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Abstract. Given the importance of QoS (quality of service) prop-
erties for distinguishing between functionally-equivalent services and
accommodating different user expectations, a number of QoS estima-
tion approaches have been proposed, utilising the observation history
available on a service. Although the context underlying such previ-
ous observations (and corresponding to both user and service related
factors) could provide an important source of information for the QoS
estimation process, it has only been utilised to a limited extent by exist-
ing approaches. In response, we propose a context-aware quality learn-
ing model, realised via a learning-enabled service agent, exploiting the
contextual characteristics of the domain in order to provide more per-
sonalised, accurate and relevant quality estimations for the situation at
hand. The experiments conducted demonstrate the effectiveness of the
proposed approach.

Keywords: Context awareness · Change detection · Personalisation ·
Quality value learning

1 Introduction

Services advertised by different providers can overlap in their functional capabil-
ities, but offer varying quality of service (QoS) levels. Such QoS properties, thus,
play an essential role in differentiating between functionally equivalent services
and accommodating different user needs. However, the subjective nature of some
properties and the dynamic and unreliable nature of service environments may
result in cases where the quality values available from the service provider are
either uninstantiated or untrustworthy. Consequently, a number of efforts focus
on learning more accurate estimation of service quality values, based on the data
available regarding the service’s past performance (e.g. [5,7,8]). Most such learn-
ing approaches, however, rely on data recency to account for potential changes in
the service’s behaviour. That is, newer service observations are favoured, while
older ones are eventually forgotten, without consideration of the service’s circum-
stances, thus neglecting important evidence for detecting a change occurrence.
Moreover, the observations are usually assumed to be objective, and thus the
predictions produced do not account for a user’s particular situation. We argue
c© Springer-Verlag Berlin Heidelberg 2015
A. Barros et al. (Eds.): ICSOC 2015, LNCS 9435, pp. 362–370, 2015.
DOI: 10.1007/978-3-662-48616-0 25



Context-Aware Personalised and Adaptive QoS Assessments 363

that acccounting for the circumstances under which the observations were col-
lected (in relation to both the user and the service) is essential to ensure that
only relevant data is captured in the learning process, as illustrated below.

User Circumstances. Consider a scenario where a user wants to order a meal
for dinner, and therefore contacts a food-specialised broker. The broker has
access to information about a pool of meal delivery services that are offered
by various food providers. Let’s assume that the user suffers from chewing and
swallowing problems, and therefore requires the meal to be of tender texture.
Given a candidate meal option, the broker thus needs to assess its corresponding
texture from past available ratings to determine its suitability for the user. Since
the perception of food texture could be affected by the presence of chewing and
swallowing difficulties, the ratings of users sharing similar dysphagia conditions
with the current user should have the highest impact on texture assessment at
hand, while the contribution of those with no difficulties should be minimal.

Service Circumstances. Consider a similar food ordering scenario where a
user is interested in a meal that is highly rated in terms of taste. Again, the
broker here needs to assess the taste property of each candidate meal option.
Assume one such option is service s, with a good rating history up to time step tk,
after which the service exhibits a change in recipe, occurring, for instance, due to
a change in the head chef, or the temporary unavailability of some ingredients
(e.g. some ingredients might not be available at winter time). Such a change
could affect many aspects of the meal, including taste, making such previous
user observations under the old recipe less (or no longer) relevant under the new
one. Now, if the service switches again to the old recipe, window [t1, tk] of the
historical observations on taste available for service s becomes relevant again,
and is a useful source of information for assessment of taste for this service.

Given this, we propose enriching service observations with contextual infor-
mation, and exploiting such information during QoS learning to capture the
most relevant data for the situation at hand, thus achieving more personalised
and adaptive quality predictions. By context, we refer to any conditions and cir-
cumstances that may affect the perception of a quality value by a service user,
either related to the user itself (user context) or related to the service (service
context). The context model is presented in Sect. 2. Sections 3 and 4 present our
context-aware QoS learning model and the experimental results, respectively.
Related work and conclusion are discussed in Sects. 5 and 6.

2 Context Model

The quality characteristics of a service may be dependent on the user situation
(user context) under which the service provision happens (e.g. user’s location),
as well as on service-related circumstances (service context), which could change
over time either periodically (e.g. a change in a food service’s recipe with season)
or non-periodically (e.g. a rare event such as a sudden server crash).
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Formally, knowledge of context information relevant for a service provision
is a tuple (Q,Cu, Cs, ctxu, ctxs, dom), as follows. Q is the set of quality of ser-
vice attributes of the service, either generic such as price and response time,
or domain-dependent such as taste of a food service. Cu and Cs are the sets
of attributes characterising a user’s context and the service’s context, respec-
tively, expected to affect the quality values delivered by the service (and are
shared among similar service types). ctxu is a quality attribute’s user context
function, mapping quality attribute q ∈ Q to the user-related context attributes
ctxu(q) ⊂ Cu that may have an impact on the perception of q by the user, e.g.,
ctxu(texture) = {chewing and swallowing condition}, and ctxu(price) = ∅. ctxs

is a quality attribute’s service context function, mapping quality attribute q ∈ Q
to the service-related context attributes ctxs(q) ⊂ Cs that may have an impact
on the behaviour of the service so that the same user may observe different values
of q under different values of these attributes, e.g., ctxs(taste) = {food recipe}.
Finally, dom is an attribute domain function, mapping an attribute a (quality or
contextual) to its corresponding set of possible values. In this paper, we assume
that dom(a) corresponds to a discrete domain (for continuous attributes, this is
obtained via applying an appropriate discretisation algorithm).

3 Context-Aware QoS Learning

In our approach, a service’s QoS characteristics are assessed via a learning-
enabled agent associated with the service. This agent (which, for example, could
be acting on behalf of the service provider or the broker with which the service is
registered) exploits a contextually-enriched history of past interactions with the
service in order to expose personalised and dynamism-aware QoS information to
clients. The modelling and learning details of such an agent are presented next.

3.1 Service Observation

For each quality attribute q ∈ Q, the agent receives a stream of service observa-
tions, each reporting the outcome encountered for q in a previous interaction with
the service, along with the contextual circumstances surrounding this interaction.
Formally, a service observation is denoted as (vq, vu , vs), where: vq ∈ dom(q)
is the value observed for q; vu = (v1

u, ..., vmu ) are the respective values of user-
side contextual attributes (c1u, ..., cmu ) ∈ ctxu(q)m; and vs = (v1

s , ..., v
k
s ) are the

respective values of service-side contextual attributes (c1s, ..., c
k
s ) ∈ ctxs(q)k.

3.2 Agent Configuration and Learning Model

The main idea behind our approach is that, for a particular quality attribute, the
agent maintains a set of learned value models, each corresponding to a different
behaviour of the service (as a result of changes in service-side circumstances).
When previously-encountered service circumstances reoccur, older observations
of the service collected under such circumstances become relevant again, and
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the agent can reuse the respective historical value model (learned from these
observations) to make future quality value predictions. Such reuse of a previously
learned value model facilitates a faster adaptation to a behavioural change of
the service (as opposed to re-learning the behaviour from new interactions), and
consequently improves the accuracy of quality predictions.

Formally, the configuration of a service agent at a particular time step is a
tuple (Ω, active), where: Ω is the model library of the agent, containing the set
of learned value models for quality attributes; and function active maps each
quality attribute q ∈ Q to its currently active value model active(q) ∈ Ω (i.e.
the model utilised to predict the attribute’s value for the next discovery attempt
by a consumer). Each model ω ∈ Ω is of the form q : ψ ← M . Here, q ∈ Q is the
quality attribute the value of which the model is trying to predict. Precondition
ψ identifies the service-side contextual circumstances under which the model
is valid (it is a logical formula in disjunctive normal form (DNF) restricting
the values of contextual attributes cs ∈ ctxs(q)). Finally, body M is the actual
prediction model for quality attribute q under condition ψ. It corresponds to the
underlying function qval between the values of user-side contextual attributes
affecting q and the corresponding value of q, i.e. qval(q, vu) ∈ dom(q) is the
value predicted for quality attribute q given user’s contextual values vu .

The configuration of the agent evolves over time as the agent’s learning pro-
gresses. In particular, given the current configuration (Ω, active), and a new
service observation (vq, vu , vs), value vector vs is compared against the con-
textual precondition ψ of the currently active model active(q), and two cases
are distinguished. Case 1. vs is subsumed by ψ, in which case no behavioural
drift is assumed, and observation (vq, vu) is simply used to update body M of
the currently active model active(q) to increase its accuracy with more incom-
ing data. Case 2. vs is not subsumed by ψ, in which case a behavioural drift
is suspected and further two sub-cases are distinguished. Case 2.1. vs is sub-
sumed by the contextual precondition ψ′ of another existing model ω′ ∈ Ω of
attribute q (ω′ �= active(q)). Here, a recurring behaviour (i.e. a behaviour learned
previously) is assumed, and the respective model ω′ becomes the current active
model for attribute q, with its body M ′ being updated with observation (vq, vu).
Case 2.2. vs is not subsumed by any contextual precondition of any previously
learned model for quality attribute q. In this case, the agent suspects a new
service behaviour, and therefore set up a new model ωn for attribute q, which
is added to the model library. The contextual precondition ψn of this model is
the conjunction of values vs , while its body Mn is built incrementally from the
new incoming observations starting from the current observation (vq, vu).

After the new model ωn is stabilised (i.e. after stability incoming observa-
tions under condition ψn), it is compared against the other existing models in the
agent’s library to verify whether it is actually reflecting a new service behaviour
for attribute q (we utilise the conceptual equivalence measure proposed by Yang
et al. [1] for such comparison). If no similar model is found, the new behaviour
is confirmed and model ωn becomes the currently active model for attribute q.
Otherwise (i.e. a similar model ωsim exists in the library), model ωn is discarded
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(i.e. removed from the library), while model ωsim is regarded as the currently
active model for q, with its contextual precondition ψsim being generalised to
subsume condition ψn. Note that, if a service context different to vs is encoun-
tered prior to stabilising model ωn, the observations encountered under condition
ψn are considered as noise and ωn is simply discarded.

4 Experiments and Results

We evaluate the performance of the proposed approach in terms of producing
accurate quality value predictions in dynamic and user-dependent settings1. We
show the results (averaged over 100 runs) from the perspective of one service
and one quality attribute q. An experiment run consists of a number of learning
episodes of the service agent, each involving three steps: (1) observing value
vq for quality attribute q delivered by the service under user’s context vu and
service’s context vs ; (2) adjusting the current configuration utilising this new
observation (vq, vu , vs); and (3) predicting the expected quality value for the
next user using the adjusted configuration. Further details are presented next.

4.1 Value Model Implementation

To implement the body M of each model ω ∈ Ω, we use the Naive Bayesian clas-
sifier [2]. In particular, given a quality attribute q and a corresponding observed
user’s context sample vu , the value vq predicted for q is the one maximising the
posterior probability p(vq|vu), given as p(vq|vu) = p(vq)×p(vu |vq)

p(vu )
. Here: p(vq) is

the prior probability of value vq; p(vu) is the prior probability of sample vu

(this is the same for all the values of q and thus could be omitted); and p(vu |vq)
is the posterior probability of sample vu conditioned on value vq. To simplify
the computation cost of p(vu |vq), independence is usually assumed among the
attributes of the sample, leading to: p(vu , vq) =

∏m
i=1 p(vi

u|vq). The estimation
of probabilities p(vq) and p(vi

u|vq) can be easily achieved via maintaining cor-
responding value counts, and thus the incremental learning function learnq,u,
corresponds to the update of these counts after each new service observation.

4.2 Dataset

We utilise a synthetic dataset inspired by STAGGER concepts [2], but is adapted
to suit our problem. We assume: five possible outcomes for quality attribute
q, dom(q) = {v1

q , v
2
q , v

3
q , v

4
q , v

5
q}; three user-side context attributes, c1u, c2u, and

c3u, affecting q, each with three possible values, dom(c1u) = {v1,1
u , v1,2

u , v1,3
u },

dom(c2u) = {v2,1
u , v2,2

u , v2,3
u }, and dom(c3u) = {v3,1

u , v3,2
u , v3,3

u }; one service-side
context attribute, cs, with three possible values, dom(cs) = {v1

s , v
2
s , v

3
s}; and

three different service behaviours regarding attribute q, behaviour 1 (associated

1 Source code and data for the results presented in this paper are freely available from
http://jaspr.org/source-code.

http://jaspr.org/source-code
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with v1
s) where the actual value of q is v1

q (under v1,1
u ∧ v2,1

u ) and is v2
q (other-

wise), behaviour 2 (associated with v2
s) where the actual value of q is v1

q (under
v2,2
u ∨ v3,2

u ) and is v3
q (otherwise), and behaviour 3 (associated with v3

s) where
the actual value of q is v4

q (under v1,2
u ∨ v1,3

u ) and is v5
q (otherwise). The service

switches from one behaviour to another at particular points, with such drifts
being associated with changes in the value of service-side context attribute cs.

4.3 Evaluation Strategies and Measure

We refer to the following quality value learning strategies. Strategy MML, our
proposed multi-model learning approach. Strategy SSL, a simple summary-
based learning approach, which predicts the quality value vq with the highest
prior probability, p(vq), based on all the observations so far and ignoring the
user’s context. Finally, strategy SWL w, a sliding window based learning app-
roach, a well known way in the literature of adapting to potential changes in
incoming data [3]. It utilises the Naive Bayesian classifier presented in Sect. 4.1
as its main model, but maintains a fixed window of the latest w observations,
based upon which the model is updated at each time step (this strategy accounts
for the user’s context, but ignores the service’s context). By SWL all, we refer
to accounting for all the data observed so far. The performance of each strategy
is evaluated by assessing its prediction accuracy at each time step, calculated as
the success rate (i.e. number of successful predictions

total number of predictions ) over the last 20 observations.

4.4 Results

To study the importance of user context awareness, we first assume a static
service behaviour regarding attribute q (e.g. behaviour 2 ), and compare our
learning strategy, MML, against the simple summary one, SSL. To simulate
situations of imperfect user’s contextual knowledge, attribute q is subjected to
different levels of noise η%. The results in Fig. 1(a) demonstrate that MML
achieves an accuracy of over 80% (at 0% noise) after only 30 cycles, as opposed
to SSL where the accuracy fluctuates around 50% for the entire run. It is also
evident that even with high noise levels (e.g. 30 % noise), MML still outperforms
SSL, indicating the importance of contextual evidence even if imperfect.

To study adaptivity in dynamic environments, we now assume that the ser-
vice follows the behaviour sequence 1-2-3-1-2-3, with each behaviour being fixed
for 300 episodes. Figure 1(b) compares the adaptation strategies in the case of
encountered new behaviour (i.e. changes during the first 900 episodes), with
stability being set to 15. MML outperforms the other strategies, increasing
the accuracy to over 90% after just 30 observations from the change point.
SWL all, however, suffers from poor performance, especially after a change,
where the learned model mostly reflects irrelevant observations. In fixed win-
dowing strategies, increasing the window size results in a slower reactivity to
a change since older irrelevant observations take longer to be forgotten, while
smaller windows achieve faster adaptation but affect the prediction accuracy due
to depending on insufficient number of observations. In the case of encountered
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Fig. 1. Evaluation results

recurring behaviour (i.e. changes in the second 900 episodes), and unlike the
other strategies, MML always maintains high accuracy (see Fig. 1(c)), elimi-
nating the period of performance degradation after a change due to reusing an
existing stable model. The effect of imperfect (e.g. incomplete) service-side con-
text knowledge on MML is studied in Fig. 1(d), where context attribute cs is
subjected to various levels of noise η%, and the results indicate robustness to
noise.

5 Related Work

The QoS properties of services are important criteria upon which services are
discovered, selected, and composed [4]. Accurate estimation of such properties
has thus received much attention. Aschoff et al. [5] model the response time of
a service as a random variable, with the exponentially weighted moving average
being utilised for estimating the expected value of this variable at a particular
time step according to historical data. Similarly, time series modelling based
on ARIMA (AutoRegressive Integrated Moving Average) has been proposed
by Amin et al. [6] for the purpose of QoS forecasting. Barakat et al. [7] provide
probabilistic, multi-valued quality estimations for services via applying an online
learning algorithm inspired by Policy Hill-Climbing based on past user ratings.
Trust and reputation mechanisms have also been considered for the purpose of
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accurate quality predictions [8], where an assessment of a QoS dimension’s trust-
worthiness (e.g. a time-weighted average of the past service ratings) is under-
taken prior to an interaction. In contrast to our approach, all such efforts rely
on favouring recent observations to handle changes in the service’s behaviour,
without accounting for contextual clues, thus neglecting important evidence.

To facilitate personalised QoS information for users, a number of approaches
utilise collaborative filtering for quality value prediction [9]. Although such
approaches capture the user’s context implicitly, they usually suffer from the data
sparsity problem, unlike our approach, which explicitly exploits available user’s
contextual knowledge, which allows deriving personalised quality assessments for
the user even in the absence of previous interactions with this user. Finally, like
us, Lin et al. [10] explicitly incorporate the user’s contextual attributes as input
for the quality value prediction process. Yet, they do not account for changes in
the service’s behaviour associated with service-side context.

6 Conclusion

The paper presented a context-aware QoS learning approach for personalised
and adaptive quality estimations. The learning is conducted via a service agent,
which maintains a pool of quality prediction models; each characterising a par-
ticular service behaviour and providing personalised value predictions for users.
Experimental results show that the approach achieves high accuracy and a faster
change adaptation when compared to commonly adopted time-based learning.
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