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Abstract. We propose a new economic model based optimization
approach to compose an optimal set of infrastructure service requests over a
long-term period. The service requests have the features of variable arrival
time and dynamic resource and QoS requirements. A new economic model
is proposed that incorporates dynamic pricing and operation cost modeling
of the service requests. A genetic optimization approach is incorporated in
the economic model that generates dynamic global solutions considering
the runtime behavior of service requests. Experimental results prove the
feasibility of the proposed approach.

1 Introduction

Cloud computing is increasingly becoming the technology of choice as the next-
generation platform for conducting business. Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) solutions have
already been offered by big companies in the cloud market [1]. An IaaS provider
receives service requests in the form of computing resource (i.e., functional) and
Quality of Service (QoS) (i.e., non-functional) requirements. The provider asso-
ciates resource specifications (e.g., CPU, Memory, and Network Bandwidth) and
QoS attributes (e.g., availability, throughput, and response time) with provided
Virtual Machines (VMs) [2]. For the latter, the provider usually specifies them in
a Service Level Agreements (SLA), where SLA violations may incur penalties for
the provider [1]. The key challenge for the provider is the optimal composition
of the service requests that closely meet the provider’s economic expectation by
considering certain constraints, such as resource limits and SLA violations.
The provider-consumer relationship between IaaS and SaaS providers is long-
lasting and economically driven [3]. The contract period of a long-term service
are usually counted in months or years. Due to the nature of the cloud consumers,
e.g., multi-tenancy and changing business and cost requirements, a fixed set of
requirements are often inapplicable in a long-term period. The key character-
istic of the long-term service requests is that its functional and non-functional
requirements change from time to time [3]. The long-term economic expecta-
tion of an IaaS provider also can change over time. Here we consider profit,
SLA violations, and resource utilization as the key components in the long-term
economic expectation. For example, a provider may find that SLA violations in
the summer period influence the reputation more than the other periods. In this
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research, we assume that the long-term economic expectation of an TaaS provider
has already been defined. The objective is to select an optimal set of long-term
service requests that satisfy the provider’s long-term economic expectations.

In our previous research, we propose a new model for predicting dynamic con-
sumer request behavior in long-term IaaS service compositions [4]. We observe
that SaaS providers’ run-time service requests can be different from their initial
requests. However, an effective economic model based optimization process using
the predicted data is missing in the existing approaches. For example, the under-
utilized resources for some service requests can be reallocated to fulfill other
suitable service requests to maximize the profit. To the best of our knowledge,
existing composition approaches only consider the composition of short-term ser-
vice requests [5,6]. We identify that two long-term factors, i.e., economic model
and dynamic optimization are missing in the existing approaches. The long-term
economic model evaluates a composition of requests using the future predicted
economic factors, such as dynamic pricing and operation cost. The dynamic opti-
mization process operates at different times of a composition interval to improve
the efficiency of the global composition.

We propose a new long-term laaS service composition framework that com-
poses stochastic service requests dynamically. We represent the long-term ser-
vice requests as multidimensional time series. Existing approaches consider the
short-term economic model of the IaaS provider [7-9], which is inapplicable
for a long-term period. We propose an economic model for cost and revenue
analysis considering the long-term aspects of laaS provider. The proposed eco-
nomic model is constructed as a Dynamic Bayesian Network (DBN) [10]. We
use a multidimensional time series matching approach to evaluate a composi-
tion’s fitness to the given long-term economic expectation. Next, we propose a
genetic algorithm (GA) for long-term service composition using the economic
model. Although combinatorial optimization techniques such as Integer Linear
Programming (ILP) and dynamic programming are the preferable choices for
service composition [4], they cannot be used in IaaS service combination, as the
economic model is non-linear in nature [9]. The proposed approach deals with
the non-linear objective function by creating a population of feasible solutions.

2 Related Work

A prediction model for long-term dynamic behavior of the consumers is proposed
in [4]. A Mixed Integer Linear Programming(MILP) based optimization process
is used with short-term economic and one-time arrival model of requests in [4].
Short-term resource allocation algorithms for SaaS providers are proposed in
[5] to minimize the infrastructure cost and SLA violations. A task scheduling
algorithm is proposed in [6] that uses analytic hierarchy process to optimally
allocate resources. Heuristic algorithms are proposed to determine whether a
new request can be admitted without impacting accepted requests in [11]. We
propose a dynamic IaaS service composition framework that considers stochastic
arrival of the requests and long-term economic model of the provider, which is
a new area in this field.
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The long-term QoS economic model of a service consumer is proposed in
[2]. The model states how QoS requirements of end users change over time. An
economic model for self-tuned catching is proposed in [7]. An economic model of
federated cloud is described in [9]. The model evaluates the cost of using resources
from a federated cloud and develops a resource management core for the profit
maximization. Existing economic models, nevertheless, do not consider long-term
relationships among composite QoSs, resource utilization, and operation costs.
Generic penalty-based and repair-based methods for composition are proposed in
[12]. However, such methods are not incorporated in long-term economic models
for dynamic environments. Hence, we need to develop an economic model based
dynamic optimization technique for IaaS service composition.

3 The Long-term Economic Model of the IaaS Provider

We represent the long-term service requests as multidimensional time series.
Each long-term service request of the i*" consumers is defined as a tuple, U; =
{ct,my, nby, avy, rty, the| t € [1,T]}. Here, ¢,m,andnb are the required units of
CPU, Memory, and Network respectively. The QoS requirements av, rt,and th
specify the required units of Availability, Response time, and Throughput respec-
tively. [1,T] is a composition interval. Let us assume that there are k requests
(Sk) in the map denoted as MAP(Sk) = {< U1, Arrivaly >,..,< Uk, Arrivali >}.
The requests are already transformed into runtime behavior and the arrival times
are predicted in a request map. The task of the economic model is to generate
the long-term economic valuation of the request map. We consider profit (P),
number of SLA violations (NO_SLV), and resource utilization factor(UF) as
the key attributes in the economic valuation. The next task is to measure the
closeness of the composition to a given long-term economic expectation.

3.1 The Long-term Economic Valuation

The first task is to convert the request map M AP(Sy) to the long-term economic
valuation denoted as EVAL(t) = {P;, NO_SLV;,UF; | t ¢ T}. We use long-term
revenue and operation cost modeling to calculate the profit. As the business mod-
els of TaaS providers are similar to business models of utility providers, demand-
driven pricing model is a common phenomena in the cloud market. For example,
the price of a EC2 service fluctuates up to 80 % in the Amazon cloud spot market
[9]. As Dynamic Bayesian Network (DBN) models succeed in modelling tempo-
ral dynamic environments [10], we represent the dynamic pricing behavior as a
DBN. The DBN describes the correlations among physical resources (computing
(C), storage(M) and network(NB)), QoS values(Availability (AV'), Through-
put (TH), and Response time (RT)), demand, and service price. The model
calculates the probability (Q) of a service price X at ¢ for the service request
U®Y = {C,M,NB, AV,TH, RT} given its previous price at time (¢ — 1) as follows:

Q(X, UM t) = P(Price; = X|U®, Price,_1) (1)
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The IaaS provider may serve exiting and new requests at the same time. Due
to the pricing model, a service may be priced differently for different consumers.
As long-term requests reserve the resources at current prices, the price is cor-
related with the arrival time. For instance, a consumer who arrives at time ¢
always pays the price advertised at time ¢. As each request in M AP(S}) is asso-
ciated with its arrival time, we sort them in an ascending order. Let us denote,

QX,Y,U (t>,t0) is the initial probability table for the request Uy. We gener-
ate the individual probability table Q(X,Y, U t;) for request U; using Eq. 1.
We calculate the revenue time series (REV;) of M AP(Sk) using the Maximum
Probable Explanation (MPE) algorithm [10] on Q(X,Y,U® t;) in Eq.2.

Pi..Py =arg maz {Q(X, UM ;) | Q(X,U® t;_1),...Q(X, UM o)} (2)

REV; = Z‘_MAP(S’C” P;, where U® ¢ U;
We apply the following assumptions to model the long-term cost:

1. The fixed costs of the provider are distributed over the servers for
the amortization period. Such costs include data center building cost,
land cost, hardware price, etc. Each server ¢ has a capital cost in a time unit
t represented as CAPFEX;;. Generally t is treated as a month or quarter in
a year. If the provider has N physical servers, the fixed cost at time ¢ is
calculated by the following equation:

Fized Costy = CAPEX;; x N. (3)

2. The operation cost is determined by the server power consumption.
Although there are other costs, such as maintenance cost, employee salary,
and insurance cost, we choose the power consumption cost for simplicity.
ARIMA is a popular model to predict the dynamic price of power [9]. In
Eq. 4, the auto regressive (AR) part depends on the p lagged values of the
time series of aggregated AG, where L is the lag operator and «; is the
coefficient constant. The moving average (MA) part depends on the ¢ lagged
values of the previous prediction errors (e;) and 6; is the coefficient constant.
d represents the number of times that the difference operation is performed
to obtain the stationary time series. The values of (p,d, q) is determined by
the Box-Jenkis method for the price history [4].

(1-=Y", a; L) (1 — L) Power, = (14 >1_, 0;:L")e;. (4)

3. Each running physical server should have a predefined threshold
(o) of utility. For example, the provider may decide that physical server
will not run unless the resources are expected to be used more than 30 %.

The number of physical servers that will run to satisfy requests depends on
the resource allocation module installed in the server [9]. The module requires
the composed request from individual service requests. The composed request
time series ({Cy, My, NBy, AV, THy, RT}) for MAP(Sk) can be formed using
the composition rule of resources [5] and composition rules of the QoSs [3] as
follows:
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Resource Composition: X, = ZLMAP(S‘)‘ Xft) where, X = {C, M, NB} (5)

QoS Composition: AV; = maar(avf“); TH; = maw(th,gf’)):lfTi = ZLMAP(S“H(NE”); where i ¢ MAP(S})

Our long-term economic model is independent of any particular resource
allocation schemes. We assume that the resource allocation scheme installed in
the physical servers has a function (F') to convert the composed requests to an
utility factor (UF) as:

UF, = F(Cy,M,,NB,, AV, TH,, RT;) (6)

Let us assume that a server has a maximum utility factor UF,,... Hence,
U({,: 1”1 of the physical server is needed to satisfy the composite requests. Each
running physical server has two types of power cost units: (a) fixed power cost
for the routine operation of the server (fized_unit) and (b) variable power cost
(variable_unit) to satisfy the utility factor. If UF is linearly proportional to the
(variable_unit) with the constant Var..,s, we can calculate the operation cost

at time ¢ using the following equation:

OP _Costy = Powery x (fized_unit x ]—U%F‘ 14+ Varcons x UF) (7)

The proposed framework allows SLA violations to occur. The SLA violation
cost SLA_Cost(t) depends on the SLA violation penalty rate (SLA_Penalty)
and the number of SLA violations(NO_SLV;) in a certain time ¢. We calcu-
late the number of SLA violations and the constrained satisfied utility factor
using Algorithm 1. Algorithm 1 checks whether a composition satisfies all the
constraints. It reduces the number of service requests until all the constraints
are satisfied. The SLA violation cost (SLA_Cost) is calculated using the follow-
ing equation:

SLA Cost; = SLA_Penalty x NO_SLV; (8)

The revenue, the operation cost, and the SLA violation cost are used to
calculate the profit of a composition. Algorithm 1 determines the number of SLA
violation and the resource utilization factor. We generate long-term economic
valuation of the request map M AP(Sk) using Eqs. 2, 3, 7, and 8 as follow:

EVAL(t) = {REV, — Fized_Cost, — OP_Cost, — SLA_Cost,, NO_SLV,,UF,| teT}. (9)

3.2 Long-term Economic Expectation and Fitness of a Composition

We include profit, number of SLA violation, and resource utility factor as the key
attributes in the long-term economic expectation. However, the influence of the
attributes may not be equal all the time. For example, SLA violations at peak
hours may be more important than the profit when considering business reputa-
tion. We incorporate such influence weights in the multidimensional time series,
EXP(t) = {(PE,WE),(NOSLVE, W), (UFE,WVYF)| t e T}.We define the fitness
of a composition as the distance between the long-term economic valuation of
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Algorithm 1. Determining the number of SLA violation and Utility Factor of
a composition

Input: Request Map: M AP(Sy), Resource and QoS constraints:(Criazs Mmazs NBmas AVimaz,
RTmax, THmaz), server utility threshold o and maximum utility factor UF,,qz.
Output: the number of SLA violations (NO_SLV;) and Utility Factor (UF}) at time ¢t
1: NO_SLV;:=-1
2: repeat
: NO.SLV;:=NO_SLV;+1

w

4:  Set Candidate(|MAP(Sk)|) = {i e MAP(Sy)}

5: Generate Xy := (Cy, My, NBy, AV, TH;, RT) using Candidate(|M AP(Sy)|) in Eq.5

6:  Generate UF; := F(Y:) using Eq. 6

7: Server utility threshold 6:=(U Fynqs mod UF})

8: Remove any requests from the MAP(Sy) with a random distribution and update
|IMAP(Sy)| = |[MAP(Si)| — 1

9: until Xt < Xmao | X e {C,M,NB,AV,RT, TH} and 6 < o

10: Return NO_SLV; and UF,

the composition and the economic expectation. For simplicity, we deploy the
Euclidean Distance as the default distance function. As smaller distance infers
better fitness, we formulate the weighted fitness function in Eq. 10. This fitness
function acts as the objective function in the proposed genetic optimization.

. wr WS WUF
Fitness(MAP(Sy)) = DIS(EXP, EVAL) = \/S1, 53 + trosivivosmvy + wrteory (10)

3.3 Genetic Optimization Using the Economic Model

The proposed economic model is non-linear in nature. We design a genetic algo-
rithm (GA) to address the non-linear properties in IaaS economic model. The
task of the optimization process is to find an optimal subset {MAP(Sx) | k < N}
that maximizes the fitness of the composition stated in Eq.10. The GA simu-
lates evolutionary processes by considering an initial population of individuals
and applying genetic operators in each reproduction. In optimization terms,
each individual in the population is encoded into a string or chromosome that
represents a possible solution to a given problem. We use a binary string rep-
resentation X[j] = 0 or 1 to represent the possible solution of M AP(S}). The
§*" request is considered in the solution if X[j] = 1. For example, a candidate
solution {B,C?} is represented as {0110} in the IaaS composition if the incom-
ing requests are {4, B,C, D}. The fitness of an individual is evaluated based
on the fitness function in Eq. 10. Highly fit solutions reproduce new “offspring”
solutions (i.e., children) by exchanging pieces of their genetic information in a
crossover procedure. Mutation is often applied after crossover by altering some
genes in the strings. The less fit chromosomes in the population are replaced by
the new children. This process is repeated until a satisfactory solution is found.
We use a binary tournament selection method [12] to generate the initial pop-
ulation for the first optimization. Crossover point is set in the middle point of
chromosome. We set the mutation rate as 2 bits per child. After discarding the
duplicated child in crossover operation, the new population replaces the individ-
ual chromosomes with the lowest fitness value (steady-state replacement). We
continue generating new populations until the solutions are not improved.
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The requests in the long-term IaaS composition are based on their predicted
future behavior. However, existing requests in the system may behave differ-
ently than predicted. We use fixed interval (AT) to check whether the exist-
ing composition is deviating from the prediction. Other check points are the
predicted incoming arrival times of new requests. For example, assume that
{(A,t0),(C,t5)} is the initial TaaS composition. If At = 2, the optimization
check points are t3 and t5. If request B arrives at time to, we may consider
inclusion of B if the new predicted behavior of A is different from its initial
prediction. Hence, the optimization process should be run again from scratch to
update the solution.

4 Experiments and Results

A set of experiments are conducted to evaluate the efficiency of the proposed
long-term economic model and genetic algorithm. At first we evaluate the pre-
diction accuracy of the economic model. The fitness of the economic model based
composition is compared with a greedy and brute-force approach. In the greedy
approach, the provider does not consider the future arrival and valuation of the
requests. It accepts the requests that does not violate the SLA at the time of
arrival [11]. The brute-force approach considers all the possible compositions
to choose the optimal composition. All the experiments are conducted on com-
puters with Intel Core i7 CPU (2.13GHz and 4 GB RAM). R statistical tool
[13] is used to implement the algorithms. We evaluate the proposed method
using a mixture of Google Cluster resource utilization [14], real world cloud QoS
performance [15], and synthetic data. We randomly generates 100 arrival time
points and attach them with the requests to generate a stochastic map of 100
long-term requests. We synthetically generate the runtime behavior of the ser-
vice requests using Correlation Density Index (CDI) [4]. A higher CDI refers
to a lower randomness of the correlations between the service request and the
runtime service usage in the history. We generate five sets of service runtime
requests with 5 different CDI values (0.5, 0.6, 0.7, 0.8, 0.9) from the map of
100 long-term requests. The long-term economic expectation is also syntheti-
cally created (Fig.1(a)). The mean and standard deviation of the attributes in
economic expectation are as follows: profit (mean: $100, sd: $20, weight: 0.5),
number of SLA violation (mean: $3, sd: $2, and weight: 0.3), and utility factor
(mean: 80 %, sd: 30 %, and weight: 0.2).

4.1 Setup of the Long-term Economic Model

The proposed economic model incorporates the change of service price and oper-
ation cost. We use the time series of electricity price (E};) from Australian Bureau
of Statistics [16] to generate the change in the service price and operation cost.
The price of resources and QoS are set by following a weighted Rackspace pric-
ing model as (85 x F;/unit per hour for any types of resources). [9] provides
a short-term mapping relationship between operation cost and utilization. We
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Table 1. Long-term relationship between Utility Factor and Operation Cost

UF | Cost/hour | UF | Cost/hour | UF | Cost/hour
5% |$110x E; 1 20% | $120 x B | 30% | $140 x E,
60 % | $150 x E¢ |90 % | $160 x E; | 100 % | $165 x E;

Profit —
No of SLA Violation —
Uity Factor —

.
\\
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\\\\\\\\\}\“\m\\\\ “\“‘“ \\\

Price

T T T T
Jan2012  May2012  Sept2012  Jan2013  May 2013  Sept2013

Time

(a) (b)

Fig. 1. (a) Long-term Economic Expectation of the provider (b) Prediction accuracy
of DBN

generate the long-term behavior between operation cost and utilization using the
dynamic electricity price in Table 1. The SLA violation fee is 20 % of the revenue
credited to consumers. The resource constraints are set by allowing maximum
100 units for each attributes. We use the resource allocation algorithm in [11] as
the utility factor in Eq. 6.

4.2 Efficiency of the Economic Model Based Composition

At first, we evaluate the performance of the propose DBN in the economic model.
We model the 18 months (Jan 2012—Sep 2013) electricity price with the proposed
DBN. The predicted price from the DBN is compared with the actual price using
Normalized Root Mean Square Error (NRMSE) defined in Eq. 11.

n

NRMSE = \/24%) a1

Figure 1(b) depicts the closeness (0.3 NRMSE) of the prediction toward actual
behavior. Figure2(a) depicts the efficiency of the long-term composition over
the greedy approach. We observe that the greedy approach only maximizes the
economic fitness at the beginning, while the proposed economic model based
service composition maximizes the fitness in a steady rate over the period of
composition (Fig.2(a)). Although brute-force produces the best composition in
Fig. 2(b), it is not applicable as its time complexity is (2V). The proposed app-
roach is not polynomial with respect to request size (Fig. 2(a)). Although it takes



Optimizing Long-term IaaS Service Composition 341

500
I

400
I

300
I

Expectation Fitness
No of iterations
B

200
I

20
I
100
I

T T T T T
ath 8th 12th 15th 18th

Time (Month) No of Requests
(a) (b)

Fig.2. (a) The long-term composition fitness (b) Effect of request size in time
complexity

more computation time than the greedy approach, the difference is negligible in
real world implementation.

5 Conclusion

In summary, we propose a novel dynamic service composition framework for
TaaS providers to gain their long-term economic expectations. The proposed
long-term economic model evaluates the long-term economic behavior of service
compositions. Experimental results show that our approach is more profitable
than the greedy approach and suitable for runtime implementation.
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