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Abstract. Recognizing human actions from image sequences is an
active area of research in computer vision. In this paper, a novel HMM-
based approach is proposed for human action recognition using 3D posi-
tions of body joints. First, actions are segmented into meaningful action
units called dynamic instants and intervals by using motion velocities, the
direction of motion, and the curvatures of 3D trajectories. Then action
unit with its spatio-temporal feature sets are clustered using unsuper-
vised learning, like SOM, to generate a sequence of discrete symbols. To
overcome an abrupt change or an abnormal in its gesticulation between
different performances of the same action, Profile Hidden Markov Models
(Profile HMMs) are applied with these symbol sequences using Viterbi
and Baum-Welch algorithms for human activity recognition. The experi-
mental evaluations show that the proposed approach achieves promising
results compared to other state of the art algorithms.

Keywords: View-invariant representation · Skeleton joints · Human
activity recognition · Profile HMM · Self-organizing map

1 Introduction

Recognizing human activity is a key component in many applications, such as
Video Surveillance, Ambient Intelligence, Human-Computer Interaction systems,
and even Health-Care. Despite remarkable research efforts and many encouraging
advances in the past decade, accurate recognition of the human actions is still a
quite challenging task.

Many recent state-of-the-art techniques for human action recognition rely on:
Bag-of-Word (BoW) [1] representations extracted from Spatio-Temporal Inter-
est Points (STIP) [2], Dynamic Time Warping (DTW)[3] algorithm derived
from exemplar-based approaches, Eigenjoints [4] stem from skeleton-based
approaches, etc. Despite these good results were achieved by state of the art
activity recognition approaches, these still have some limitations.

To address these issues and enhance human action recognition performance,
time-sequential representation is more appropriate for these problem. Frame by
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Fig. 1. The general framework of the proposed approach.

frame representations suffer from redundancy. Therefore segmenting video into
states and handling unaligned video sequences are two main problems. In this
paper, we use action-units and novel probabilistic methods (Profile HMM [5])
to handle unaligned video sequences. The principle is illustrated in Fig. 1. First,
trajectories of action, also referred to as discrete curves, can be drawn by sev-
eral 3D joint points. The segmentation points S, splitting actions into meaningful
action-units, can be captured by the direction of motion and curvature of the tra-
jectory having maximum velocity. Then, the features of action units, consisting
of dynamic instants (postures) ξp and intervals (actionlets [6]) ξa, are extracted
from these segmented trajectories and then are mapped into two Self Organizing
Mappings (SOMs) [7] recorded as Tξp and Tξa , respectively. Unlike actions that
have labels showing on, postures and actionlets do not have such labels. There-
fore, Tξp and Tξa can be scattered in plots according to the Davies-Bouldin
Index (DBI) value [8] which decide the number of labels of postures and action-
lets. These plots in SOM can be named with upper-case letters and lower-case
letters respectively referred as the labels of postures and actionlets. Finally, cap-
turing the sptio-temporal relationships between action-units of a given action,
Profile HMMs are generated by sequences of discrete symbols of each action.
With these profile HMMs, each action represented by time-series is trained and
aligned, thus elevating classification performance.

The rest of the paper is organized as follows: Section 2 presents the related
work; Section 3 elaborates our method of features extraction, clustering and
classification of action units consisting of postures and actionlets; Section 4 and
discusses the parameters setting presents our experimental results; and Section5
concludes this paper.

2 Related Work

Action Recognition. In the past decade, video-based action recognition and
detection has tremendous amount of background literature [9,10]. Recently, with
the development of the commodity depth sensors like Microsoft Kinect [11],there
has been a lot of interests in human action recognition from depth data. Several
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research utilize skeleton joint positions as features for action recognition. Li et al.
[12] employed a bag-of-3D-points graph approach to encode actions based on 3D
projection of body silhouette points. Xia et al. [13] mapped 3D skeletal joints
to a spherical coordinate system and used a histogram of 3D Joint Locations
(HOJ3D) to achieve view-invariant posture representation. The joints were then
translated to a spherical coordinate system to achieve view-invariance.

Spatio-Temporal Alignment. Spatio-temporal alignment of human action
has been a topic of recent interest due to its applications in animation and human
activity recognition. Hidden Markov Model (HMM) and Dynamic Time Warp-
ing (DTW) are two main approaches based on sequential representation of the
activity for this problem. In [14], each action is modeled as a series of synthetic
2D human poses matched by using the Viterbi algorithm. Mapping poses or
frames into symbols is the main challenge of HMM approaches. But these frame
by frame representations suffer from redundancy. Furthermore, HMM structure
must be adaptively designed for specific application domains. DTW is a method
for temporally aligning multi-modal sequences from multiple subjects performing
similar activities. DTW deals with sequence aligning by operations of deleting
and inserting compression expansion, and substitution, of subsequences. Zhou
and Torre [15] extended DTW to propose Canonical Time Warping (CTW) for
finding the temporal alignment that maximizes the spatial correlation between
two behavioral samples coming from two subjects.

3 Proposed Method

3.1 Representation of Meaningful Action Units

Action is represented as a sequence of dynamic instants and intervals, which
are computed using the direction of motion and the spatio-temporal curva-
ture of a 3D trajectory. It use depth cameras to track 3D trajectories that
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Fig. 2. (a) The trajectory of an action of high hand wave is segmented by red stars.
(b) Illustration of human posture representation based on relative distance and angles
of star skeleton.
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each trajectory represents the evolution of one coordinate x, y, or z over
time, and indicates the position of a specific joint of human. Motion trajec-
tories provide rich spatio-temporal information about an object’s behavior. To
obtain meaningful action units, we must learn superior segmentation points
S = {s1, ...si, ..., sj , ..., sm}(1 < i < j < m) to segment 3D trajectory of
an action, as shown in Fig. 2a. The problems of under-segmented and over-
segmented trajectories will always lead to insignificant action units. Based on
[6], superior segmentation points S for a trajectory can be obtained.

For dynamic instants of action, we can utilize human postures to represent
in this moment. Human postures can be represented by relative distances d and
angles θ from 3D star skeleton,as shown in Fig. 2b. For intervals of action, we
can utilize actionlets to represent these intervals from paper [6].

3.2 Clustering Feature Using Unsupervised Learning

Action labels are easily labeled in real life, such as walk, sit down, stand up,
throw, etc. Unlike actions with labels that are shown on a map grid, an actionlet
or a posture is hardly labeled or highly generalized using our human language.
Therefore, Self Organizing Map (SOM) [7] and the Davies-Bouldin Index (DBI)
[8] value are used to cluster postures and actionlets.

Self Organized Mapping. A self-organizing map(SOM) is a type of artificial
neural network for the visualization of high-dimensional data using unsupervised
learning. It can project complex, nonlinear statistical relationships between high-
dimensional patterns into simple geometric relationships on a low-dimensional
topology map. The training process of SOM is an incremental learning algorithm.
The weight vectors m of nodes are initialized either to small random values or
sampled evenly from the subspace spanned by the two largest principal compo-
nent eigenvectors, which is a good initial approximation.

Davies Bouldin Index. The feature of postures ξp and actionlet ξa map to
SOM forming similar neural units in Tξp and Tξa need to be grouped and labeled
later. To find initial partitioning, we use the Davies-Bouldin index value to scat-
tered the Tξp and Tξa in plots. By definition, the lower the DBI, the better the
separation of the clusters and the tightness inside the clusters.

The number of plots of the Tξp and Tξa can be decided by the definiton
of DBI. Each plot was symbolized by capital or lower-case letters according
to the posture of actionlet. Therefore, The feature of postures ξp and actionlet
ξa were transformed into symbols from a discrete alphabet so that an action
can be represented by upper-case and low-case letters generated alternately in a
individual sequence, for example, DaEvEvEwD. Similar actions will correspond
a sequence family F for generating a Profile HMM or say a motif.
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3.3 Profile HMMs for Temporal Alignment of Human Motion

In this section, we describe the design of general Profile HMMs and our Profile
HMMs in greater detail. The classifiers we build for human action recognition
are based on our Profile HMMs. Using the Forward-Backward algorithm [16],
we can compute the total probability of a sequence being generated by Profile
HMMs, i.e. can be used to classify unknown sequences as belonging to which
model. Using the Viterbi algorithm [17], we can compute the most likely path
through Profile HMMs that generates a sequence, i.e. the most likely alignment
of the sequence against the model. Using initial parameters that assign uniform
probabilities over all action units in each time step, we apply the well known
Baum-Welch algorithm [18] to iteratively find new Profile HMM parameters
which maximize the likelihood of the model for the sequences of action units in
the training videos.

Profile Hidden Markov Models. Profile HMMs consist of several types of
states: match states Mi, insert states Ii, and delete states Di. For each position
i in a Profile HMM, there is one match state, one insert state, and one delete
state. A Profile HMM can thus be visualized as a series of columns, where each
column represents a position i in the sequence as shown in Figure 3a. Any
arbitrary sequence can then be represented as a traversal of states from column
to column. Each state emits symbols with a probability distribution specific to
its position in the chain.

Given a Profile HMM, how to align multiple sequences based on the model
is the first problem to solve. Viterbi algorithm is used for seeking the most likely
path of each sequence generated by the model. Multiple sequence alignment is
mean to find Viterbi path of each sequence. Fig. 3b shows a small example of a
set of human posture sequences. Profile HMM (Fig. 3a) can be constructed from
the set of sequences by using the Baum-Welch algorithm. The result of aligned
sequences can be showed in Fig. 3c.

B EM1 Mi ML
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N K Y L T
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Fig. 3. (a) A general Profile HMM of length L. Mi is the ith match state, Ii is the ith
insert state, Di is the ith delete state. B is the begin state, and E is the end state. (b)
Illustration of human posture representation based on relative distance and angles of
star skeleton.
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Fig. 4. The Profile HMM for human action recognition.

Adapting Profile HMMs for Human Action Recognition. In this section
we describe the structure of our profile HMMs as shown in Fig. 4. The main dif-
ference between our profile HMM and others is that the Profile HMMs used
in biology have only a single chain of Match states. In our case, the addition
of a second match state per position was intended to allow the model to rep-
resent the correlation between action units in videos. In the context of human
action recognition, actions are segmented into meaningful action-units called
dynamic instants and intervals being incarnated in human postures and action-
lets, which labels of postures and actionlets are upper-case and lower-case letters
respectively. Therefore, an action can be represented by a string, for example,
DaEvEvEwD. Pay attention to the first and the end symbol which is upper-case
letters meaning that an action begin or end with a posture in our observation.
This change is necessary as postures and actionlets obviously alternated in an
action. To allow for variations between the observed action-units in the same
action sequences, the model has two additional states for each position in the
chain. One is insert states Ii representing one or more extra abrupt or abnormal
action-units inserted in a sequence between two normal parts of the chain. The
other is Delete states Di allowing period action-units to be omitted from the
action sequences.

We now explain the design and use of profile HMMs Λ of k classes with models
Λ1, Λ2, ..., Λk which employ to capture characteristics exhibited by every kind of
actions. If we already have a set of action-unit sequences (Fig. 5a) belonging to
a family, a profile HMM Λc(1 < c < k) as shown in Fig. 4 can be constructed
from the set of unaligned sequences after using the Baum-Welch algorithm. The
length L of the Λc(1 < c < k) must be chosen, and is usually equal to the average
length of the unaligned action unit sequences in the training set. The transition
and emission probabilities are initialized from Dirichlet distributions.

Once Profile HMMs Λ have been constructed, we then construct a classifier
C1 for the task of choosing the best model Λc(1 < c < k) for new test sequence
q of action-units

c = C1(q) = argmax
c

P (q|Λc). (1)
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(a) (b)

Fig. 5. (a) A set of action-unit sequences of action high arm wave. (b)The alignment
generated via the Profile HMM method for the set of action-unit sequences of action
high arm wave. The match and insert columns are marked with the letters M and I
respectively in the first line.

This is done via a straightforward application of the forward-backward algo-
rithm, i.e. to get the full probability of the given sequence q.

The second classifier C2 makes use of the well-known Viterbi algorithm for
finding the most likely alignment of the sequence to the family, i.e. Viterbi path
V . For a given output sequence q and the associated probability of the most
likely Viterbi path Vc to each Profile HMM, the viterbi classifier C2 finds Viterbi
paths for the sequence in each Profile HMM Λ1, Λ2, ..., Λk and chooses the class
c whose model produces the best Viterbi path Vc.

c = C2(q) = argmax
c

Pviterbi(q, Λ) = max
Vc

P (q, V |Λ). (2)

In practical terms, the Viterbi classifier C2 finds each model’s best explanation
for how the action-units in the sequence were generated. We choice the Viterbi
classifier C2 that provides the best explanation for the observed action-units.

4 Experimental Evaluation

The performance of the activity recognition was primarily evaluated based on
its accuracy. In this section, we evaluate the proposed skeletal representation
using three different datasets: MSR-Action3D [12], UTKinect-Action [13], and
UCF Kinect Dataset [19].

4.1 Evaluation Settings

For MSR Action3D Dataset, in order to allow a fair comparison with the state
of the art methods, we followed the test setting of [12], dividing the 20 actions
into three subsets AS1, AS2 and AS3 and using two experimental settings: one
is non-cross-subject test setting and another is cross-subject test setting.
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For UTKinect-Action Dataset, to allow for comparison with [13], we followed
the same experimental set up using Leave One Sequence Out Cross Validation
(LOOCV) on the 200 sequences. For UCF Kinect Dataset, we followed the same
experimental set up using the Latency Aware Learning in [19].

4.2 Experimental Results

We first evaluate the performance of the proposed approach on the three chal-
lenging 3D action datasets. The proposed method’s primary advantage is robust-
ness temporal misalignment. The experiment results on the three datasets are
shown in Table 1. We can see that the proposed approach gives the best results
on all datasets. In our experiments, the cross-subjects action recognition is con-
ducted, which is more difficult than using the same subjects for both training
and testing. From the results of MSR Action3D dataset on cross-subjects test,
the recognition accuracy of our method on test three was 88.6% significantly
outperforming the other joint-based action recognition methods, including Bag-
of-3D-Points[12], Histogram of 3D joints[13], and EigenJoints [4], which achieved
accuracies of 74.4%, 78.97%, and 82.3%, respectively. Specifically, it outperforms
the state-of-the-art on UTKinect-Action dataset and UCT Kinect dataset. On
the UTKinect-Action dataset, our approach has an accuracy of 91.7% which
outperforms the HOJ3D feature in [13] (90.9%). Finally, we compare our result
with all others on the UCF Kinect dataset. The results are shown in Table 1.

Fig. 6 shows the confusion matrices for MSRAction3D AS1, MSR-Action3D
AS2 and MSR-Action3D AS3. We can see that most of the confusions are
between highly similar actions like forward punch and high throw in the case of

Table 1. Human recognition accuracies on three datasets.

MSR Action3D(Test Three) Accuracy
Bag of 3D Points[12] 74.7
Histogram of 3D Joints[13] 78.9
Eigenjoints[4] 82.3
Spatio-temporal Feature Chain [6] 84.4
Random Occupancy Patterns[? ] 86.2
Proposed Method 88.6
UTKinect-Action Accuracy

HO3DJ[13] 90.9
Spatio-temporal Feature Chain [6] 91.5
Proposed Method 91.7
UCF Kinect Accuracy
LAL[19] 95.9
Eigenjoint[4] 97.1
Spatio-temporal Feature Chain [6] 98.04
Proposed Method 97.6
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Fig. 6. Confusion matrix in AS1, AS2 and AS3 under Cross Subject Test using STFC.

MSR-Action3D AS1, draw X, draw tick, and draw circle in the case of MSRAc-
tion3D AS2, and tennis swing, tennis serve, and pick up and throw in the case
of MSR-Action3D AS3.

5 Conclusions and Future Work

In this paper, we obtain meaningful action-units through take advantage of seg-
mentation points. With labeling these action-units, an action can be represented
by discrete symbol sequences. To overcome an abrupt change or an abnormal
in its gesticulation between different performances of the same action, Profile
Hidden Markov Models (Prifile HMMs) are applied with these symbol sequences
using Viterbi and Baum-Welch algorithms for human activity recognition. These
methods eliminate the noise and the periodic motion problems experienced by
methodologies that either solve it only by hand setup or else ignore it. Apply-
ing action sequences to Profile HMMs resulted in our approach to significantly
outperform other state of the art methods. The next step is to understand and
predict human activities and object affordances combining more contextual infor-
mation, and more importantly, of human interactions with the objects in the
form of associated affordances.
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