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Walther Wachenfeld and Hermann Winner

22.1 Introduction

With autonomous driving, a technological system will replace humans in driving auto-
mobiles. The car industry, universities, and large I'T companies, are currently working on
implementing functions permitting a technological system to take on vehicle operation.
Their focus is on the tasks that are also done by humans: of perception, cognition, deciding
how to act (planning) and carrying out this behavior (acting). In addition, humans possess
further capabilities not directly connected to driving a vehicle. For example, learning
directly changes people’s capacity to tackle tasks. In the driver-vehicle-environment sys-
tem, this human capability raises a question: Will the technological system that is to replace
humans also exhibit a capacity to learn? In the most diverse fields, primarily IT-driven
ones, there are learning and learned systems of the most varied kinds, which rival con-
ventional analytical systems in their performance. What marks out vehicle automation,
though, is firstly its relevance to safety; secondly, how cars as a product additionally differ
from other IT-industry goods in their system life cycles. Both of these particularities, with
their challenges and attempts at solutions, are the subject of this chapter. Attention is also
given to collective learning in the context of autonomous driving, as directly exchanging
with and copying from the learned is one of the particular advantages machine learning has
over the human version.

Replicating human learning in machine learning occupies a whole area of research. It is
expected that examining the processes of human learning will both provide a deeper
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understanding of this process and improve applied machine-learning methods. With ref-
erence to the currently understood difference between both forms of learning, machine
learning is understood in this chapter as an algorithm generated by a human. The running
of the software follows these algorithms, just as with all other software. Our objective is
not to compare a learning human with a learning robot. Rather, it is to discuss why,
whether, and with which challenges and approaches machine learning is possible in its
current form in autonomous driving. This chapter portrays the view of vehicle technology
in particular on this question, and is based on experience from the literature for the area of
machine learning.

22.2 Vehicle, Environment and Learning Drivers

When a driver drives a vehicle in any environment, it constitutes target-oriented behavior.
According to Rasmussen [1, 2], people display behavior here that can be divided into
three areas. They behave according to their skills, rules, and knowledge (see Fig. 21.6 in
Chap. 21). Skill-based behavior is described by Rasmussen [1] as stimulus-response
automatism, which people overcome in routine everyday situations without placing
intensive demands on cognitive capacities.

Rule-based behavior proves to be more cognitively demanding. It requires associative
classification in addition to perception and motor actions. People in this case match the
recognized situation to a known rule and, based on this, select from a repertoire of
behavioral rules. People have learned these rules purposely, or noticed (“saved”) them in
past situations and behavior. This gives people the ability to identify similar situations and
transfer learned rules to them.

Should situations arise that are new for people, and for which they have no trained
behavior, then their response will be knowledge-based. People try, based on their trained
knowledge, to generate and evaluate the alternative ways to act that are available to them.
The subjectively optimal alternative is selected and carried out.

Rasmussen’s [1] understanding of target-oriented behavior makes clear what is meant
by a learning driver. At the beginning of their “career,” a driver builds up their basic
knowledge of road traffic in theory courses at driving school. This is then tested. In the
process, this knowledge builds on what has already been learned by living in society. In
addition, rule-based behavior is trained via theory and practice lessons. Upon obtaining
their driver’s license, people can then drive on public roads without further supervision
(exception: driving when accompanied with a license at 17 in Germany). However,
drivers at this point in time have neither learned all the rules nor processed the knowledge
needed for their future lives on the road. With each new piece of experience they gain,
their behavior transforms from knowledge-based to rule-based, and from rule-based to
skill-based. Training thus enables an increase in efficiency in human behavior [1].

If we consult the figures for car drivers involved in accidents per million passenger
kilometers, then according to Oswald and Williams [3, 4] the risk falls with increasing
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human age, until it starts to rise again from 40 to 50. According to Burgard [5], experience
gained with age is responsible for this, alongside character skills (personality) and mental
and physical prerequisites. If we view the assimilation of experience as a learning process,
then the capacity to learn contributes to improved driving skills [6].

If road traffic followed clear and known rules, people would not need to behave in the
ways described above. Road traffic, however, is an open system consisting of static and
dynamic objects, and a multitude of environmental factors such as light levels and rain.
Even if only to a limited extent compared to beginner drivers, experienced road users
continue to come across unknown situations that need dealing with. It is because people
show just this knowledge-, rule- and skill-based behavior that today’s road, with its
efficiency, accuracy, and safety, is possible.

Further, this behavior leads to individually varied driving behavior. In one and the
same situation, drivers act differently and have different preferences in selecting distances,
speeds and acceleration.

It is precisely these capabilities enabled by skill-, rule-, and knowledge-based behavior
that will be taken out of driving upon automation, and replaced with corresponding
capabilities in driving robots.

22.3 Learning Technical Systems

The term machine learning stands for a research area dealing with methods for designing
algorithms. A particular feature of these algorithms is the automatic improvement of
technical systems based on experience. In this, the automatic improvement follows rules
and measures previously defined by the human developer. The hotly debated ideas of
completely free and creatively acting machines, were they to exist at all, are not our focus
here. In employing machine learning, a clearly defined task is needed, with accompanying
assessment metrics and (training) data.
An oft-used quote for the definition of machine learning is from Mitchell [7]:

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

According to Mitchell [7], machine learning has proved itself in service particularly in
the following circumstances:

(a) There is a large quantity of data in a database that, by implication, potentially
contains valuable information that can be extracted automatically.

(b) People only have limited understanding of a certain area and thus lack the knowledge
for effective algorithms.

(¢) In tasks demanding dynamic adjustment to changing conditions.
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How these definitions and their usage areas fit to autonomous driving is discussed in
Sect. 22.4. First, however, we shall take a look at the processes of machine learning. With
the aid of examples from various fields, we will explore the range of usage possibilities
before examining the task of autonomous driving in particular.

22.3.1 Overview of the Various Machine-Learning Processes

Breiman [8] noted the following in 2001:

In the past fifteen years, the growth in algorithmic modeling applications and methodology
has been rapid. It has occurred largely outside statistics in a new community — often called
machine learning.

In [9], the first machine-learning operations are traced back to McCulloch and Pitts in
1948, among others. The multiplicity of learning processes thus makes a detailed
description of all of them impossible. Therefore, the following will describe categories of
learning problems into which we may at least group the processes [10—12].

Supervised learning
Supervised learning, or learning with a teacher, is characterized by pre-assessed training
data (labeled data). This training data—the experience that machine learning builds on—
contains the input and output parameters of a learning problem. In the classification of
whether airbags are deployed in an accident or not, for example, training data would
consist of acceleration values and the corresponding assessments (deploy or not). These
assessments must be made by an expert/teacher, for example, or by observation over time.
The learning process then uses these empirical values to determine the output for newly
observed input values. In the transfer of empirical values onto new input values, we can
distinguish [10] between lazy (memory-based) learning and eager (model-based) learning.
In lazy learning, the training data are saved during the learning and a similarity measure
is defined. This similarity measure can vary in its complexity, and ranges from the simple
Euclidian distance to complex distances in case-based reasoning. When output values are
sought for new input values, the most similar training data to the new case are determined
and output values derived from them. This procedure corresponds to transductive infer-
ence [13]. In eager learning, in contrast, a global model based on training data is con-
structed during the training phase (induction). Output values for new cases are obtained by
deduction from the model.

Unsupervised learning

For unsupervised learning, or learning without a teacher, training data are also on hand,
although in this case with no assessment or output values (unlabeled data). In this learning
process, the aim is to find a structure in the data, and classify the data according to the
structure. The training data are here used to reveal these structures and, based on this, to
classify newly observed input values.
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Reinforcement learning

Reinforcement learning differs from both of the previous processes in that few or no
training data are available to begin with. The training data required for a striven-for
improvement are collected by an agent' itself by carrying out the task to be optimized
according to a fixed scheme. An assessment of the execution of the task feeds back into
the learning process, forming a training dataset of input and output values that are used for
further optimization steps. The approaches of reinforcement learning are exposed to the
so-called innovation dilemma, for “exploration” and “exploitation” contradict each other.
March [15] describes it thus:

Exploration includes things captured by terms such as search, variation, risk taking, exper-
imentation, play, flexibility, discovery, innovation. Exploitation includes such things as
refinement, choice, production, efficiency, selection, implementation, execution.

Corresponding to the learning problem, a balance for both has to be found, as, on the
one hand, an optimal execution is sought in a partly unknown search area, and, on the
other, this search is limited by external conditions such as costs, safety and time.

Alongside the question of whether, and in what form, training data are available, the
learning problem can also be distinguished based on the use of training data.

Batch learning

In batch, or offline learning, a set of training data is applied at a time point to make use of
the learning methods. If the learning method produces a model, for example, this model is
not updated by further experience gained during its use.

Online learning

Online learning is characterized by an iterative process, in which new experiences are
incorporated into the learning process. The aim is to continually optimize how the task is
tackled, in the process incorporating experience from the operation. This results in system
behavior changing from experience and thus over time.

These different types of learning problems require the use of various methods of
machine learning [12]. These range from decision trees, artificial neural networks, and
genetic algorithms to support vector methods, instance-based learning, hidden Markov
models, value iteration and Q-learning, etc. These methods have in common that how well
they deal with a learning problem depends on three fundamental properties. Firstly, the
methods are only in a position to optimally solve the learning problem if data (experience)
relevant and representative to the operation are used in sufficient quantity for learning.
Secondly, the same applies for the quality of training data, so that the handling of noisy,
inaccurate or partial data is especially necessary for actual measured variables. Alongside
the test data, the assessment of performance (P) represents a further challenge. The

'"Russell [14] defines it thus: “An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors.”.
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methods will also only correctly deal with the learning problem if the assessment is valid
with real data for the whole operational area.

22.3.2 Examples

The following examples serve as a small sample for areas that can be addressed with the
processes of machine learning.

Airbag deployment [16, 17]

The learning problem consists of classifying sensor values to order the deployment of a
vehicle airbag. A classifier is learned for this, which puts accidents either in the class of
“deploy” or that of “do not deploy.” In this example, the dataset of an accident has 30
dimensions, and consists, for instance, of acceleration, pressure and impact-sound sensors
at various positions in the vehicle. For 40 training datasets, in which the sensor values are
recorded for representative accidents, it is annotated (labeled) whether an airbag
deployment would be necessary or not.

Vehicle-path control system with artificial neural network [18]

The ALVINN (Autonomous Land Vehicle In a Neural Network) project had the aim of
positioning a vehicle on its optimal path within its lane. The training data consisted of the
input parameters of the individual pixels of a camera image, and the associate output
parameters of the steering angle. These are recorded during the journey of a human driver.
An artificial neural network whose 960 input nodes receive the individual values of the
30 x 32 pixels of the camera image is learned. These input nodes are connected via 4
hidden nodes with the 30 output nodes, which each stand for a different curvature.

22,4 Automation that Replaces the Learning Driver

For the car industry, machine learning and artificial intelligence are of interest not only for
the automation of driving, but also in other fields such as design, production and
after-sales management [19]. These areas, and that of infotainment, are not our concern,
however. Our focus is on vehicle automation, which, as presently understood, consists of
the following components in moving a vehicle on public roads:

1. Perception of the environmental and vehicle state variables

2. Cognition of these state variables to arrive at a representation of the world
3. Behavior planning based on this representation

4. Execution of selected behavior

These components give the properties that have, according to Mitchell (see Sect. 22.3),
already led to successful machine-learning operations. Increasing perception of environ-
mental and vehicle state variables gives an enormous amount of machine-readable
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information. Firstly, this is down to continued increases in sensor performance and signal
processing power, so that a detailed picture of the world is available for machine pro-
cessing. Secondly, the numbers of sensors and vehicles equipped with them are rising as
we approach full automation. It follows from this that the quality and quantity of training
data for machine learning is increasing. The second property especially applies for certain
areas of cognition and behavior decisions, since work on the human processes that are to
be replaced is largely theoretical at this stage (Sect. 22.2). Based on the EU-funded
Human Brain Project and associated studies, it is evident that there are still many ques-
tions that remain unsolved, and that the knowledge needed for effective algorithms is
lacking. The third property is generated by road traffic. As already described in Sect. 22.2,
the world in which vehicles move requires adjustments to be made to changing envi-
ronmental conditions. This is why machine learning in automation suggests itself to be
implemented in such a way that it will be able to adjust to these changes.

Alongside these three motivators for employing machine learning, however, there are
particular challenges opposed to it. What the four components needed for autonomous
driving (perception, cognition, behavior planning, behavior execution) particularly have in
common, as opposed to other machine-learning applications, is the intervention in the
actual behavior of the vehicle. This means that, regardless of where undesired behavior
appears in this chain, it may develop into a breakdown or an accident. In order to debate
the deployment of machine-learning processes in vehicle automation, we will now classify
safety-related systems and allocate vehicle automation to one of these classes.

22.4.1 Safety Systems

According to IS026262, safety is the “absence of unreasonable risk.” The extent to which
a system in a car (or also generally) impacts this safety can be determined in the following
ways ([16] extended):

1. Not safety-relevant
Errors in these systems do not lead to any dangers for persons or the environment.
Language recognition, where machine-learning processes are often employed on [20],
is not safety-relevant, for example, when used in infotainment. Such systems are
therefore already in use; although errors do regularly crop up to some extent, they do
not negatively impact safety.

2. Safety-relevant
A system is deemed relevant to safety if an error in it may result in danger to persons
or the environment.

a) Decision-making support systems
Here, the decision maker has the choice of whether to act on the system’s suggestions
or not. An anesthetist, for example, receives suggestions for dosages based on
information on the patient, operation, and previous experience. A system error would
endanger the patient, though only when the anesthetist follows the suggestion [21].
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b)

Systems for monitoring and diagnosis

A system error leads to a warning failing to appear and can, if the error is not
otherwise spotted, become a danger to people and the environment. If a diagnostic
system in industrial machinery fails, the absence of this diagnosis may be dan-
gerous [22].

3. Safety-critical
Systems where an error directly leads to persons or the environment being endangered.

(@)

(b)

Supervised/correctable automation

If an action is carried out automatically without additional conformation, then a
failure of an automatic system directly leads to a hazard for people or the envi-
ronment. If the system is additionally supervised by a human, and if the possibility
of correcting it is provided, then this hazard may be avoided. The person super-
vising brings the system back under control, so that human involvement creates
fault-tolerance. It is to be kept in mind here that, particularly with increasing
automation of processes and the further relieving of human tasks, people’s
capacities to supervise an automated process will decreases [23]. The so-called
congestion assistant, as partially automated vehicle control, represents just such a
safety-critical system, as faulty system behavior would pose a direct danger. This
danger, however, is addressed by the driver’s supervision, because the congestion
assistant is developed in such a way that humans, by intervening, correct the faulty
system behavior. The system is designed for controlability.
Unsupervised/non-correctable automation

The most critical form of automation in terms of safety is that with no possibility of
correction. Without supervision, a failure of the system leads to danger and,
depending on the situation, damage to people or the environment. Fully automated
driving falls in this category, as, by definition, the vehicle’s occupants are no longer
supervising it. Undesired behavior, or a failure or malfunction not addressed by the
system, thus leads directly to people and the environment being put in danger and
possibly harmed.

This categorization and the classification of autonomous driving in the unsupervised
automation category shows why machine-learning processes as they currently stand
cannot simply be carried over from the two levels less critical to safety (non-critical and
relevant). Not without reason are the safety-critical examples from Sect. 22.3.2 reports on
studies without reference to non-supervised application.

The application of machine-learning processes in unsupervised or non-correctable
automation requires further differentiation, as different challenges arise depending on the
point in the vehicle’s system life cycle.
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22.4.2 Challenges and Problem-Solving Approaches in the Various
Phases of the System Life Cycle

In this account, vehicle life cycles are broken up into five phases—research, development,
operation, service and change of user/end of vehicle life—as various challenges await
machine learning in each phase.

22.4.2.1 Research

When machine learning is applied in the research phase, the aim is mainly to establish
what its processes can do. The examples range from online, offline, supervised and
unsupervised, to reinforcement learning. Exemplary training datasets are drawn on as
databases. The same applies when assessing process performance and robustness. This is
carried out under controlled and/or supervised conditions, based on exemplary test data or
test runs. In particular, controlled conditions and/or deploying trained test drivers
(Category 3a Sect. 22.4.1) make faults tolerable, so that there are a multitude of existing
examples. Accordingly, proving its safety does not belong to the challenges of using
machine learning. The challenge here lies in accessing representative data for its later area
of application. The question thus arises of whether the research findings can be transferred
to the development and operational phases of the system life cycle.

22.4.2.2 Development

Learning during the development phase can be compared with offline learning. As many
application-relevant training data as possible are selectively gathered, for example to learn
a model during development.

The fulfilling of safety demands in the results is, as in all other safety-relevant vehicle
components, verified and validated, so that the vehicle can be released for production and
operation. Afterwards, neither the learned model nor the classification change further. The
learning process does not work online and is not adaptive, and thus does not use further
data gained in operation as training data to update the model or classification. During use,
it thus constitutes a time-invariant system, where the known methods for verification and
validation remain valid. But it should be borne in mind that the results of the various
machine-learning processes can vary in their interpretability. For example, learned deci-
sion trees of limited extent, or a manageable set of learned rules, are easy to interpret [24]
and thus permit the use of white—box test procedures [25]. Other methods such as random
forests or sub-symbolic neural networks, on the other hand, are difficult for testers to
interpret and thus represent a black—box.

For such complex components, proving safety poses a large challenge compared to
analytical models. Because the brute force test,2 as for most analytical models, is not

The brute force approach stands for testing all possible combinations of the parameters influencing
the object under test behavior.
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suitable [26] for systems with high input dimensionality, the following four counter-
measures from Otte [24] are often used as a result:

(a) Breaking down problems of many dimensions into submodels of fewer dimensions,
so that the submodels can be interpreted and validated by experts

(b) Employing reference solutions which permit the safety of the learned components to
be analyzed

(c) Limiting the input, output and state variables to specified value ranges, such as those
of the training data, for example. These limits may be static, but also dependent on
other variables

(d) Limiting the dynamics of the input, output and state variables to minimal, maximum,
positive or negative changes per time unit

Each of these measures restricts the potential of machine learning in order to allow
testing of the learned model.

22.4.2.3 Operation

When the fully developed and manufactured vehicle is put into operation, data accrue on
the real usage area, the static environment, other users and their behavior, and the vehicle
user and occupants. In addition, the vehicle has data on its machine behavior over time.
This directly available new information, which was previously inaccessible, encourages
the use of online learning processes, and thus also adaptive systems. The vehicle thus
becomes a time- or experience-variant system. This further degree of freedom in a
changing system with no additional supervision results in a particular challenge in testing
and safety validation, one that has not yet been solved for time-invariant autonomous
systems, see Chap. 21. Basically, there are two options for how a system that changes
during operation could be made safe. One option is to limit its adaptivity to a clearly
defined enveloping area, such as the strategies of Adaptive Transmission Control [27].
Here, input, output and state spaces are restricted to a few parameters [28], so that, from
where we stand, validation and verification during the development phase appears to be
possible. Should this restriction contradict the purpose of machine learning during
operation, then an online check of the changing, time-variant and complex system
becomes necessary [29]. The following two approaches can in turn be applied here [29].

Runtime verification and validation

In contrast to conventional procedures of verification and validation during the devel-
opment process by the developer, the system applies verification and validation methods
during operation [26, 29, 30]. In principle, the adaptation process is seen as a feedback
loop. Figure 22.1 shows the four stages of observation, analysis, planning and execution,
which, according to Tamura et al. [30], are necessary for a structured examination of the
adaptation process. This picture can be directly transferred to online learning processes. If
a system adaptation is detected in this process, this then needs checking with runtime
verification and validation processes before being applied to the software running. These
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checks include whether, due to the applied changes to the system, it stays within the
viability zone. For autonomous driving, this means checking that any changes to the
driving robot comply with safety regulations before implementing them.

The procedures applied here, such as model checking or theorem proving, reach their
limits at this point, as described in Chap. 21. Using a software-in-the-loop procedure may
also be possible, although it is questionable if there is sufficient processing power for such
processes in production vehicles.

Validation and verification via monitoring and fault tolerance

If a system safety check prior to updating the software is not possible, a fault may arise
and lead to failure and thus also danger. To avoid this, the system is to be designed as fault
tolerant. Such a fault-tolerant system fundamentally requires two components [31].
Firstly, monitoring of system states and behavior to decide, based on an analysis, whether
there is a fault. Secondly, redundancy is required that can be transferred to in case of a
fault. Figure 22.2 shows this set-up schematically. This principle corresponds to a human
supervisor who takes over a part-automated vehicle control system when a fault occurs.

What this shows is that machine learning during operation poses a challenge, especially
for validating safe behavior. Both procedures—runtime verification and validation and
verification and validation through monitoring—need a way to measure safe driving.
Approaches for such measurements are outlined in Sect. 22.4.3.

Another approach is supplied here by a comparison with human learning. Road users
accept that humans, with no further screening, learn based on the measures they take while
driving and adjust their behavior accordingly. Checking whether adjusted behavior
complies with traffic regulations does not transpire directly but, rather, sporadically via
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police speeding and traffic checks. In addition, other road users report highly erratic
behavior, such as accidents, so that human drivers receive feedback in their learning
process. Transferred to the technical system, this would mean that machine learning leads
directly to an adjustment of behavior. The test or check of whether this adjustment was
legitimate would follow in retrospect from other road users, the police or a special
supervisory authority. This approach reduces the demands placed on online validation and
verification, as the skills of other road users are incorporated. If this test does not take
place until after the functions have been modified, and if there is also no other possibility
of intervention (in the control system), operating the updated but untested functions would
pose higher risks.

22.4.2.4 Service

Alongside machine learning during development and operation, there is a further phase in
the system life cycle where learning can take place. As part of servicing, training data
gathered by the vehicle can be downloaded and the vehicle functions updated. This does
not necessarily require the vehicle’s physical presence [32]. This procedure opens up the
feedback loop in Fig. 22.1. Corresponding to a further development stage, training data
and planned adaptations can be tested, so that the software system can be updated later
after safety has been assured. As these methods of machine learning can involve personal
data leaving the vehicle, security as well as safety needs to be borne in mind. For a more
in-depth look at this, see Chap. 24.

22.4.2.5 Change of User/End of Vehicle Life

Should, as is hoped, a vehicle be able to personalize how it drives for a user, or optimize
this for an area of operation, then, with a change of user or at the end of its life, these
learned capabilities and knowledge should stay with the user and not the vehicle. This
capacity then becomes of particular interest when, for example, ownership patterns change
as in Vehicle on Demand (see Chap. 2) where the user does not purchase a car but only its
mobility service. In principle, it is not difficult for a technical system to transfer knowl-
edge. It is actually a strength of artificial systems that they can transfer this information
without the long-winded learning process. This is examined in more depth in Sect. 22.5.

22.4.3 Measures of Safe Driving

As described in the previous chapters, an evaluation of the vehicle’s driving in safety
terms is needed for both the machine-learning process in general and verification and
validation during operation. In the first instance, it can of course be seen retrospectively if
an accident has taken place, with what impact speed and energy, and how it came about.
This measurement has the drawback that the accident should not, if possible, have taken
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place in the first place. It follows from this that, for a safe system, accidents will be an
extremely rare event and thus hardly suitable for learning from.

What is needed is an evaluation that classifies a journey as unsafe before it exceeds
physical driving limits. To this end, we shall differentiate between deterministic and
stochastic procedures in hazard assessment, as found in [33, 34].

22.4.3.1 Deterministic Procedures in Hazard Assessment
Following [35], we shall in addition distinguish between identifiers from driving dynamics
and identifiers from distances. The easiest values to determine, though with limited
informative value, are the limits for lateral and longitudinal acceleration and yaw rate. In
the 100 Cars Study [33], longitudinal accelerations of greater that 0.7 g are used as
triggers for detecting unsafe situations. Identifying critical situations with variables from
the ego-vehicle is not adequate, as other road users can bring even stationary vehicles into
dangerous situations. It is easy to see that a vehicle’s safety is also influenced by other
traffic in its immediate surroundings.

If the environment is at the beginning first reduced to parallel traffic on one lane in each
direction, time-to-collision (7TC) or its reciprocal value give an indication of how safe a
situation is. For example, in ISO 22839 (Forward vehicle collision mitigation systems),

TTC = ¢
vy
defines the time that elapses until the ego-vehicle collides with an object at distance x,,
assuming the relative speed v, = (vego — vobj) remains constant. This measure can be
applied to both the preceding and the following vehicle. From the TTC, Chan [34] defines
a criticality index for which it is assumed that the severity of an accident is proportional to
the square of the speed:

2

v
Criticality Index = ——
riticality Index TTC

If the speed between the vehicles does not remain constant, the enhanced 77C is used.
In ISO 22839, this is derived thus:

ErTC = oV =2 a e

ar

This equation only applies so long as the relative acceleration a, = (dobj — dego)
remains constant. If a vehicle comes to a stop, the equation needs adjusting, see Winner
[35] on this. These values give an assessment of a state, equivalent to a situation analysis.
To enable an assessment of driving safety for all situations, the following procedures from
[36] are recommended:
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— Number of Conflicts (NOC)
— Time Exposed TTC (TET)
— Time Integrated TTC (TIT)

The names of the procedures speak for themselves, so that we shall not dwell on them
here, but rather refer the reader to [36, 37]. Further simple measure include time headway

Xc

t, =
Vego

and the necessary delay arq to avoid a rear-end collision. Further approaches based on the
foregoing can be found in [37-39].

When vehicles, objects and accelerations moving in a lateral direction are included, for
example, when studying situations at junctions, the metrics for a safety assessment have to
be expanded. Easily the simplest approach is Post-Encroachment Time (PET). This
temporal variable is defined by [40] as “time between the moment that the first road user
leaves the path of the second and the moment that the second road user reaches the path of
the first.”

When observing the lateral direction, there are more objects than just the two
object-vehicles in relation to the ego-vehicle. These can influence the safety assessment
statically, but also in principle dynamically from any direction on the vehicle plane.
Tamke’s [41] approach is, for example, to identify the distance, and the distance’s time
derivation, to all objects in the vicinity of the ego-vehicle using Euclidian norms.
The TTC is determined based on these variables by ascertaining the time until contact
with the vehicle’s bodywork using predictions of behavior. This approach is still classified
as a deterministic procedure at this point, as the behavior of the ego-vehicle and the
dynamic objects follow the “constant turn and constant acceleration approach.” The
approach per se, however, also allows predictions to be made non-deterministically.

Deterministic procedures are suitable for ex-post safety assessments of a carried-out
maneuver or situation. If an online assessment of situations as they happen and a pre-
diction on a time horizon greater than 1 s is desired, however, then its application per se
will be flawed as long as the situation contains uncertainties. Uncertainties here imply that
the development of a situation over time not only has a potential deterministic procedure,
as is often assumed in “constant turn and constant acceleration” models of simplicity, but
rather that many different situations can occur. For example, in calculating the TTC, the
car in front could, instead of slowing down, accelerate to alleviate a critical situation. In
order to incorporate these uncertainties into the hazard assessment, we will now take a
brief look at stochastic procedures.

22.4.3.2 Stochastic Methods in Hazard Assessment

A hazard assessment of two vehicles simply passing each other, as shown in Fig. 22.3,
clearly encourages the use of stochastic procedures. If deterministic behavior and an
extrapolation of speed are assumed, passing like this would pose no danger, as the
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Fig. 22.3 Comparison of
predictions in a passing
situation: deterministic (above)
and stochastic (below)

trajectories and areas occupied by the vehicles do not cross. This looks different when
uncertainties are taken into consideration. If a human-driven vehicle (Fig. 22.3 lower lane,
black) does not stay in its lane, this can be hazardous for the autonomous vehicle
(Fig. 22.3 upper lane, orange) and the immediate surroundings.

The associated risk results from the probability of an accident and its potential severity.
Both values involve unknowns that need to be estimated as accurately as possible.

The principal approach here [42] for determining probability is to predict the trajec-
tories of the ego-vehicle and objects in its vicinity, based on measured state variables. Due
to the uncertainties involving human drivers, sensors and actuators mentioned above, as
well as the interaction between the objects, there is not only one trajectory, but rather a
probability distribution of the states of all objects over time. If the potential areas occupied
by the objects overlap, an accident is probable. The possible states of the objects result
from the dynamic models used and the defined limits for the dynamic variables. In [43], a
single-track model for vehicles is used here to find a compromise between prediction
accuracy and computing time. In addition, dynamic variables such as acceleration and
steering rate are limited, according to the analysis of the author [43], to non-critical and
typical values. In [43, 44] an overview of alternative methods can be found. All methods
have in common that the dynamic simulation of a vehicle cannot proceed analytically
[41], so that numerical methods with accompanying discretization and simplification are
to be used.

Including severity in the hazard assessment is approximated in [45] by a relative
assessment of each accident based on its inelastic collision. This corresponds to the
approach based on the Potential Collision Energy (PCE) [36]. Further, however, no
approach has been found that determines both severity and probability in combination.
One reason for this is imprecise analytical regression methods [46], another is
computing-intensive Finite Element Methods (FEM), which are currently used in other
fields for determining accident severity [47]. Meier et al. [46] provides a new approach
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here based on symbolic regression. Using a crash-situation database (produced from FEM
calculations), regression functions are learned which predict accident severity in a situ-
ation to a few milliseconds. This uses pre-crash information such as vehicle mass, speeds,
collision point and collision angle. The downside of this approach is its limited inter-
pretability, as the regression model does not include any physical variables. If this
approach gave a valid prediction for severity, it would be possible to extend an assessment
of risk into one of severity.

The above-mentioned procedures are not yet sufficient to assess adaptive automated
driving’s safety, for the following reasons. Firstly, all the approaches are based on a series
of simplifications, such as leaving out weather conditions, simplifying the driving
dynamics, or not including sensor uncertainties. Secondly, the procedures as they stand do
not provide any validated and combined ascertainment of the probabilities and severity of
accidents. A general definition and assessment of vehicle-driving safety therefore does not
currently exist.

However, the ongoing progress in vehicle automation does provide enabling factors.
These are, firstly, removing the uncertainty of the driver (ego-vehicle). Although human
behavior continues to be present in the form of other road users, the trajectory of the
ego-vehicle is known within its control performance. Moreover, current vehicles’ sensor
performance is rising, reducing uncertainties in the state of the object. Further, additional
information on the surroundings is exchanged via V2X communication, thus improving
the points of reference for hazard assessment in both quality and quantity.

22.5 Automation as Part of a Learning Collective Group

In this chapter, our analysis of learning vehicles has so far restricted itself to the system
life cycle of a particular vehicle. What vehicle automation implicitly brings with it,
however, is the duplication of hardware and software across a whole group of vehicles in
the aimed-for mass production. Vehicles operating in road traffic would consequently
have the same capabilities. On the one hand, this has the drawback that driving errors,
breakdowns and accident types would affect not only one vehicle but the whole group. On
the other, it gives adaptive systems a further degree of freedom. The option of exchanging
data makes collective learning during operation possible. Two approaches may in prin-
ciple be distinguished here [48]: agent-based machine learning and machine learning with
agents. In the former (also often called agent-based swarm intelligence), the learning
collective system is made up of a multitude of networked agents with limited cognitive
capacity. The behavior of animals such as ants or bees is often drawn on in this connection
[49]. In contrast, though, machine learning with agents also consists of several agents,



22 Do Autonomous Vehicles Learn? 467

these employ the procedures described in Sect. 22.3. These two approaches differ in the
fundamental stages of machine learning in terms of:

— generation of collective experience
— collective performance evaluation
— derivation of learned models and knowledge

Essentially, the approaches can be applied as soon as data from real situations has been
gathered. This raises questions: At which position of a group is relevant information
gathered from the data and assessed in terms of the learning problem and performance
measurements? Can learning methods be used that are based on this? Not least for reasons
of limited data-transfer bandwidth, it will be necessary to transfer pre-processed data or
even learned models and knowledge rather than raw sensor data. So long as the partici-
pating agents/vehicles belong to a series and software release, there will be challenges for
the integrity of the transferred information, although not in compatibility and trustwor-
thiness between agents. So-called homogeneous teams exist in which how and what is
being learned is known among the group. If the aim, however, is to expand the database
which learning methods are applied to, vehicles with different software or even of different
manufacturers could also be networked to each other. This amounts to a collective of
heterogeneous vehicles in which potentially different machine-learning procedures are
used, and the knowledge representation is likewise heterogeneous. Reference [50] gives
examples from other areas of how such collectives could in principle be handled.
Essentially, as well as vehicle robots, there are other agents, such as smartphones or also,
in future, service robots, which likewise gather data covering completely different areas to
those accessible to the driving robot. The currently highest conceivable level of
connectivity, and by some distance the largest database, is the internet. The autonomous
vehicle as a web-enabled device permits a great number of applications and functions, for
better or worse. Not least, IBM’s Watson Project shows that part of the knowledge
archived in the internet is also comprehensible to machines. Information made accessible
on the internet by any authority would therefore not need to be learned through experience
first to influence an autonomous vehicle’s behavior. On the other hand, access to any
(unauthorized or anonymous) source threatens to create problems in terms of both road
traffic safety and data security (see Chap. 24).

22.6 Conclusion

Machine learning is of great interest to current research, as the quality and quantity of
available data is constantly increasing and, in addition, vehicle automation is throwing up
questions that can only be partly solved with conventional analytical approaches. In
carrying research findings over to the development of functions in the driving of auton-
omous vehicle, proving their safe use in unsupervised safety-critical systems with no
possibility of correction poses the greatest challenge. Therefore, according to the authors’
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knowledge, learned models that do not change after testing and approval can already be
found in current mass-production vehicles. Systems such as Adaptive Transmission
Control are not the subject of our examination due to their negligible adaptive parameters
in clearly defined limited value ranges. However, learning and adaptation while in
operation is giving automation an extra degree of freedom.

Exploiting this degree of freedom is motivated by the possibility of optimizing auton-
omous journeys, compensating for the loss of people’s capacity to adjust and learn, and
individualizing vehicle-driving. This chapter has highlighted that applying machine
learning in vehicle automation during operation requires greater attention in terms of both
road safety and data security. There is currently no valid measure for assessing traffic safety
in respect of risk. Therefore, it seems clear that the use of adaptive machine-learning
processes while in operation first requires a fault-tolerant set-up with redundant conven-
tional systems, with the latter serving to assess road safety. It is thus to be expected that
machine learning while in operation (adaptive systems) will initially only optimize vehicle
automation within the framework of the conventional system.

Due to the challenges highlighted with respect to proving the safe behavior of
time-invariant adaptive systems, it appears necessary to do intensive further research on
runtime verification and validation. The same holds for the above-mentioned applied
non-adaptive systems and their demonstration of safety. Although there is copious liter-
ature on examples that have already been successfully introduced, these mostly come from
other fields that do not place comparable demands on a product.

In this chapter, we have examined the question of data security only peripherally—for
a more in-depth discussion, see Chap. 24. Learning approaches require data and hence
information on occupants, the vehicle and the environment. Data protection is thus of the
same relevance as road safety. It should be pointed out that the environment also contains
people, which implies protecting their data. The quality and quantity of the sensors needed
for vehicle automation is a boost for machine learning on the one hand, but on the other
they are regarded with suspicion from a data protection point of view. One special
property of vehicle sensors is, in addition, that they currently are to a great extent not
physically covered when the vehicle or function is not active. With the application of
machine learning, data security should also accordingly be addressed directly.

Nevertheless, the application of networked agents and learning systems has its
advantages, whose effects are not to be underestimated. Collectively learning agents need
not acquire available knowledge slowly. Instead, this information can be copied and
pasted to the next vehicle or software generation. This, in combination with access to the
large quantity of electronically recorded information, has the potential to change the
driving of vehicles, road traffic and thus people’s overall (mobility) behavior. This makes
the findings gained for driving equally interesting to research into medical robots, and also
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domestic robots with human contact. Due to the similar conditions, the reverse also
applies, which speaks for close cooperation between vehicle technology and robotics.
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