, from years to centuries.

Representing individual events is one way to test models. We can try to estimate
individual events such as a particular tropical cyclone (i.e., Hurricane Katrina or
Hurricane Sandy) by starting up the models with observations from just before an
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event, and comparing how the model does. Weather forecast models are typically
evaluated routinely in this way: How well did they do in “predicting” the weather
1 day (or 2 or 10 days) in advance? Such hindcasts are also valuable for improving
parameterizations and representations of processes in a model, maybe changing
how the surface exchange between the atmosphere and ocean makes a better rep-
resentation (i.e., better surface wind speed or precipitation) of a particular storm.
Maybe this applies to all tropical cyclones. Weather models typically undergo
rigorous testing in this manner to generate error statistics and improved forecasts.
For some of the key aspects of climate models, we do not have complete verifi-
cation of our forecasts. We cannot easily evaluate feedbacks due to climate forcing,
for example. The verification piece is hard and has to be approximated.

We can also apply the same comparison to multiple models. For example, what
is the range of model simulations of a particular event or storm, or all storms?
Evaluation is typically conducted for a purpose, since we cannot evaluate every-
thing. If you want to know how tropical cyclones might change in response to
forced climate change, then evaluating the representation of cyclones in current
models is quite important.

These types of experiments can be performed as well with other components of
an earth system model. Observed temperatures and precipitation can be fed to a land
surface model to try to reproduce observations of soil moisture. Or an ocean model
can use specified air temperature and winds to try to reproduce ocean currents.

All of these comparisons can be done for long or short periods of time. For long
periods of time (20 years of observations, for example), the models are used to
generate climate statistics (probability distribution functions) that can be compared
to observed distributions. But models (even climate models) can also be evaluated
using short-term forecasts to try to predict the details of weather events within the
timescale of a few days (just as weather models are evaluated). It is often easier to
focus on particular well-observed locations and evaluate specific cases, or a set of
cases. In these evaluations, models are run like weather forecast models for a few
days, and the statistics of the agreement are evaluated. Using many forecasts
(starting every 6 h) and running for only a few days can be fruitful. Many of the
errors in processes in climate models (like clouds) show up in just a few simulated
days. So different parameterizations can be rapidly tested using short simulations.

9.2.2 Model Simulations

We have described different ways to run climate models for evaluations. These
usually involve constraining the climate model in some way to better represent the
observations. Or one component is replaced with observations (e.g., fixed sea
surface temperatures), and the rest of the model is “forced” to use observations as
boundary conditions. Ultimately, none of the components is fixed and the model
runs with all its components coupled together. But there is still forcing of the
system, usually provided by parts the model doesn’t simulate, such as specifying
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greenhouse gases like carbon dioxide and methane, or estimates of the emissions of
sulfur gas (sulfur dioxide) by volcanoes, or even small variations in the solar energy
that reaches the earth. In this way, model simulations can be designed to try to
reproduce the past of the entire climate system.

Reproducing the past can mean reproducing the last 100 years or so when we
have some observations or even the last 5 years. It can also mean reproducing the
past a long time ago: before measurements were available directly. The oldest
records from thermometers go back to about 1750 or so in a few locations. Before
this, only proxy records are available. Proxy records are indirect records of a
process sensitive to a climate variable (usually temperature or precipitation). For
example, the width of tree rings is often proportional to seasonal temperature and/or
precipitation at a location. Assuming the trees respond the same way in the past as
they do now, records from tree cores can provide seasonal climate information
going back hundreds or even a few thousand years. Present climate can be related to
tree ring growth rates over the last 100 years. The relationship (as a statistical
model) can then be used to estimate temperature and precipitation records at
locations in the past where there are tree core records, but before instrumental
records. The longest lived trees go back nearly 5,000 years (bristlecone pines) but
such proxies are more common for several hundred years (a Ponderosa pine tree can
live 600 years).

Figure 9.3 shows a series of different proxies related to the instrumental record
that goes back to 1750. Boreholes are deep holes that measure the temperature
down for several hundred feet (100–200 m). Since heat moves slowly in the ground,
these borehole temperatures can measure variations in local temperature back
500 years or so. Historical records come from human histories about drought,
famine, volcanoes, or other historical events that might impact climate. For
example: the eruption of Mount Vesuvius in 79 A.D. Ice core records go back
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Fig. 9.3 Paleoclimate proxy
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500,000–800,000 years. Coral reefs and the remains of coral go back nearly a
million years, as do sediment records in lakes, oceans, and coastal regions. These
sediments contain different species of microorganisms that survive well in different
temperature conditions.

For proxy records like tree rings, there is always a model that translates the
proxy into a climate variable, such as how the width of tree rings translates into
precipitation and temperature. Proxies are calibrated on present-day conditions but
then extrapolated to different conditions in the past or future. Note the dangerous
word extrapolate. The assumption is that the past behaves like the future.

Ice cores can also provide some estimates of temperatures, because the isotopic
composition of the water molecules in the ice is related to the formation temperature
(see Chap. 3). Heavier isotopes (atoms with extra neutrons: hydrogen with a proton
and neutron, 2H, instead of just a proton, 1H or just H) move differently between
liquid and ice phases as a function of temperature. Ice cores also provide past
records of stable gases in the atmosphere like carbon dioxide and methane in gas
bubbles trapped in ice. These records go back up to 800,000 years (see Chap. 3,
Fig. 3.2). Records of sediments (such as pollens) can go back even farther. These
records of paleoclimate (paleo—comes from the Greek word for “ancient”) are not
direct measurements of climate, but are proxy records related to climate. So
comparing them to models set up to run for the past is instructive but subject to the
apples-and-oranges problems discussed earlier, and usually take a fairly complex
model (often a statistical model) to interpret. But it is useful for climate models to
find other climates in the past to simulate, as a way of evaluating models for their
representation of the future.

9.2.3 Using Model Evaluation to Guide Further
Observations

An important aspect of testing observations is knowing what to measure and where
to evaluate a model. Models can help us understand what to measure. By looking at
where a model is most sensitive—that is, where small changes in the model itself or
the initial conditions result in big changes in results—we can find the places and
conditions where we need observations to be able to evaluate (and constrain) a
model. In weather forecasting, for example, there are certain situations where we
know that small uncertainties can lead to big errors. A classic example is for
tropical cyclones: Small differences in the temperature and pressure field around a
storm govern how it will intensify or weaken, and in what direction it will move. To
improve forecasts, aircraft fly around the storms and take additional observations.
These aircraft are guided by forecast models that identify where additional infor-
mation can make the most difference to the accuracy of a forecast.

In a climate context, we often do similar things on a larger scale: What climate
phenomena do we not understand? And what observations would better constrain
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the phenomena? We know, for example, that clouds are an important uncertainty in
models. We also know they are poorly sampled. This guides field projects into
critical cloud regions for climate (such as low clouds over the ocean, or in the
Arctic). It also motivates long-term or global observation programs to better
evaluate climate and climate models over time, for example, with better satellite
instruments to measure clouds.

9.3 Predicting the Future: Forecasts Versus Projections

One of the ultimate goals of building a model is to use it for prediction of the future.
Prediction is done in two ways, and these methods—forecasts and projections—are
important to understand when considering climate model results.

9.3.1 Forecasts

A forecast is something that we think will occur, usually assigned a probability
representing our confidence in the forecast. This is common for weather forecasts
(e.g., a weather prediction may call for a 50 % chance of rain at a given place and
time). Some climate predictions are forecasts: a forecast of the next season or for
next year based on what we know now. For events with a long lead time, like El
Niño, we can make forecasts, and some of them have pretty good skill for weeks or
even months in advance. For forecasting, the present state (initial condition) almost
always has an impact on the forecast.

9.3.2 Projections

When we are predicting climate over long timescales, we are really talking about a
projection. Why is a projection different from a forecast? A projection is usually
dependent on things that we do not know about the future. For a weather forecast,
we can assume we know all the important things that can force the weather on the
scale of a few days: the composition of greenhouse gases in the atmosphere, for
example. There may be important uncertainties in the fine-scale distribution, but the
broad emissions are known. But in 50 years, what will the level of carbon dioxide
be? That depends on what humans do, and thus we must estimate important parts of
the system. We do this by constructing scenarios of the inputs needed for a coupled
climate model: those things that force the climate system, such as the solar output or
the composition of the atmosphere. Forcing usually implies effects on climate that
are outside the model, like the sun. Solar output changes slightly over the course of
the 11-year solar cycle, and we can estimate the change in output based on past
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solar cycles. Greenhouse gas emissions occur from natural sources, and these can
be projected forward, but they also come from human emissions. How do we know
what they will be? That requires coming up with estimates of the future evolution of
the climate system forcing, and this is done with scenarios.

Scenarios are used to specify uncertain future inputs. When models are run with
forcing from these scenarios, the results are not forecasts, but projections of the
future, given assumptions about what might happen. The key is that the assump-
tions that impact the projection are outside of the realm of the model. Most climate
models do not try to predict the human emissions of greenhouse gases. Integrated
assessment models however (see Chaps. 7 and 8) try to predict human emissions.
But these models also depend on scenarios. An integrated assessment model may
generate emissions from economic activity, but even that is dependent on a sce-
nario, of population growth, for example.

The common method is to have a series of projections spanning what we think
are the possible states. For current climate models, it is common to have several
scenarios of future emissions of different gases, based on assumptions about human
systems, for example, economic growth and development. Each scenario used to
force a climate model results in a projection. It is not really a forecast. The range of
possible outcomes (projections from probable scenarios) are broadly the forecast:
what we think will happen. So mostly we are considering climate projections of the
future dependent on specific assumptions (scenarios) about what might happen. It is
important in using models to be clear about what is imposed by scenarios and what
the model is calculating. Otherwise, you might end up comparing two model
projections that are different because of scenario differences, not model differences.

9.4 Applications of Climate Model Evaluation: Ozone
Assessment

Perhaps the most comprehensive evaluation of climate models is conducted as part
of the climate science assessment by the Intergovernmental Panel on Climate
Change (IPCC). Model simulations are run by many modeling centers and evalu-
ated by teams of scientists against observations. The IPCC scenarios are discussed
more in Chap. 10, and the results are discussed in Chap. 11, with further application
examples. But climate model simulations are also used to project the evolution of
the stratospheric ozone layer, which has been damaged by inadvertent emissions of
chemical refrigerants containing chlorine. When these chlorine containing mole-
cules break down in the upper atmosphere (the stratosphere), the chlorine acts to
destroy stratospheric ozone, increasing the penetration of ultraviolet light to the
surface. The reactions occur most readily on the unique surface of clouds in the
stratosphere that occur only in polar regions, mostly in the Antarctic, giving rise to a
springtime (September) ozone deficit or ozone hole.
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Climate models are evaluated for their ability to be able to reproduce the con-
ditions for the distribution of ozone, and their chemistry. A comprehensive report
was produced in 2010 for the analysis of the different climate models.4 In particular,
the report focused on evaluation of critical processes in the models and how they
were represented compared to observations. For assessing the impact of chlorine
species on ozone at high latitudes, several different processes need to be repre-
sented. First, the model must simulate the actual chemical reactions and the dis-
tribution of chlorine. But the presence of clouds in the stratosphere in the Antarctic
spring is also necessary, and these cloud processes and their distribution were
evaluated. The clouds are dependent on the water vapor and temperature envi-
ronment. At each step, different observations were used to analyze the models. The
results indicated a few models that had processes that were incorrect (wrong
reactions with chlorine, for example), or that had better or worse cloud distribu-
tions. This information was used in the 2010 scientific assessment of ozone
depletion, particularly in the executive summary of the assessment5 to “select”
model projections and limit the projections shown to the models shown by eval-
uation to have the correct representation of key processes.

9.5 Summary

Evaluation of models is targeted for a purpose: What are models good for and why?
Models that are good for one purpose may not be good for other purposes.
Understanding the uncertainty and, hence, the utility of a model—any model, but
especially climate models—requires extensive testing against observations.

Evaluation of climate models requires some fundamental understanding of the
observations themselves. What is the uncertainty and accuracy in the observations?
As we discuss in detail in Chap. 10, knowing the uncertainty in our observations is
an important part of being able to evaluate the uncertainty in models.

Evaluating climate models is done in many ways but is often done similar to
weather models. Models are evaluated on their representation of past events, either
a single event or a statistical series of events. Evaluation of climate models can also
show where critical processes need to be better understood to constrain climate
model projections. For example, since cloud processes and responses to environ-
mental changes are uncertain, better representation and evaluation of clouds in
climate models is critical.

4See Erying, V., Shepherd, T., & Waugh, D., eds. (2010). SPARC Report on the Evaluation of
Chemistry-Climate Models. SPARC Report 5, WCRP-132, WMO/TD-1526. Stratospheric
Processes and Their Role In Climate, World Meteorological Organization, http://www.sparc-
climate.org/publications/sparc-reports/sparc-report-no5/.
5World Meteorological Organization. (2011). “Executive Summary: Scientific Assessment of
Ozone Depletion: 2010.” In Scientific Assessment of Ozone Depletion: 2010, Global Ozone
Research and Monitoring Project–Report No. 52. Geneva: Switzerland: Author.
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Predicting the future is often more of a projection than a forecast. A projection is
dependent on outside factors, such as emissions dependent on economic growth and
population. Thus, it is not truly a forecast because the outcome is dependent on
factors outside of the model. This is a source of uncertainty that is partially outside
of our knowledge of the climate system, and independent of our ability to design
climate models to predict the system.

Understanding uncertainty is one of the keys to prediction, the subject of
Chap. 10.

Key Points

• Proper evaluation of models requires observations and estimates of observa-
tional uncertainty.

• Observations also contain uncertain models.
• Climate models can be evaluated on many past events, or even a single past

event.
• Projections of the future depend on scenarios that force climate models.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
Noncommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/) which permits any
noncommercial use, distribution, and reproduction in any medium, provided the original author(s)
and source are credited.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.
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