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Abstract. Eye detection is an important step for a range of applications
such as iris and face recognition. For eye detection in practice, speed is
as equally important as accuracy. In this paper, we propose a super-fast
(1000 fps on a general PC) eye detection method based on the label
map of the raw image without face detection. We firstly produce the
label map of a raw image according to the coordinates of its bounding
box . Then we train a stacked denoising autoencoder (SDAE) which is
specifically designed to learn the mapping from the raw image to the
label map. Finally, through an effective post-processing step, we obtain
the bounding boxes of two eyes. Experimental results show that our
method is about 2,500 times faster than the deformable part-based model
(DPM) while maintaining a comparable accuracy. Also, our method is
much better than the popular LBP+Cascade model in terms of both
accuracy and speed.
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1 Introduction

As a challenging problem in computer vision, eye detection has attracted increas-
ing attention in recent years due to its importance in some real applications such
as iris and face recognition. Eye detection aims to solve the problem of getting
the accurate position of eyes in a given image. Great achievements have been
made on the accuracy of object detection over the past years [2] [3] [7] and these
methods could be directly utilized to eye detection.

However, when facing truly practical problems, we find that few methods can
run at a fast speed and keep a high accuracy at the same time. On one hand,
despite of the great accuracy achieved by many recently proposed methods such
as DPM [2] and RCNN [3], they usually rely on tools of high performance com-
puting (HPC) for the demand of real-time detection. Sometimes, even though
the HPC technology is adopted, the speed still cannot meet the requirements in
applications such as on the embedded devices. On the other hand, traditional
methods like LBP+Cascade can run in real time, but their detection accuracy
is usually not satisfactory.
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In this paper, we propose a novel method based on the label map to address
fast and accurate eye detection. To obtain great acceleration, we adopt SDAE [14]
to learn the mapping from raw image to label map image, which can be very fast
in testing because SDAE needs only a few times of matrix multiplication.

Label map has been proposed in [8] for face parsing. Our method differs
from that in two aspects. Firstly, the method in [8] deals with the face parsing
problem, so the label map needs segmentation for each pixel. However, our task
is specific object detection and the label map with the location of the bounding
box is enough, which means traditional object detection datasets can be directly
utilized to train our model. Secondly, face parsing in [8] needs the face detection
results as the input. In our approach, to avoid the use of face detector, we adopt
a different strategy called patch based label map training. This strategy ensures
getting the whole label map with a high accuracy, at the same time at a super-
fast speed.

The major contributions of this paper are summarized as follows:

1) We propose a novel method based on the label map for reliable eye detection,
which avoids the time-consuming face detection. It is robust to illumination
changes, non-rigid deformation, incomplete object and partial occlusion.

2) We specifically design a SDAE model to learn the mapping from a raw image
to the label map, and propose a patch based label map training strategy to
effectively train the SDAE model.

3) Our approach is about 2,500 times faster than DPM while maintaining a
similar accuracy and is much better than the LBP+Cascade model in terms
of both accuracy and speed, which gives the potential for our approach to be
used in computing-limited scenarios such as the embedded mobile devices.

2 Related Work

The work proposed in this paper is related to object detection and deep learning.
We simply introduce some related work as follows.

Object Detection. Object detection has long been studied and attracted
increasing attention in recent years. As for dealing with real-time tasks such
as face detection in videos, LBP+Cascade [7] might be one of the most mature
methods and has been proved very effective in common use. Deformable part
based model (DPM) proposed in [2] is another milestone because of its high
detection accuracy. Both LBP+Cascade and DPM in essence are the sliding
window based methods.

These methods first turn an image into a large amount of image windows
by slidingly sampling windows in the image pyramid. Then features (LBP in
LBP+Cascade and HOG in DPM) are extracted from each window and clas-
sified by a category specific classifier (Cascade in LBP+Cascade and Latent
SVM in DPM). Finally through a post-processing method named non-maximum
suppression (NMS) [2], a bounding box surrounding the specific object can be
obtained. Sliding window based methods turn out to be effective in some object
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detection tasks such as face detection [7], pedestrian detection [2]. A main prob-
lem for sliding window based methods is the large amount of image windows.
Especially, when objects in an image have a large range of size variance, to guar-
antee a high recall, the number of layers in the image pyramid should be larger
and the stride between two windows should be smaller, which will produce a
huge number of image windows. Classifying these image windows will be quite
time-consuming. Our method adopts a label map based measure which avoids
constructing the image pyramid, and thus significantly reduces the number of
image windows (Section 3).

Deep Learning. The deep learning technology, with its strong representation
learning capacity, has been utilized to deal with various computer vision prob-
lems and great success has been achieved in many areas such as image classifi-
cation [6] [11] and object detection [3]. There are different deep learning models
that have been proposed, such as DBN [5], Autoencoder [10], Convolutional Neu-
ral Network (CNN) [6]. Among all these models, CNN may be the most widely
used, but its high computing cost is the biggest obstacle in real-time scenarios.
Autoencoder (AE) is trained in an unsupervised manner by setting the output
equal to the input. Lots of variants of AE have been developed in recent years
such as denoising AE(DAE)[12], dropout AE [10], sparse AE [9] and stacked
AE (SAE) [13]. AE has its own advantage that all it needs is just a few times
of matrix multiplication, which leads to a super-fast forward propagating speed
when testing.

3 Owur Method

In this section, we detail our method. The whole framework includes three parts:
data preparation, SDAE training and bounding boxes acquisition. We explain
each part one by one below. More implementation details will be further intro-
duced in Section 4.

3.1 Data Preparation

Two key problems we should solve before training a SDAE are 1) how to get the
label map from traditional object detection datasets and 2) how to ensure we
have enough data to effectively train the SDAE.

Getting Label Map. Unlike the method in [8], we do not need accurate label
map with the segmentation for each pixel during training. Traditional object
detection datasets can be directly used in our framework. In particular, we just
utilize the size of the input image and the labeled bounding box to create a
binary image with the same size. As shown in Fig. 1, we set the value of pixels
in the bounding box to one and other pixels to zero, and thus get the label map
used in our method.
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(a) (b) (c) (d)

Fig. 1. (a) is an original image with bounding boxes and (b) is the corresponding label
map. (c) is an image without the target object and (d) is the corresponding label map.

Patch Based Label Map Training. In our method, instead of first performing
face detection as some other methods do, we directly perform eye detection on
the whole input image. But training a SDAE with the whole image as input is
proved to be unreasonable. For example, although the input image is 480x268, we
experimentally find that the size of 80x44 is almost the limit to guarantee good
performance. A simple AE with such a size will have ten millions of parameters.
Optimizing so many parameters needs huge amount of training data and the
optimized model will be very large so that it is hard to be loaded to a normal
PC memory.

To solve this problem, we propose a training strategy called patch based label
map training. In this strategy, instead of using the whole image as the input, we
randomly crop image patches from the whole image with a reasonable size as
the training data.

Another key point in this strategy is the cleaning of the generated label map
patches before training. Let us define the response rate of a label map patch as:

i=N,j=N 7,. .
. 212173']:1 (i, 5) 1
= s 1)

where I denotes the label map patch, N denotes the size of I, I(i,j) € {0,1}
denotes the pixel value at (4, 7) in I. We find that, if the training data contains
label map patches with a small r, the output label map will have many small
noisy response regions, which will be a severe problem in the post-processing
procedure. Therefore if r of a patch is smaller than a predefined threshold, we
set the label map of this patch to 0.

Because of the above strategy we propose, we can easily sample thousands of
image patches from one original image. Meanwhile, the model can be smaller so
that fewer parameters need to be optimized. Fig. 2 shows the procedure of our
strategy. To increase the contrast, the red border is added for sampled patches.
The r value of the upper patch in Fig. 2 is above the threshold, so no further
processing is needed. But the r value of the lower patch in Fig. 2 is smaller than
the threshold, so all the values in this patch are set to 0.
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Fig. 2. The procedure of the training strategy described in Section 3.1. (Best viewed
in color)

3.2 SDAE Training

The whole training procedure includes two parts: pre-training and fine tuning.
The whole model architecture is shown in Fig. 3. (a) and (b) are two DAEs used
for pre-training. (c) is the SDAE used in our framework.

Pre-training. Pre-training is an unsupervised layer-wise initialization proce-
dure for deep network to avoid getting stuck in local minima or plateaus [1].
In our framework, we choose a variant of the conventional AE called denoising
AE (DAE) as the building block of SDAE. DAE learns to recover a data sample
from its corrupted version, which means it can learn more robust features than
conventional AE. The architecture of DAE is shown in Fig. 3(a).

Suppose there are N training samples. Let 7, denote the kth image patch and
ir, denote the corrupted iz, where corruption can be Gaussian or salt-and-pepper
noise. Let W' and W? denote the weights (including the bias) for the encoder
and decoder respectively. A DAE is learned by solving the following optimization
problem:

N
g D s = I+ MW+ 19771 2)

=1

where 3

hy = f(Whiy) (3)
ik = f(W?hy) (4)
Here X is a parameter that balances the reconstruction loss and weight penalty
terms, || -||% denotes Frobenius norm, and f(-) is a nonlinear activation function

which is typically a sigmoid function or hyperbolic tangent function. As shown
in Fig. 3, two DAEs are trained in our framework, thus leading to three hidden
layers in SDAE.

Specifically Designed SDAE and Fine-Tuning. In the fine-tuning proce-
dure, we utilize the two pre-training DAEs to build a SDAE. The weights of
SDAE are all initialized with the weights from the pre-training stage as shown
in Fig. 3(c¢) except that the weights between the last hidden layer and the output
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Fig. 3. (a) and (b) are two DAEs used for pre-training.(c) is the SDAE used in our
framework. The weights in (c) are initialized with weights from (a) and (b) except that

the weights between h3 and [ are randomly initialized.

layer are randomly initialized. These weights in conventional SDAE should be
set to W2, because the output is just a re-construction of the input. But in our
method, we expect the output to produce the corresponding label map of the
input image patch, so we initialize these weights with a random matrix denoted
W? aiming to let the optimizing algorithm search for the optimal solution in a
larger scope.

Other Strategies Adopted in Training. Overcomplete filters are used in
the hidden layer of DAE. In conventional AE, the hidden layer is always in a
“bottleneck” style. Overcomplete filters demand that the number of units in the
hidden layer is larger than that of the input layer because it has been found that
an overcomplete basis can usually capture better image structure [16].

To further learn more meaningful features, we also adopt sparsity constraints
[4] imposed on the hidden units. If a sigmoid activation function is used, the output
of each neural unit can be regarded as the probability of being active. Let p; denote
the target sparsity level of the ¢th unit and p; denote its average empirical activation
rate. The cross-entropy of p; and p; can then be introduced as an additional penalty
term to Eqn.(2):

=0 (5)

s2
3 plog 2+ (1 - p)log —+
= Pj L—p;

where s, is the number of hidden units.

3.3 Bounding Boxes Acquisition

Once we obtain many label map patches of the input image, we can merge
these patches to form the whole label map according to their original positions.
Example merging result is shown in Fig. 4(a) and we usually binarize the label



1000 Fps Highly Accurate Eye Detection with SDAE 243

(a)

Fig. 4. (a) is the label map image obtained by merging all the label map patches from
SDAE. (b) is the binary label map image, showing how to produce bounding boxes
from label map. Please see the text for details. (c) is the result we get finally.

map as shown in Fig. 4(b). To get the bounding box from such a label map, we
introduce a simple but very effective method in our eye detection task.

This method is first to add the matrix of the binary image along y axis to
get one or two longest continuous non-zero sequence, which corresponds to the
x coordinates of the eyes. Then we can separate the binary image into two parts
according to the x coordinates. Adding the matrix of each part along x axis will
get the corresponding y coordinates. We show this procedure in Fig. 4(b).

When response areas in the label map cannot be separated by = or y axis,
we can also adopt some methods such as finding contours to get the bounding
box from the label map.

4 Experimental Results

In this section, we first introduce the implementation details of our experi-
ments. Then we present our experimental results including the results of dif-
ferent strategies, comparison with other methods and the visualization of our
detection results.

4.1 Experimental Setting

Dataset. We collect 2,732 near-infrared eye images as the dataset used in our
experiments for the background of this task is the Asian iris recognition. We
randomly choose 2,182 images for training and the remaining 550 images for
testing. The image size is 480x268. In our experiments, we resize all the images
to 80x44. The patch size is 36x36. In testing, we sample patches with a stride of
18, just the half of the patch size.

Implementation Details. We empirically set the threshold of r to 0.02. For
DAE and SDAE, we set the denoising ratio to 0.5, the sparsity target to 0.05,
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Table 1. Effectiveness comparison of different strategies.

F1 hl = 1024, h2 = 512 | hl = 2048, h2 = 1024
r=20 — 0.879
r = 0.02 0.892 0.906

the weight penalty to 0.0001, the batch size to 100 and the learning rate to 0.2 in
DAE and 0.1 in SDAE respectively. The sizes of hl and h2 are 2,048 and 1,024
respectively. For DPM, the settings suggested by the paper [15] are used.

Evaluation Metrics. For accuracy, we use the same criterion as in [2] that
the predicted bounding box is valid if its overlap ratio with the ground truth is
bigger than 50%. Because our method does not return a score for a predicted
bounding box, we use F'1 value as the performance metric instead of the ROC
curve. Let P denote precision and R denote recall rate, F'1 can be defined as

follows:
2PR

~ P+R (©)
From the formula, we can see that F'1 value is a balance between precision and
recall rates.

For speed, we use frames per second (fps) as the performance metric.

Fy

4.2 Basic Results

Effectiveness of Cleaning Small Response Area. We set r to 0 and 0.02
separately. Results show that when r is equal to 0, the label map will have some
noisy regions which results in the overlap between the predicted bounding box
and ground truth being less than 50%. In our test, this will reduce the accuracy
by about 2.7% compared with r = 0.02.

Effectiveness of Overcomplete Filters. Except for setting hl to 2,048 and
h2 to 1,024, we also use the conventional ”bottleneck” hidden layer with hl =
1,024 and h2 = 512. It shows that by adopting overcomplete filters, the accuracy
can be improved by about 1.4%. All these results are shown in Tab. 1.

4.3 Comparison

We compare our method with other methods from two aspects: speed and accu-
racy. As for the methods we choose to compare with, LBP+Cascade is the most
widely used object detection method and DPM has achieved excellent results
on the challenging PASCAL VOC dataset. The accuracy and speed comparisons
are shown in Fig. 5. We can see that our method can get a surprising 1,000 fps
on a general PC with CPU (i7-3770 in our experiments), which is 17 times faster
than LBP+Cascade, 140 times faser than the fastest DPM [15] and 2,500 times
faster than original DPM [2]. The accuracy of our method is slightly lower than
DPM but obviously better than LBP+4Cascade. Overall, our method achieves a
super-fast speed while maintaining a high accuracy.
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Fig. 5. Comparison with other methods on accuracy and speed.
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Fig. 6. Example results produced by LBP+Cascade(top), DPM (middle) and our app-
roach (bottom). From left to right, we can see that our method is robust to the incom-
plete object, background disturbance, changes of illumination, occlusion and non-rigid
deformation (best viewed in color).

4.4 Visualization

We show some detection results in Fig. 6. From left to right, we can see that our
method can effectively deal with the incomplete object (such as the incomplete
eyes), background disturbance (such as the disturbance of eyebrows), changes
of illumination, occlusion (such as wearing glasses) and non-rigid deformation
(such as the non-rigid deformation of eyes).

5 Conclusion

In this paper, we have presented a label map based eye detection method. By
training a specifically designed SDAE, the label map can be accurately pro-
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duced. The resulting method is 2,500 times faster than DPM while maintaining
a comparable accuracy, which shows the great potential of our method to be
used for real-time applications and in computing-limited scenarios.
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