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Abstract. Edge-directed single image super-resolution methods have
been paid more attentions due to their sharp edge preserving in the
recovered high-resolution image. Their core is the high-resolution gradi-
ent estimation. In this paper, we propose a novel cross-resolution gradi-
ent sharpening function learning to obtain the high-resolution gradient.
The main idea of cross-resolution learning is to learn a sharpening
function from low-resolution, and use it in high-resolution. Specifically,
a blurred low-resolution image is first constructed by performing bicubic
down-sampling and up-sampling operations sequentially. The gradient
sharpening function considered as a linear transform is learned from
blurred low-resolution gradient to the input low-resolution image gra-
dient. After that, the high-resolution gradient is estimated by applying
the learned gradient sharpening function to the initial blurred gradi-
ent obtained from the bicubic up-sampled of the low-resolution image.
Finally, edge-directed single image super-resolution reconstruction is per-
formed to obtain the sharpened high-resolution image. Extensive exper-
iments demonstrate the effectiveness of our method in comparison with
the state-of-the-art approaches.

Keywords: Super-resolution · Gradient magnitude transformation ·
Linear transformation function

1 Introduction

Single image super-resolution is to estimate a high-resolution image from a given
low-resolution image, and it can be used for various computer vision applications.
The classical methods, such as interpolation based methods, often produce unde-
sired artifacts in the high-resolution image, especially along the salient edges. To
preserve local sharp edge structures in the recovered high-resolution image, in
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this paper, we propose a new cross-resolution sharpening method. In the follow-
ing, we first briefly review the related work.

The single image super-resolution that related to our work can be mainly
divided into two categories1, i.e., learning based methods and reconstruction
based methods (including edge-directed methods).

The learning based super-resolution methods [1–5] want to learn the corre-
sponding relationship between low-resolution and high-resolution images from a
training set. After that, they apply it to other low-resolution images for recon-
structing the high-resolution images. These methods are based on offline training
set, therefore, the training sample selection may affect the high-solution image
reconstruction, and the computational cost of these methods may not be cheap.
In [5], the correspondence between low-resolution and high-resolution patches is
learned from the scale (resolution) space of the input image. The core idea is
to use the cross-resolution similarity to reconstruct the high-resolution image.
Motivated by this idea, in our method, the sharpening function is also learned
by utilization of the cross-resolution similarity.

The reconstruction based super-resolution methods [6–17] recover the high-
resolution image from low-resolution image by considering a reconstruction
constraint. In [6–8], they consider the relationship between low-resolution
and high-resolution image, and think that the down-sampling image of high-
resolution should be close to the low-resolution image. However, it can take some
undesired artifacts along salient edges. Compared with the above methods, in [9–
16], their methods recover the high-resolution image from low-resolution image
by enforcing gradient profile prior, and the enforced edge knowledge has the abil-
ity to produce sharp edges better. Especially in [10] and [12], their methods are
the scaling sharpening and self-interpolation sharpening, and work well on points
of edges. However, in [10], the corresponding point extraction may be prone to
error, which further influences the final results. Following these methods, we also
want to produce sharp edges in the recovered high-resolution image.

Motivated by Sun et al. [10] and Wang et al. [12], we propose a novel
cross-resolution gradient sharpening function learning method to restore a high-
resolution image. The main process is summarized in Fig. 1. Our main idea is to
learn a sharpening function from low-resolution, and use it in high-resolution.
The main contributions are highlighted as follows:

– Our cross-resolution gradient sharpening function learning method makes
the transformation relationship, which is learnt from the low-resolution
image, applied to super-resolution reconstruction directly. This method
uses the similarity between different scales on the image itself (this self-
similarity has been successfully applied to learning based methods for super-
resolution). The advantage of the similarity is to avoid the offline training
process, therefore, it can disaffiliate the dependence on an offline database.

1 Note that, the interpolation based methods can also be regarded as single image
super-resolution method. However, they are not very related to our work, thereby,
we do not review them in detail in this paper.
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– Our method, unlike the edge directed methods proposed by Sun, never needs
to find the points on the edges and the corresponding relationship. First, we
have advantages on running time, because we reduce the step of finding
the edge points and their corresponding relationship. Second, our method
can avoid the risk of error location of edge points in high-resolution image
recovering.

The remainder of this paper is organized as follows. We introduce an edge-
directed single-image super-resolution framework in Section 2. We indicate that
the main difference from edge-directed super-resolution methods is in the estima-
tion on the sharp gradient (or gradient magnitude). The cross-resolution gradient
sharpening method is presented in Section 3. The implementation details of the
proposed super-resolution algorithm are listed in Section 4. The experimental
results are presented in Section 5. Finally, conclusion and future work are given
in Section 6.

2 Edge-Directed Single-Image Super-Resolution

In edge-directed single image super-resolution framework, the high-resolution
image Ih is recovered from the input low-resolution image Il and the estimated
high-resolution gradient ̂∇Ih:

I�
h = arg min

Ih
E(Ih|Il, ̂∇Ih)

= arg min
Ih

‖[Ih ⊗ g]↓(β) − Il‖22 + α‖∇Ih − ̂∇Ih‖22, (1)

where ⊗ is the convolution operation with the blurry kernel g, [·]↓(β) is the down-
sampling operation with factor β. The core behind the edge-directed single image
super-resolution is the estimation of the high-resolution gradient ̂∇Ih.

As presented in [12], the high-resolution gradient ̂∇Ih can be estimated uni-
formly by transforming the blurred gradient ∇Iu

h , given by

̂∇Ih = Tran(∇Iu
h ), (2)

where Tran(.) is a transformation function, and Iu
h is the bicubic up-sampled

high-resolution image. As discussed in [12], the transformation function proposed
in [10] is the scaling function, which is offline learned from an image dataset.

The method of Sun et al. [10] is the scaling sharpening. They obtain a corre-
sponding relationship between an up-sample image and a high-resolution image
by offline training some samples, and use the corresponding relationship to recon-
struct the high-resolution image. But this method requires to train in advance.
Moreover, the corresponding point extraction may be prone to error, which can
influence the final results.

In practical application, the gradient direction changes a little under the vari-
ation of scales. Hence, we only consider the gradient magnitudes, and Eqn. (2)
is simplified as (please refer to [12] for details)

̂Gh = Tran(Gu
h), (3)



Edge-Directed Single Image Super-Resolution 213

where ̂Gh and Gu
h are the gradient magnitudes of ̂∇Ih and ∇Iu

h , respectively.
The finally sharpened gradient field ̂∇Ih is obtained by

̂∇Ih = ̂Gh · θu
h . (4)

where θu
h is the gradient direction of ∇Iu

h . In the following, we only consider the
sharpening process of the gradient magnitudes Gh.

3 Cross-Resolution Gradient Magnitude Sharpening

To estimate a sharp high-resolution image Ih, our objective is in conformity
with Sun’s. However, our method considers the corresponding relationship of all
points in different scales on the high-resolution image Ih and the low-resolution
image Il rather than offline training some samples, and uses the corresponding
relationship to reconstruct the high-resolution image. Specifically, we want to
learn the linear transformation function Tl on low-resolution, and then apply
it on the high-resolution. We name it as cross-resolution sharpening function
learning.

As shown in Fig. 1, we have the low-resolution gradient magnitude in
Fig. 1(a), and want to reconstruct the high-resolution gradient magnitude in
Fig. 1(e). The up-sampled gradient magnitude in Fig. 1(d) is used to estimate
the high-resolution gradient magnitude in Fig. 1(e). In this process, we need to
know the corresponding relationship Th between the up-sampled gradient mag-
nitude and the high-resolution gradient magnitude. Therefore, how to estimate
the Th is the key for high-resolution gradient magnitude reconstruction.

In our method, we first down-sample the low-resolution gradient magnitude
Gl (see Fig. 1(a)) to Gll (see Fig. 1(b)), and up-sample the gradient magnitude
Gll to Gu

l (see Fig. 1(c)). Here, we assume that the gradient magnitude trans-
formation (the details about transformation will be described in the following
subsection) from Gu

l to Gl is similar to the gradient magnitude transformation
from Gu

h to ̂Gh. That is, the transformation Tl is assumed to be similar to the
transformation Th.

Hence, we first calculate the linear transformation coefficient Tl from the
low-resolution gradient magnitude. Then, we obtain Th from Tl. Meanwhile, the
high-resolution gradient is obtained by applying Th to the gradient magnitude
shown in Fig. 1(d). In the following, we describe each step in detail.

3.1 Construction of Tl

The blurred low-resolution image is obtained by performing down-sampling and
up-sampling operations sequentially, given by

Iu
l = [[Il]↓(β)]↑(β), (5)
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Fig. 1. Example of gradient magnitude sharpening with up-sampling scale factor of
3. (a) Input low-resolution gradient magnitude. (b) Bicubic down-sampled version of
(a). (c) Bicubic up-sampled version of (b). (d) Bicubic up-sampled version of (a). (e)
Output high-resolution one. Tl and Th are the linear transformation functions.

and the gradient magnitude of a blurred low-resolution image Iu
l is Gu

l . The
low-resolution sharpening function is defined as a linear transformation function,
given by

Gl = Tl � Gu
l (6)

where Gl is the gradient magnitude of the input low-resolution image Il, and Tl

is the low-resolution sharpening parameter with the same size of the input low-
resolution image. The operation � is the element-wise multiplication operation,
satisfying that (Gl)ij = (Tl)ij(Gu

l )ij , in which ()ij is the ij-th element of the
image. In this work, the parameter Tl can be obtained by

Tl = Gl � (Gu
l + η) (7)

where � is element-wise dividing operation, and η = 10−4 is a small positive
value to prevent dividing zero.

3.2 High-Resolution Gradient Construction

The purpose of Th is to make blurred high-resolution gradient sharp. Hence, it
can be obtained from low-resolution sharpening function Tl. In this work, the
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high-resolution gradient sharpening function is constructed by up-sampling the
low-resolution sharpening function Tl directly, given by

Th = [Tl]↑(β). (8)

After Th is obtained, the high-resolution gradient magnitude ̂Gh is calculated by

̂Gh = Th � Gu
h (9)

where Gu
h is the gradient magnitudes of the up-sampled image Iu

h . Combining
̂Gh with the gradient direction θu

h, we obtain the high-resolution gradient ̂∇Ih

by Eqn. (4).

4 Implementation

The proposed super-resolution algorithm is listed as follow:

Bicubic Genuine
Fractals

Fattal

rensalGnahS

Ours

Fig. 2. Comparisons with the state-of-the-art approaches. All the results of high-
resolution image experiments are obtained by the Bicubic, the commercial product
Genuine Fractals, Shan [17], Glasner [5], Fattal [16] and ours.
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Step 1: Initialing the high-resolution image Iinit
h .

Step 2: Constructing the high-resolution gradient by four sub-steps.
2.1: Calculating the low-resolution sharpening function Tl by Eqn. (7).
2.2: Calculating the high-resolution sharpening function Th by Eqn. (8).
2.3: Calculating the high-resolution gradient magnitude ̂Gh by Eqn. (9).
2.4: Calculating the high-resolution gradient ̂∇Ih by Eqn. (4).

Step 3: Obtaining the high-resolution gradient I�
h by optimizing Eqn. (1).

It is worth noting that the initial high-resolution image Iinit
h and the optimization

of Eqn. (1) are the same as the method of Wang [12].

5 Experiments and Analysis

In this section, we use extensive experiments to evaluate our method. First, we
make comparisons of our method with several state-of-the-art methods. Then,
representative methods from two categories, namely edge-directed reconstruc-
tion based and large-scale based, are evaluated to compare with ours. In our
experiments, for each color image, we first transform it from RGB to YIQ. We
only consider the Y (intensity) channel, which is up-sampled by our algorithm.
The I and Q chromatic channels have low-frequency information, and they are
interpolated by the bicubic method. Finally, we combine the three channels to
form the high-resolution image. The visual comparisons are used to evaluate our
method.

5.1 Comparisons with the State-of-the-Art Approaches

The visual comparisons of our method with four state-of-the-art approaches and
one commercial product Genuine Fractals are shown in Fig. 2. Our results are

Bicubic Fattal Shan Ours

Fig. 3. Comparison on Large-scale factor (X8). From left to right are the results of
bicubic, Fattal [16], Shan [17] and ours. The second and third row are the local details
for each method.
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(a) Sun (b) Wang

(c) Ours (d) Truth
Fig. 4. Comparisons with the edge-directed approaches. The input low-resolution
image are the small image in the left. The resluts of Sun [10] (a), Wang [12] (b),
Ours (c) and the ground truth (d). We also present the gradient magnitude of the
up-sampled images.
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more sharp in comparison with Genuine Fractals and the bicubic interpolation.
For example, the numbers and letters look very fuzzy, as shown in Fig. 2. On the
edge aspects, the results of Glasner contain small artifacts along salient edges(see
the red ellipse in Fig. 2). Moreover, in comparison to Shan and Fattal’s results,
our result is more natural, as we can see in Fig. 2.

5.2 Large-Scale Comparison

Fig. 3 illustrates the comparative results of our method with bicubic, Fattal et
al. [16] and Shan et al. [17]. As shown in the Fig. 3, we can see our results
contain more local details than the others. On the edge aspects, Shan’s results
are significantly blurred in comparison with ours. In addition, our method can
generate sharper edges reliably than the Bicubic method, for example, in the
aspect of the corner of eyes, our results is more sharp as shown in Fig. 3.

5.3 Comparisons with Edge-Directed Reconstruction Method

Fig. 4 shows the comparison of our method with some other edge-directed
approaches, namely, Sun et al. [10] and Wang et al. [12]. To compare more
fully, we also present gradient magnitude of the up-sampled images. we can see
our results are better than those of Sun et al. [10] and Wang et al. [12] in the
aspect of the sharpness along the salient edges. On the other hand, our results
can look more natural, as compared with Sun et al. [10]. However, our results
miss some local details, as compared with the ground truth.

6 Conclusion and Discussion

A cross-resolution sharpening function learning method is proposed for high-
resolution image restoring. In this method, the linear transformation function
on different resolution is estimated for high-resolution gradient construction. The
extensive experimental results demonstrate the effectiveness of our method. In
the future, we plan to propose other sharpening functions, which can preserve
sharp edge better than the linear model used in this work.
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