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Abstract. For most dense multi-view stereo methods, the process of
finding correspondences is the basis and is independent of acquiring 3D
information, and this often brings about erroneous correspondences fol-
lowed by erroneous 3D information. To tackle this problem, by expand-
ing matched points and by expanding 3D patches, this paper proposes
an effective approach to acquire dense and accurate point clouds from
multi-view uncalibrated images. In the approach, two novel algorithms
are newly designed and are placed before and after the Bundler: 1) the
match expansion algorithm, which generates evenly distributed corre-
spondences with geometric consistency; after using Bundler to produce
geometry estimation and quasi-dense point clouds which are not dense
and accurate, 2) the point-cloud expansion algorithm, which is proposed
to improve the density and accuracy of point clouds by optimizing the
geometry of each 3D patch and expanding each good patch to its neigh-
borhood. A large number of experimental results demonstrate the pro-
posed approach get more accurate and denser point clouds than the
state-of-the-art methods. A quantitative evaluation shows the accuracy
of the proposed method favorable to PMVS.

Keywords: Multiview stereo · Match expansion · Point-cloud
expansion

1 Introduction

Mutli-view stereo (MVS) reconstruction from a set of images, which have been
collected from Internet, has achieved great development in the last decade. The
construction of realistic object models can be applied to the film, television, and
video game industries, etc. According to [10], the state-of-the-art MVS algo-
rithms can be categorized into four classes: The Voxel based approaches [11,18]
compute a cost function on a three-dimensional (3D) volume by first, and then
reconstruct a surface from this volume, they are suitable for small compact
objects. The surface evolution based methods [2,3] work by iteratively evolving
a surface to decrease or minimize a cost function, the algorithms rely on a reli-
able initial guess which limits their applicability. The depth maps based methods
[12,16] compute a set of depth maps by first, and then merge the set of depth
maps into a 3D scene. However more computations and memory are required.
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Fig. 1. The pipeline of the proposed approach.

The feature point based methods [4] extract and match a set of feature points
firstly, and then fit a surface to the reconstructed scenes. They are simple and
effective, but rely on the accuracy of the correspondences.

This paper addresses the problem of acquiring dense and accurate point
clouds from multiple uncalibrated images. For uncalibrated images, the common
methods are based on sparse feature points which are tracked across sequences,
and then automate acquisition of a sparse point cloud together with the cam-
era motion, such as [7,8,14]. Although this approach can estimate the camera
parameters, it’s not always sufficient as limited by the correspondences without
geometric constraint, meanwhile it cannot acquire dense point clouds. So we
propose match expansion technique in this paper, which is similar to [6] but our
method replaces ZNCC by DASIY [16] as DASIY is more robust and efficient
for wide-baseline stereo, to process initial correspondences and make them more
suitable for Bundler.

For calibrated images, many dense stereo methods have been proposed [4,5,
17]. Our point-cloud expansion algorithm is similar with the expansion step of
PMVS [4], but our algotithm takes these 3D points reconstructed by Bundler as
seeds rather than re-extracting feature points, and we only expand once instead
of three times, as PMVS does, that can efficiently improve the process. The
following point-cloud expansion technique is mainly used to refine and expand
3D patches, and produces accurate and dense point clouds. Fig. 1 shows the
pipeline of the proposed approach.

The rest of this paper is organized as follows: Section 2 introduces the
overview of the proposed approach. Section 3 presents the detail of the proposed
match expansion algorithm. Section 4 describes the point-cloud expansion algo-
rithm. Experimental results and discussion are given in Section 5, and Section 6
concludes this paper.

2 Overview

Our MVS method attempts to reconstruct dense and accurate point clouds from
uncalibrated images, and it can be divided into four steps (Fig. 1): 1) Extract
Feature & Match: Features extracted by VLFeat [1] operator, which is a fast
dense version of SIFT, are firstly matched across multiple images by kd-tree,
then that will yield a sparse set of correspondences associated with salient image
regions; 2) Match Expansion: Based on best-first strategy, this step expands the
initial matches to their neighborhoods, and generates further dense correspon-
dences which are suitable for geometric computation. The detail will describe in
Section 3; 3) Bundler : The Bundler [13,14] procedure can estimate the camera
postures and simultaneously construct a sparse scene structure by taking these
correspondences as input; and 4) Point-Cloud Expansion: This step optimizes
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and expands these reconstructed 3D points, and then filters erroneous points.
The detail will describe in Section 4.

3 Match Expansion

Since the performance of Bundler depends on the correspondences, we propose
the match expansion algorithm to produce enough good correspondences suitable
for geometric estimation. Before discussing the match expansion algorithm, we
define the correlation score between two points from different images as:

Cij(x,x′) = ||Di(x) − Dj(x′)||. (1)

Where Di(x) denotes a DAISY descriptor in the x coordinate of the ith image.
The reason why is DAISY used for correlation is that DAISY is rarely affected
by perspective distortion and occlusion in wide-baseline situation, and it can be
computed much fast.

After the feature extraction and matching, we obtain initial matches of image
salient regions, but which contain inevitable errors. In order to effectively avoid
these errors, we estimate a fundamental matrix for each pair of images using the
Random Sample And Consensus (RANSAC) framework, and remove the outliers
to the recovered F-matrix. Then we expand these remaining matches which meet
the epipolar constraint.

We divide each image into regular grids of β1 ×β1 pixels as in Fig. 2 (β1 = 2
in all our experiments), that effectively guarantees the uniqueness of correspon-
dence. Then, we sort the remaining matches for each pair of images by increasing
correlation score as seeds. At each step, the match (x,x′) with the best correla-
tion score is used for current expansion, and simultaneously removed from the
list of seeds. Next we collect the neighboring image points N (x) defined as:

N (x) = {q|q − x ∈ {(β1, 0), (−β1, 0), (0, β1), (0,−β1)}}. (2)

For each collected point q in N (x), the following expansion procedure is per-
formed to generate new match (q,q′): We calculate the epipolar line l′ = F q̂,
where F is the fundamental matrix between the pair of images, and q̂ denotes
the homogeneous coordinate of the point q [9]. Next we search for the candidate
points along the epipolar line l′, and also within the neighborhood of location
x′, that can be formalized as:

N ′(x′) = {q′|l′T q̂′ = 0, ||q′ − x′|| < r} (3)

(r = 6.0 in all our experiments). We also add a random perturbation for each q′

in our experiments, that sufficiently improves the robustness of correspondences.
Then the candidate matches problem, which satisfied the epipolar constraint and
limited by the neighbor region, can be formalized as:

N (x,x′) = {(q,q′)|q ∈ N (x),q′ ∈ N ′(x′)}. (4)
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Fig. 2. Possible match (q,q′) indicated by the red dots around a seed match (x,x′)
indicated by green dots. The point q′ satisfies the epipolar constraint and within the
neighborhood of x′. if the match (q,q′) has the best correlation score and satisfies the
left-right consistency, we add it to the list of seed matches. See text for more details.

Candidate matches are sorted by increasing correlation score using (1), then
we select the best correlation for each q in N (x) by left-right consistency testing.
The left-right consistency testing is just used to find the best correspondence q′′

in the first image of q′ by the above procedure conversely. If the formula ||q −
q′′|| < α is satisfied and the correspondence has the best correlation score related
to the current grid, we add the match (q,q′) to the current list of seeds(α = 4.0
in all our experiments). Fig. 2 illustrates the entire procedure. In the match
expansion procedure, we choose only the best match that has not been selected,
and expands only the reliable matches whose correlation score below a certain
threshold γ (γ = 0.4 in all our experiments). This drastically limits the bad
matches for expansion and guarantees the ending of the process.

The expansion procedure produces dense but irregular distribution corre-
spondences. Since these correspondences are not suitable for geometric compu-
tation, resampling procedure is proposed to refine these correspondences. We
regularize these correspondences by locally selecting the best correspondence.
Concretely, we redivide the first image into new regular square grids of β2 × β2

pixels (β2 = 8 in all our experiments). For each new grid, we select the corre-
spondence with best correlation score and only accept it when its score below
the threshold λ (λ = 0.08 in all our experiments).

The resampling procedure can effectively filter the erroneous correspondences
and generate evenly distributed correspondences with geometric consistency,
which are suitable for Bundler. In practice, we keep the original correspon-
dences of feature points as they have better property of tracking than other
points obtained by expansion. One example for a real pair of images is illus-
trated in Fig. 3. Next, we estimate the camera postures by Bundler procedure
taking these correspondences as input and simultaneously acquire quasi-dense
scene point clouds. One real example is illustrated in Fig. 4a.
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Fig. 3. The examples of match expansion algorithm. (a) The initial sparse matches
from feature points. (b) The dense correspondences after expansion procedure. (c) The
resampled correspondences.

4 Point-Cloud Expansion

As the quasi-dense scene point clouds reconstructed by Bundler are not dense
and accurate, we propose the point-cloud expansion algorithm to further generate
dense and accurate point clouds, which includes optimization and expansion of
two steps. The optimization step aims to improve accuracy of point clouds under
geometric constraint, and the other expansion step is used to produce dense point
clouds combined with the optimization.

4.1 Optimization

Since the quasi-dense point clouds are not accurate, the optimization procedure
is proposed to improve the accuracy of the point clouds. In order to achieve the
goal and improve the robustness of experiments, we add orientation to each 3D
point and draw a local tangent plane at that point, called patch. The patch’s
geometry is fully determined by its center c(p) and unit normal vector n(p).
Then we define the photometric discrepancy function G(p) for patch p as:

G(p) =
1

|V (p) \ R(p)|
∑

i=V (p)\R(p)

Cri(qr, qi), (5)

where V (p) is a set of images in which p is visible and R(p) denotes the reference
image. The symbol backslash represents removing R(p) from V (p). The symbol
qr indicates the intersection of projecting the c(p) into the reference view R(p).
The formula Crj(qr, qi) indicates the correlation score between qr and qi by using
(1). The map from qr to qi is the homography induced by the plane where the
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Fig. 4. (a) The quasi-dense point cloud reconstructed by Bundler. (b) The point cloud
after optimization. (c) The final point cloud after expansion.

patch p is located. For a pair of images, the camera parameters can be represented
by {Ki, Ri, Ci} and {Kj , Rj , Cj}, thus the projection matrixes can denoted as:
Pi = Ki[Ri|−RiCi] = [Mi|−MiCi], Pj = Kj [Rj |−RjCj ] = [Mj |−MjCj ], where
Mi = KiRi,Mj = KjRj . The homography induced by the plane f = {c(p), n(p)}
for the cameras Pi and Pj is:

Hij = MjM
−1
i +

Mj(Ci − Cj)nT (p)M−1
i

nT (p)(c(p) − Ci)
. (6)

Then, the map can be represented by the formula, qi = Hriqr.
Having defined the photometric discrepancy function G(p), our optimiza-

tion strategy is to minimize discrepancy score of the patch. The corresponding
parameters of the patch p can be simplified as:

c(p) = Cr + λRay(p), (7)

n(p) = [sinθcosφ, sinφ,−cosθcosφ]T . (8)

We constrain c(p) to lie on the viewing ray of p, Ray(p), from the reference
camera, such that its image projection in the reference image does not change,
reducing its three degrees of freedom to one and solving only for a depth λ.
And the normal n(p) can be parameterized by two angles θ and φ in spherical
coordinate (|θ|, |φ| < π/2 in our experiments). So the optimization problem
is reduced to three degrees of freedom and is solved by a conjugate gradient
method. After the optimization procedure, we accept p only when its photometric
discrepancy satisfies G(p′) < η (η = 0.2 in all our experiments), this drastically
limits erroneous patches and effectively improves accuracy of point clouds.

4.2 Expansion

To obtain dense point clouds, we further expand these patches under geomet-
ric constraint. For each patch p, the following expansion step is performed to
generate new patches: We first find the candidate patches in the neighborhood
of patch p, and these candidate patches also on the plane containing p (see an
example in Fig. 5). For a candidate patch p′, c(p′) is initialized as the 3D point
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Fig. 5. Expansion three-dimensional(3D) patch p. We find the neighboring patches p′

and refine them by the optimization procedure. See the text for more details.

near c(p), and n(p′) is initialized by the formula Cr−c(p′)
||Cr−c(p′)|| , where Cr is the cam-

era center of the reference image of the patch p. And then, we refine c(p′) and
n(p′) by the optimization procedure described above. After the optimization, we
add the patch p′ to the queue of expansion, when its photometric discrepancy is
small enough.

After the point-cloud expansion procedure, we acquire dense point clouds,
but still exist errors. We use some heuristic rules to remove these erroneous
patches. Finally, the reconstructed point clouds of scenes or objects are dense
and accurate, one real example shows in Fig. 4.

Fig. 6. Sample input images of data sets used in our experiments and corresponding
results reconstructed by our method. From left ro right and top to bottom: (a) ET, (b)
kermit, (c) stone, (d) fountain, (e) herz-Jesu, (f) lion, (g) hall. In each case, one of the
images is shown, along with the reconstructed point clouds.
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5 Experimental Results and Comparisons

We show our experimental results on some different data sets in Fig. 6. The
stone and lion data sets have been acquired in our lab, while other data sets
have been provided by S.Seitz (ET, kermit [14]), Y.Furukawa (hall [4]), C.Strecha
(fountain, herz-Jesu [15]). Fig. 6 shows sample input images of all of the data
sets used in our experiments and corresponding results reconstructed by our
method. Table 1 lists the number of input images, their approximate size, and
the number of 3D points reconstructed. All the experiments are implemented on
an Intel 4GHz CPU with 32GB RAM. As illustrated by the figure, the object and
scene point clouds reconstructed by our method are quite dense and accurate.

Table 1. Characteristics of the Data Sets

Data set ET kermit stone lion fountain herz-Jesu hall
Num of Images 9 11 9 145 11 8 61
Size of Image 480 × 640 640 × 480 2848×2136 640×480 3072×2048 3072×2048 1200×797

Num of points finally 162650 132110 2182491 1506239 6752176 6087278 1918973

Fig. 7. Compared with PMVS using the benchmark data sets, fountain-P11 and herz-
Jesu-P8. The regions framed by the green squares have been enlarged, and displayed
in the top left corner.

Before comparing with PMVS [4], we set parameters for the proposed app-
roach and PMVS, and all parameters for the proposed approach have been dis-
cussed above. For PMVS, we set its parameters as: level = 0, csize = 1, thresh-
old = 0.7, wsize = 7. Fig. 6d, e respectively show sample images of the two
benchmark fountain and herz-Jesu data sets and results reconstructed by the
proposed approach. In order to further demonstrate the accuracy and density of
our results, we compare our method with PMVS, see Fig. 7. Our method can
get denser results than PMVS visually, as the regions denoted by green squares.
To quantitatively evaluate the proposed approach, together with PMVS, the
quantitatively measure provided by [10] is used in the evaluation. Fig. 8 shows
the accuracy of PMVS and the proposed approach, and the results demonstrate
that our method is more accurate than PMVS.
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Fig. 8. The quantitative evaluation between the two benchmark data set fountain and
herz-Jesu. For each data set, we evaluate the accuracy between ground truth and the
reconstructed results by PMVS and the proposed approach.

6 Conclusion

An effective multi-view stereo approach is developed that obtains dense and accu-
rate point clouds from multiple uncalibrated images. The approach mainly con-
tains two algorithms: 1) the match expansion algorithm, which is used to expand
initial matches to the geometric consistent correspondences, based on which the
Bundler procedure can estimate camera parameters and simultaneously recon-
struct quasi-dense point clouds; 2) the point-cloud expansion algorithm, which is
used to further improve the density and accuracy of point clouds under geometric
constraint. The experimental results demonstrate our approach is effective and
can reconstruct quite dense and accurate point clouds from uncalibrated images.
Quantitative evaluation shows that the proposed approach is favorable to the
state-of-the-art method PMVS in terms of accuracy for the two benchmark data
sets.
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