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Abstract. In this paper, we propose an approach based on mixture of multiple 
components and mid-level part models for object detection in natural scenes. It 
is difficult to represent an object category with a monolithic model as the intra-
variance in the category. To solve this, we use multi-component models and 
part models to describe the global variation and local deformation respectively. 
We obtain multi-components by clustering to form visual similar object group 
and training discriminant model for each one. The mid-level part models are 
learned automatically. We apply max-pooling to generate the feature vector  
using all part models and then train the SVM classifier based on these feature 
vectors. When detecting in image, we first achieve object candidates using mul-
ti-component models, and then the performance is refined by using part models 
and SVM classifier. Experiments on standard benchmarks demonstrate this 
coarse-to-fine detection system performs competitively. 
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1 Introduction 

Object detection in natural scenes has been an important topic in computer vision for 
decades. However, it is still a challenge as the object varies greatly within each cate-
gory. The variation comes not only from the illuminations, viewpoint, deformation, 
structure, but also the intra-variation of the object subcategory. Thus local deforma-
tion and global variation should be considered seriously.  

Local variation is represented by local features. There are many researches have been 
focus on these issues. Hough transform based method [1, 2, 3, 4, 5, 6] has been applied 
popularly in the field. They vote with elements as boundaries, contours or patches which 
are collected with low-level features by point or edge detecting, line matching. They are 
not distinctive to the given object class. The Implicit Shape Model [1] generates code-
books by clustering patches which is found around interest point. Plenty discovered 
patches contain less semantic information with little structure information.  

Mid-level semantic concepts corresponding to attributes and parts to promote the 
object detection have become more and more popular in recent years. These mid-level 
semantic concepts are commonly obtained by manually annotation or clustering on 
low-level features. Paper [7] proposes a convenient method to label parts in which 
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parts are discovered with partial correspondence by annotating important matching 
points between instances of a category, which still need human participate in. Annota-
tion work is time-consuming and hard to do when facing more new categories. Disco-
vering mid-level semantic parts automatically is important and challenging. 

Inspired by the works of discovering parts automatically [8, 9, 10], we obtain parts 
by learning discriminative detectors with training images. We follow the idea [8] to 
generate a small group patches for training part detectors, which is generalizing and 
consistent in semantic as well. Selecting a subset of discriminative part detectors in 
the training procedure is an important issue.  

The trained part detectors represent local identity and robust to some structure de-
formation, while the global appearance also affords key information to the object 
detection. In order to solve the intra-variation in object, multiple components are pro-
posed. Exemplar-SVM [12] trained separate HOG [11] detector for each positive 
exemplar. But training with single exemplar would not be expected generalize 
enough. The method of multi-component models in [13] picks ‘seed’ object and 
aligned the rest object to the seed as the component. It needs keypoint and mask anno-
tation when aligning. Felzenszwalb and Girshick etc. [14] propose a detection system 
of mixtures of multi-scale deformable part models allowing for small deformation and 
multiple postures. But the numbers of components and parts are predefined and not 
referring to the data.  

We follow their work of mixture models, but our multi-components and part mod-
els are discovered during training. In detection, the candidate windows are generated 
with multi-component models, and then part detectors are used to refine the perfor-
mance. Each candidate is evaluated by the part models with feature vector using max-
pooling technique. The overview of the proposed approach is shown in Fig. 1. Our 
approach shows competitive performance on the open dataset.   

The rest of the paper is structured as follows. In Sec. 2 and Sec. 3 we describe the 
details of generating multi-components and discovering object parts. The experiments 
and analysis are presented in Sec. 4. Finally Sec. 5 concludes this paper. 

 

Fig. 1. Overview of our detection system with mixture models. 

2 Multiple Components Generation 

The challenge for object detection is the intra-variations induced by posture, view-
point, subcategories, etc. The monolithic model is not enough to represent the object 
category of intra-variations. A natural strategy is to use multiple models to detect the 
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category. One way is to use models predefined by hand such as the different view or 
posture, but this is not convenient to choose artificially. The other way is to find mod-
els automatically.  

We cluster using whitened HOG features. Whitened HOG features are considered 
to be better for clustering and classification [15], since the whitening removes the 
correlations and leaves the discriminative gradients. Firstly, we compute the cova-
riance matrix Σ and mean feature  on HOG features with all background samples. 
Then we cluster the positive objects using whitened features which are transformed 
from the HOG feature  to  Σ ⁄ . 

We set a fixed number  in advance to the object cluster number according to the 
data complexity. If the data samples within the category have great variation in post-
ure, structure, illumination, etc., we set  a large number. Conversely, we set  a 
small number when dada samples are simple and have not much variation. Compo-
nents work as a guide to the coarse detection, so clustering is enough to generate ge-
neralizing and representative model which separate the variation among the category 
to different groups and forms similar visual groups. After clustering, we train LDA 
model to each of them since it has the similar performance with SVM but accelerates 
the computation [15]. The LDA model is a linear classifier over  with weights giv-
en by ω  Σ  , and  is the mean feature of the cluster. The 
covariance matrix Σ and mean feature  are both computed in advance with all 
background. 

Finally, we measure the redundancy between a pair of components by their cosine 
similarity ω ω⁄ , ω ω⁄ , redundant components are removed. 

3 Discovering Mid-level Part Models  

Candidate windows are generated to describe the global appearance of object, and 
then are sent to the part detectors for further measurement. In this section, we describe 
the procedure of discovering the mid-level parts. The flow is illustrated in Fig. 2.  

 

Fig. 2. Procedure of discovering of mid-level part models 

3.1 Clustering  

Given a set of training data, our goal is to learn a compact collection of part detectors 
for the category. Every training image is equally containing distinctive parts, so we 
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sample densely to get all possible sub-windows and collect hundreds of thousands of 
parts. Let  be object images,  be background images. Patches are represented by 
augmented HOG descriptors [14] with the same dimensions.  

Clustering is applied to generate ‘seed’ for training the initial detectors. We run -
means to cluster patches. As mentioned in [8], the number of clusters is set quite high 
since they do not trust -means to generalize well, so we set  quite high ( /5, 
where  is the number of patches sampled for clustering) similar to them to ensure 
the consistency of each cluster. Clusters with less than 4 patches are regarded as poor 
seeds and removed. We cluster the training samples with -means using whitened 
HOG features same as the components generation. 

3.2 Training 

Naturally, clusters are probably rough and impure due to this unsupervised clustering. 
So the training scheme is followed which aims at collecting patches purer and more 
consistent.  

We apply LDA to train detector for each cluster. In order to improve the consisten-
cy, we use the cross-validation to refine detectors. We divide  into two equal, non-
overlapping subsets ( , ) as train-set and validation-set. Given the initial clusters 
obtained from train-set , we train the discriminative classifier for each of them, 
using patches in  as negative samples.  

We run the trained detectors in validation-set  to discover the corresponding 
patches, and then new clusters are formed by the top  scores of detections. We set 6 to keep the purity of each cluster.  

After this training and detection, we switch the role of   and  and repeat the 
process until convergence. During the iteration, the detections with small number of 
patches are eliminated since they occur rarely to characterize the appearance of object. 

3.3 Part Selecting 

The training procedure has produced numerous candidate detectors; the next task is to 
select a small number of the most discriminative ones. A desired detector should fire 
majority of the object category where it is learned. That is to say it should be repre-
sentative to its class and occur frequently enough. What’s more, an effective detector 
should be highly discriminative that it fires rarely in the natural world. To select a set 
of ‘good’ detectors, criteria need to be defined to measure the quality of detectors 
based on these two notions.  

Concretely, for a part detector, we represent an object by a binary tuple s ; y  
where s  is the highest detection score of patches within object  (s max ω , 
in which  ·  indicate one patch in the object region); y  is the class label of this 
object. We set a high threshold   and consider the patch with score s  as a firing; 
thus the representativeness in positive samples is computed as ∑ 1 s · s| |  
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where 1 ·  is the indicator function which equals 1 only if the corresponding logical 
expression is established and 0 otherwise, and | | is the number of positive samples. 

Following the conception in [8] we evaluate the discriminativeness of detectors as 
the ratio of number of firings on  to number of firings on . We write it as  ∑ 1 s · 1∑ 1 s · 1 ∑ 1 s · 1  

where y  is the label of the object category from which the detector is learnt, and y  
is the label of non-object.  

All detectors are ranked using a linear combination of the above two scores. Then 
the detectors with top scoring are retained. Fig. 3 gives some examples of selected 
part with high scores. Patches are densely sampled so redundancy exists among parts. 
Thus the final step is to remove redundant part detectors. We measure the redundancy 
between a pair of detectors by their cosine similarity, detectors that have similarity 
larger than 0.5 from the last ranking to first are removed. 

 

Fig. 3. Some selected part detectors with top scores. 

4 Experiments 

Object Detection: Component models are applied to capture the entire object, so they 
are defined by coarse template which has lower resolution than part models. We ex-
pand the components by flipping the models to discover the mirrored object in im-
ages. Part detectors are used to generate the image-level descriptor for the detection 
candidates. The image vector is formed by summarizing the part scores of selected 
detectors using max-pooling. We use a 2-level spatial pyramid (1 1, 2 2 grids) to 
pooling; we stack the maximum detection score of each detector of each cell in the 
pyramid. Finally encodings of all the detectors are concatenated to form the feature 
vector of image representation. We train a linear-SVM using these obtained feature 
vector of object and background. Then each candidate is evaluated by the classifier. 
We follow up traditional object detection methods to search in images in a sliding-
window manner with multiple components. The obtained candidates will be measured 
by part models. We generate feature vector for each candidate by max-pooling and 
then classify it as object or non-object by the learned SVM classifier.  
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Dataset: The UIUC Cars single-scale test set contains 170 images with 200 side 
views of cars of approximately the same scale. The multi-scale test set contains 108 
images with 139 cars at multiple scales. The images are low contrast with some cars 
partially occluded and multiple objects would occur. The training set contains 550 
training cars of size 100×40 and 500 negative training examples of the same size. 

Implementation Details: As the training objects have the same scale of 100 40, 
we describe object with 13 5 cells by augmented HOG features of dimensionality 31. The object descriptor has 2015 dimensions after concatenating all cells. The 
part models have twice resolution of the component models, each HOG cell is 4 4 
pixels. We obtain patches by sampling densely with  7 7 cells and the patch de-
scriptor has 1519 dimensions. The sliding-window search for multiple scale test set 
detection is in multiple scale. We set number of levels in an octave λ 10 as the 
scale in the feature pyramid. Fine sampling of scale space is important for high detec-
tion performance. 

Results: We adhered to the experimental evaluation criteria based on bounding-box 
overlap as previous works. The detections are considered be true as its overlap area 
with the ground truth less than 0.5.  

Using the multi-component models, we obtained recall at 99.5% and precision at 
72.6% with for the UIUC-Single; and recall at 99.3% and precision at 50.2% for the 
UIUC- Multi. The recall is high but there existing a lot of false positive in the results.  

We use the 154 learned part detectors to remove the false object and refine the per-
formance. Finally, with the mixture models, we get the recall at 99.5%, precision at 
99.5% and recall-precision EER at 99.5% for the single-scale test set; recall at 99.3%, 
precision at 96.5% and recall-precision EER at 99.3% for the multi-scale test set. 
Table 1 presents the results at recall-precision equal error rate compared to other me-
thods.  

Table 1. Performance of different methods on the two UIUC datasets at recall-precision equal 
error rate (EER) 

Methods 
ISM. 

No MDL 
ISM 

+MDL 
Hough 
Forest 

HF Weaker 
supervision 

Our 
approach 

UIUC-Single 91% 97.5% 98.5% 94.4% 99.5% 

UIUC-Multi - 95% 98.6% - 99.3% 

 
In order to analyze the impact of the part models numbers, we select a set of differ-

ent number of detectors with percentage from 10% to 100% (the detector number 
varies from 15 to 154). The performance changes are illustrated in Fig. 4 and Fig. 5. 
Despite some fluctuates existing, we can see that the mixture system still performs 
quite well compared to entire object models only. 
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Fig. 4. Performance changes as the detectors numbers changes of UIUC-Single set 

 

Fig. 5. Performance changes as the detectors numbers changes of UIUC-Multi set 

For the UIUC-Single set, the recall gradually promotes when the detectors amount 
increasing, while the precision stays stable. For the UIUC-Multi set, the recall gradu-
ally promotes and tends stable at last, but the precision fluctuates  and descends 
gradually when the amount increasing.  

For a certain small amount of part detectors, the number increasing will promote 
the performance. However, for a certain great amount of part detectors, the detection 
performance will have some decrease as the number increasing. This is because the 
quality of detectors are sorted by measurement in descending order and the bottom 
ones have poor representativeness and descriminativeness which usually refer to un-
important part or the background. This further shows that part models can represent 
the object appearance well as if selecting a group of fine models. 

5 Conclusion 

We have presented a method of object detection. This mixture models of multi-
components and part models can represent the global appearance of object, and also 
adapt to the intra-variation of the category. The key problem of generating distinctive 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

re
ca

ll

Percentage of Selecting Detectors Numbers
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

0.9

1

p
re

ci
on

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

re
ca

ll

Percentage of Selecting Detectors Numbers
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

0.9

1

p
re

ci
o

n



324 X. Kuang et al. 

semantic parts is solved by the proposed measure criterion. We showed the ability of 
part models and multiple components for object detection. Our method achieves com-
petitive performance on the dataset. 
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