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Abstract. This paper proposes a difference scheme based on nonlinear
diffusion Perona-Malik model for numerical calculation in image restora-
tion. Our scheme can adapt to determine the tangent directions to the
isophote lines based on two mutually orthogonal directional derivatives,
which results that diffusion is along the edges as much as possible. One
of typical edge stopping functions for Perona-Malik model is modified
in order to improve robust calculation and satisfy the compatibility, sta-
bility and convergence for our numerical scheme. Computer experimen-
tal results indicate that the algorithm corresponding to our numerical
scheme is very efficient for noise removal in regardless whether the noise
is serious or not.
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1 Introduction

Historically, image restoration is not only one of the oldest concerns but also
one of the most important and fundamental tasks [1]. Removing the noise while
preserving image edges is difficult but much desired. Nowadays, for this aim
there emerge three main directions: stochastic modeling, wavelets and partial
differential equation (PDE) approaches [2][3].

For PDE-based methods, Perona-Malik (P-M) model (ref. [4]) is considered
to be the most classic equation so that it has attracted much attention in recent
decades; see [5], [6] and [7], etc. However, P-M model is pathological [5][8]. In
other words, robust calculation of diffusion coefficient is a severe challenge for the
model when the noise of the initial image is sharp oscillation. A classical method
to overcome this disadvantage is the smooth version of P-M model proposed
by Catté et al. in [5]. As two-dimensional Gaussian kernel Gσ is introduced
into edge stopping function, their model can smooth the flat and edge regions
adaptively. However, it’s difficult to choose proper scale parameter σ. In order
to further improve the cases depending seriously on the gradient values of an
image, Guo et al. proposed an adaptive P-M model by variable exponent term
|∇u|α(|∇Gσ∗u|2) (Edge indicator function must satisfy 0 ≤ α(·) ≤ 2.) replacing
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|∇u|2 for edge stopping function in [7]. When the model is applied to image
processing, experimental results show that it can achieve higher quality images
for peak signal to noise ratio (PSNR) and image edge has been preserved better.
A similar model was mentioned by Maiseli et al. [9] with different edge indicator
function from [7].

This paper improves robust calculation of P-M model by modifying one of
typical edge stopping functions. Meanwhile, we present a new numerical scheme
for P-M model. P-M model is recalled in Sect. 2.1 and our scheme is deduced
from the aspect of numerical analysis in Sect. 2.2. According to the product of
two mutually orthogonal directional derivatives is negative or not, we give two
distinct second-order mixed partial derivatives. The form of our difference equa-
tion makes diffusion along the edges (the isophote lines) as much as possible.
Thus, our scheme neither has very strong isotropic smoothing properties like
heat equation nor restores images only depending on the difference of gray level
value among different pixels. After proving the compatibility, stability and con-
vergence of the difference equation (Sect. 2.3), Sect. 3 makes use of Lena image
and Cameraman image added Gaussian noise for different variances to test the
capability of our new scheme in image restoration. Compared with those models
proposed by [4], [5] and [7], experimental results show that our algorithm has
significant advantages. Conclusion is in Sect. 4.

2 Nonlinear Diffusion in Image Restoration

In image processing, the oldest and most investigated equation is probably the
parabolic linear heat equation [10][11]. Although it has successful applications,
there exists a drawback that it is too smoothing so that edges will be lost, i.e.,
image becomes severely blurred after being processed. Many researchers have
tried to find more effective models or algorithms for removing the noise while
preserving the edge as much as possible [1].

2.1 Perona-Malik Model

In [4], Perona and Malik proposed anisotropic diffusion equation as follows

ut = div(c(|∇u|2)∇u), u(x, y, 0) = u0(x, y), (1)

which is called P-M model, where u0 is initial image and edge stopping function
c(·) is strictly monotonically decreasing function satisfying c(0) = 1, c(s) ≥ 0
and c(s) → 0 as s → +∞. In addition, denoting respectively by div and ∇ the
divergence operator and the gradient operator (i.e., ∇u = (ux, uy) and |∇u|2 =
u2

x + u2
y) with respect to the space variables (x, y).

After researching experiment, there are two edge stopping functions adopted
widely, i.e., c(s) = (1 + s/K)−1 and c(s) = exp(−s/K), where K is a positive
constant. For the former, we will investigate further the function c(s) = (1 +
s/K)−1/3 in improving robust calculation of P-M model.
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On the one hand, in flat areas P-M model acts as the heat equation which
is isotropic smoothing since c approximates to a constant as the value of the
gradient is almost equal to zero. On the other hand, its regularization near the
region’s boundaries is weaken even stopped such that the edge are preserved.

According to the definition of divergence operator, (1) can be written as the
form of second-order partial derivatives in spatial directions, i.e.,

∂u

∂t
= c11(∇u) · uxx + 2c12(∇u) · uxy + c22(∇u) · uyy, (2)

where diffusion coefficients satisfy
⎧
⎪⎨

⎪⎩

c11(∇u) = 2u2
xc′(|∇u|2) + c(|∇u|2),

c12(∇u) = 2uxuyc′(|∇u|2),
c22(∇u) = 2u2

yc′(|∇u|2) + c(|∇u|2).

To facilitate the writing, in the back content c11(∇u), c12(∇u), and c22(∇u) is
abbreviated as c11, c12, and c22, respectively.

2.2 Modified Numerical Scheme

As a matter of fact, a stable 4-nearest-neighbors discretization of Laplacian oper-
ator given by [4] for P-M model is weaken even almost stopped when the value
of |∇u| is tremendous. In such a case, the edge are protected, but noise on the
edge is still retained. On the one hand, if the noise of the initial image u0 is
sharp oscillations, P-M model will face a severe challenge which is how to calcu-
late robustly the diffusion coefficients c from the outset. On the other hand, it’s
difficult to identify the true boundary or “boundary” caused by noise. Unfor-
tunately, P-M model with the 4-nearest-neighbors discretization of Laplacian
operator can’t exhibit theoretically expected effect in practical applications.

Finite difference method is utilized for the discretization of partial derivatives
since digital image has a natural regular grid. In this Section, we will transform
P-M model into an explicit difference scheme for the numerical calculation. In
terms of (2), the differential quotients with respect to the spatial variables (x, y)
are approximated by center difference quotients and the differential quotient
with respect to the temporal variable t is approximated by forward difference
quotient in this paper.

Introduce the time step size Δt and the spatial step sizes Δx, Δy into dif-
ference equation, i.e., t = n · Δt, x = i · Δx and y = j · Δy. It follows that
(

∂u

∂t

)n

=
un+1 − un

Δt
,

(
∂u

∂x

)

i,j

=
ui+1,j − ui−1,j

2Δx
,

(
∂u

∂y

)

i,j

=
ui,j+1 − ui,j−1

2Δy
,

(
∂2u

∂x2

)

i,j

=
ui+1,j − 2ui,j + ui−1,j

(Δx)2
,

(
∂2u

∂y2

)

i,j

=
ui,j+1 − 2ui,j + ui,j−1

(Δy)2
.

(3)
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It is necessary to point out that the difference quotient of second-order mixed
partial derivative used commonly (e.g., given in [12]):

(
∂2u

∂x∂y

)

i,j

=
ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

4ΔxΔy

couldn’t make sure of the stability and convergence of the corresponding dif-
ference scheme in iterative procedure. Considering the coefficients of ui+1,j+1,
ui+1,j−1, ui−1,j+1 and ui−1,j−1 in the difference quotient mentioned as above,
half are negative and half are positive. Furthermore, the righthand coefficients of
(2) rely strictly upon two mutually orthogonal directional derivatives in numeri-
cally. Therefore, this difference equation doesn’t satisfy the maximum principle.

Without loss of generality, we set k = Δt and h = Δx = Δy. As h → 0,
let’s consider Taylor Expansions of four terms ui+1,j+1, ui+1,j−1, ui−1,j+1 and
ui−1,j−1 at point (i, j), i.e.,

ui+1,j+1 =
[

1 + h

(
∂

∂x
+

∂

∂y

)

+
h2

2

(
∂

∂x
+

∂

∂y

)2

+
h3

6

(
∂

∂x
+

∂

∂y

)3]

ui,j , (4)

ui+1,j−1 =
[

1 + h

(
∂

∂x
− ∂

∂y

)

+
h2

2

(
∂

∂x
− ∂

∂y

)2

+
h3

6

(
∂

∂x
− ∂

∂y

)3]

ui,j , (5)

ui−1,j+1 =
[

1 − h

(
∂

∂x
− ∂

∂y

)

+
h2

2

(
∂

∂x
− ∂

∂y

)2

− h3

6

(
∂

∂x
− ∂

∂y

)3]

ui,j , (6)

ui−1,j−1 =
[

1 − h

(
∂

∂x
+

∂

∂y

)

+
h2

2

(
∂

∂x
+

∂

∂y

)2

− h3

6

(
∂

∂x
+

∂

∂y

)3]

ui,j , (7)

where all of remainders are O(h4). To eliminate first-order partial derivatives,
let (5) add (6) and (4) add (7). Therefore, we deduce the following two equations
with respect to second-order mixed partial derivative:

2
(

∂2u

∂x∂y

)

i,j

=
2ui,j − ui+1,j−1 − ui−1,j+1

h2
+

(
∂2u

∂x2
+

∂2u

∂y2

)

i,j

+ O(h2), (8)

2
(

∂2u

∂x∂y

)

i,j

=
ui+1,j+1 + ui−1,j−1 − 2ui,j

h2
−

(
∂2u

∂x2
+

∂2u

∂y2

)

i,j

+ O(h2). (9)

For the discrete approximation of uxy in (2), we choose to apply (8) if coeffi-
cient c12 is negative, and (9) if c12 is nonnegative. Our choices can fundamentally
avoid the divergent and unstable result caused from the case mentioned as above
for the difference form given by [12]. In addition, it’s possible to result in appear-
ing negative coefficients for other terms (for example, ui,j , ui+1,j and ui,j−1, etc).
However, we only require some appropriate constraints for this.
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(a) ux > 0, uy > 0 (b) ux < 0, uy < 0 (c) ux > 0, uy < 0 (d) ux < 0, uy > 0

Fig. 1. Illustration of Difference Equation (10)

In such choices, we obtain the following Difference Equation of P-M model
by (3), (8) and (9):

un+1
i,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C1u
n
i,j + C2u

n
i+1,j + C2u

n
i−1,j + C3u

n
i,j+1

+ C3u
n
i,j−1 + C4u

n
i+1,j−1 + C4u

n
i−1,j+1,

C1u
n
i,j + C2u

n
i+1,j + C2u

n
i−1,j + C3u

n
i,j+1

+ C3u
n
i,j−1 + C4u

n
i+1,j+1 + C4u

n
i−1,j−1,

if c12 < 0

if c12 ≥ 0
(10)

where ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1 = 1 − 2rc11 − 2rc22 + 2r|c12|,
C2 = r(c11 − |c12|),
C3 = r(c22 − |c12|),
C4 = r|c12|,

where r = k/h2. There is no doubt that ideal initial values are original degraded
noisy images. As shown in Fig. 1, it’s not hard to see that the diffusion form is
related closely with the tangent directions to the isophote lines in image.

2.3 Compatibility, Stability and Convergence

Theorem 1. Difference Equation (10) is compatible with (2).

Proof. Firstly, we prove the theorem in the case c12 < 0. We obtain local trun-
cation error of (10) as follows

Tn
i,j =

[
un+1

i,j − un
i,j

k
− |c12|

un
i+1,j−1 + un

i−1,j+1 − 2un
i,j

h2

− (c11 − |c12|)
un

i+1,j + un
i−1,j − 2un

i,j

h2
− (c22 − |c12|)

un
i,j+1 + un

i,j−1 − 2un
i,j

h2

]

−
[
∂u

∂t
−

(
c11

∂2u

∂x2
+ 2c12

∂2u

∂x∂y
+ c22

∂2u

∂y2

)]n

i,j

.

As k → 0 and h → 0, we have Taylor Expansions of the righthand terms un+1
i,j ,

un
i+1,j and un

i−1,j+1, etc. in (10) at point (i, j, n). Then, it is easy to deduce that
Tn

i,j = O(k + h2) → 0.
For the case c12 ≥ 0, the same result can be obtained similarly. Consequently,

we conclude that (10) is compatible with (2). ��
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Theorem 2. For c(s) = (1 + s/K)−p (0 < p ≤ 1/3), Difference Equation (10)
is stable if r ≤ 1/4.

Proof. It’s apparent from (10) that the sum of the righthand coefficients Ci (i =
1, · · · , 4) is equal to 1. Firstly, we will prove that every coefficient is nonnegative,
i.e., ⎧

⎪⎨

⎪⎩

1 − 4r
[(

u2
x + u2

y + |uxuy|)c′(|∇u|2) + c(|∇u|2)] ≥ 0,

r
[
2
(
max

{
u2

x, u2
y

}
+ |uxuy|)c′(|∇u|2) + c(|∇u|2)] ≥ 0,

− 2r|uxuy|c′(|∇u|2) ≥ 0.

(11)

In fact, according to the monotonicity of edge stopping function c(·), the
last inequality of (11) is naturally true because both the time and spatial step
size are positive constants. Next, let’s prove the second inequality of (11). It is
straightforward to show that

2(max
{
u2

x, u2
y

}
+ |uxuy|) ≤ 2(u2

x + u2
y) + (u2

x + u2
y) = 3|∇u|2.

By differentiating the function c(s) = (1 + s/K)−p with respect to s, we can get

c′(s) = − p/K

(1 + s/K)p+1
= − p/K

1 + s/K
c(s).

For p ≤ 1/3, we can deduce

2
(
max

{
u2

x, u2
y

}
+ |uxuy|)c′(|∇u|2) + c(|∇u|2) ≥ 0.

Similarly, in terms of the first inequality, we can easily obtain

0 ≤ (
u2

x + u2
y + |uxuy|)c′(|∇u|2) + c(|∇u|2) ≤ 1.

So the first inequality of (11) is true if r ≤ 1/4.
Denoting by u0

max and u0
min the maximum and minimum of initial values

respectively. In fact, we can obtain

u0
min ≤ un

i,j ≤ u0
max

for every (i, j, n) by means of the maximum principle. More generally, for each
positive integer n there exists a positive constant P such that

‖un‖ ≤ P‖u0‖,

where the norm ‖u‖ =
[ ∑

i,j(ui,j)2
] 1

2 . Combined this with Theorem 1, the
conclusion is proved. ��

Therefore, all values always remain boundedness in the whole iterative pro-
cedure. In fact, as has been proved in Theorem 2, the gray level value of all pixels
will tend to some constant with increasing of iteration count. In general, it is a
common drawback for the explicit difference scheme. Thus, we need to control
the number of iterations to avoid blurring the image.

Since (10) is linear, we obtain the following theorem (ref. [13]):

Theorem 3. Under Theorem 1, stability of Difference Equation (10) is a nec-
essary and sufficient condition that it be convergent.
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3 Numerical Comparison

In this Section, we will compare the denoising effect of the algorithm for our
numerical scheme with the algorithms for P-M model [4], Catté-Lions-Morel-
Coll (C-L-M-C) model [5] and Guo-Sun-Zhang-Wu (G-S-Z-W) model [7] which
are programmed by 4-nearest-neighbors discretization of Laplacian operator.
These denoising algorithms are tested on standard Lena image (see Fig. 2(a)),
Cameraman image (see Fig. 2(b)) and the versions added Gaussian noise for
different variances. Gray level value of each pixel is an integer from 0 to 255.

(a) Lena (b) Cameraman

Fig. 2. The standard images (512 × 512 pixels)

PSNR which is applied to evaluate the quality of the restored images in this
paper is defined as

PSNR = 10 × log
(

2552

MSE

)

,

where MSE (mean square error) is defined as

MSE =

∑N
j=1

∑M
i=1

[
ui,j − (u0)i,j

]2

M × N
,

where M and N represent respectively the number of image pixels in rows and
columns. All algorithms are run in Matlab R2008a on a Pentium(R) Dual-Core
CPU T4300 @ 2.10GHz processor. In addition, the iterative stopping criterion
of all algorithms is set to acquire the maximal PSNR.

First noisy observation is generated by adding the Gaussian white noise for
mean μ = 0 and standard deviation σ = 25 into Lena image (PSNR = 22.6017,
see Fig. 3(a)). All parameters used in these denoising algorithms are shown in
the title of Fig. 3 (r = 0.1, c1(s) = (1 + s)−1/3 and c2(s) = (1 + s/32)−1). The
denoising effect is shown in Fig. 3(b)-3(f). PSNR and iteration count are seen in
Table 1.

As can be seen from Table 1, PSNR and iteration count of the algorithm
corresponding to our scheme is essentially flat with the algorithms for C-L-M-C
model and G-S-Z-W model. For the 4-nearest-neighbors discretization of P-M
model, c2(s) performs worse than c1(s) and becomes the worst by lowest PSNR
and largest iteration count. Judging from this, the function c(s) = (1+s/K)−1/3
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(a) (b) (c) (d) (e) (f)

Fig. 3. Lena image. (a) Noise image corrupted by Gaussian noise for σ = 25; (b) Our
algorithm with c1(s); (c) P-M model with c1(s); (d) P-M model with c2(s); (e) C-L-
M-C model with c2(s), σ = 0.5 for Gaussian kernel; (f) G-S-Z-W model with c2(s),
σ = 0.5 for Gaussian kernel and k = 0.5 for variable exponent coefficient.

Table 1. PSNR (dB) and iteration count (steps) for Fig. 3

(b) (c) (d) (e) (f)

PSNR 33.7858 33.4970 31.7632 33.6233 33.6192
Iteration count 84 69 192 94 90

(a) (b) (c) (d) (e) (f)

Fig. 4. Lena image. (a) Noise image corrupted by Gaussian noise for σ = 100; (b)
Our algorithm with c1(s); (c) P-M model with c1(s); (d) P-M model with c2(s); (e)
C-L-M-C model with c2(s), σ = 1.5 for Gaussian kernel; (f) G-S-Z-W model with c2(s),
σ = 1.5 for Gaussian kernel and k = 1 for variable exponent coefficient.

Table 2. PSNR (dB) and iteration count (steps) for Fig. 4

(b) (c) (d) (e) (f)

PSNR 25.1603 23.8122 22.9253 23.9372 23.9288
Iteration count 288 208 1331 192 188

is more beneficial for calculating robustly of P-M model than typical function
c(s) = (1 + s/K)−1.

Second noisy observation is generated by adding the Gaussian white noise for
mean μ = 0 and standard deviation σ = 100 into Lena image (PSNR = 12.5610,
see Fig. 4(a)). All parameters used in these denoising algorithms are shown in
the title of Fig. 4 (r = 0.1, c1(s) = (1 + s)−1/3 and c2(s) = (1 + s/32)−1). The
denoising effect is shown in Fig. 4(b)-4(f). PSNR and iteration count are seen in
Table 2.

Last noisy observation is generated by adding the Gaussian white noise for
mean μ = 0 and standard deviation σ = 100 into Cameraman image (PSNR =



374 Z. Ruan et al.

13.1543, see Fig. 5(a)). All parameters used in these denoising algorithms are
shown in the title of Fig. 5 (r = 0.2, c1(s) = (1+s)−1/3 and c2(s) = (1+s/16)−1).
The denoising effect is shown in Fig. 5(b)-5(f). PSNR and iteration count are
seen in Table 3.

(a) (b) (c) (d) (e) (f)

Fig. 5. Cameraman image. (a) Noise image corrupted by Gaussian noise for σ = 100;
(b) Our algorithm with c1(s); (c) P-M model with c1(s); (d) P-M model with c2(s);
(e) C-L-M-C model with c2(s), σ = 1.5 for Gaussian kernel; (f) G-S-Z-W model with
c2(s), σ = 1.5 for Gaussian kernel and k = 1 for variable exponent coefficient.

Table 3. PSNR (dB) and iteration count (steps) for Fig. 5

(b) (c) (d) (e) (f)

PSNR 23.1283 21.9037 21.2401 22.1715 22.1549
Iteration count 141 104 1292 147 144

Obviously, ours performs best in these denoising algorithms according to the
comparison data seen in Table 2 and 3 in spite of being added more noise. And
the experimental results have almost no difference among the algorithms for
P-M model with c1(s), C-L-M-C model and G-S-Z-W model with c2(s). The
denoising effect of P-M model with c2(s) is still the worst. This indicates again
that c(s) = (1 + s/K)−1/3 is indeed conducive to improve robust calculation of
P-M model.

4 Conclusion

This paper proposes a modified numerical scheme based on nonlinear diffusion P-
M model in image restoration. Our new scheme not only has isotropic smoothing
properties acting as heat equation, but can calculate the diffusion intensity rely-
ing on the gradient value of gray image like P-M model. Furthermore, it also can
determine adaptively the diffusion directions according to the gray level value of
pixels in images. Judging from experimental results, our algorithm is more effec-
tive in achieving the purpose of diffusing along the edges than the algorithms
for P-M model etc. which are programmed by 4-nearest-neighbors discretization
of Laplacian operator. Meanwhile, in terms of calculating robustly, the function
c(s) = (1 + s/K)−1/3 is more suitable to be adopted for P-M model.
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