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Abstract. Non-uniform motion deblurring is a hard topic for image processing. 
Non-uniform blur is often caused by camera motion in 3D while taking photos. 
Existing non-uniform deblurring methods formulate the blur as a linear combi-
nation of homographic transforms of a clear image. But they are computational-
ly expensive and require large memory because the amount of the unknown  
variables are large. In this paper we use patch-wise method for the deblurring 
process. The patch-wise method are proved to be an effective method for non-
uniform motion deblurring. The key issues are the accuracy of kernel estimation 
and the substitution of the erroneous kernels. In this paper, we use normalized 
smoothing term for the blur kernel estimation because it is effective and stable. 
When the erroneous kernels are conformed, we use a minimization method us-
ing neighborhood information for estimating the kernels. Experiments demon-
strate the validity of the proposed method. 

Keywords: Non-uniform motion deblur · Normalized hyper laplacian prior · 
Variational method · Patch -wise method 

1 Introduction 

The image is often blurred with the camera shake while taking photos. Deblurring 
from a single image is an ill posed question because the blur kernel and the clear im-
age are not known.  

In the last decade, significant progress has been made for removing uniform blur 
from a single image. There are many successful deblurring algorithms for uniform 
blur. When camera motions only contain translations, these algorithm can achieve 
good results. However, in real case, camera shake includes translation and camera 
rotations. So this procedure is also called non-uniform blur. That is to say, the blur 
kernels are not the same at different points. This is a hard work for the researchers. 
Several non-uniform deblurring algorithms have been proposed, which model the blur 
as an integration of the clear scene under a sequence of planar projective transforms. 
The drawbacks of these algorithm are that they require a large memory and are com-
putational expensive.  

For reducing the memory and computation requirement, patch-wise deblurring al-
gorithms are proposed. The idea is that in a small neighborhood the blur kernels are 
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similar. In these methods, images are divided into patches and the blur kernels are 
estimated from each patch using a uniform deblurring algorithm. Then using esti-
mated blur kernels the clear image can be recovered. There are two main steps: The 
first step is dividing the image into overlapped patches and obtaining the blur kernels 
using uniform motion deblurring algorithm. The second step is to verify erroneous 
kernels and estimate the kernels again.  

To obtain accurate blur kernels efficiently, we use normalized smoothing term in 
the energy function. We select normalized hyper laplacian prior as the normalized 
smoothing term. The hyper laplacian prior can model the heavy-tailed distribution of 
the natural image gradient which is an important prior for clear image processing. The 
normalized hyper laplacian prior can lead the energy decreasing while solving the 
equation. So using normalized hyper laplacian prior , we needn't use additional steps 
for kernel estimation.  

To detect the erroneous kernels, we use the error residue to measure the accuracy. 
We calculate all the error between the blurred image and the image convolve with the 
calculated kernel. After detecting the poorly estimated blur kernels, previous works 
replace the rejected kernels with the average of their neighboring kernels. However, 
simply averaging the kernels causes the substituted kernel inaccurate and may lead to 
artifacts in the deblurred images. For the erroneous kernels, we use the neighborhood 
information to recaluate the kernels. We build a new energy function by incorporating 
neighborhood information with an stable kernel. Then the estimated kernel is stable.  

The organization of this paper goes as follows. In Section 2, we will introduce the 
related work for motion deblurring. The new proposed method and the solving proce-
dure is introduced in section 3. Then some numerical examples are shown in Section 
4. Section 5 makes some concluding remarks. 

2 Related Work 

We briefly introduce the uniform and non-uniform motion deblurring algorithms. We 
deblur an image without any additional information. The uniform blur means that the 
kernels are the same in the image. The non-uniform blur means the kernels varies 
according to the location. The uniform deblurring algorithms were extensively studied 
in the past few years and achieved great success.   

By convention, the invariant motion blurred image can be expressed as follows： 

 f k u n= ∗ +                                     (1) 

where k , u  and n  denote the blur kernel, the original unblurred image and the 
noise respectively, f  denote the blurred image. ∗  is the convolution operation. The 

uniform motion deblurring is well studied. Chan [1] firstly proposed using variational 
method for solving the question of blind deconvolution by using total variation me-
thod. He used total variation terms for restricting both the blur kernel and image gra-
dients. The method laid the foundation of deblurring by variation method. After 
Chan's method, Fergus [2] using the heavy tailed probabilistic distribution for image 
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gradients because he observed that natural image's gradient obeys this rule but the 
blurred image doesn't fit the law. His method is the first successful one for real case 
deblurring using variational method. Shan [3] presented an analysis of the reasons of 
common artifacts found in current deblurring methods. Then he computed deblurred 
image using a unified probabilistic model of both blur kernel estimation and clear 
image restoration. He incorporated first and second derivatives into his proposed 
model and make the deblurring image clear from ring artifact. Levin [4] points out 
that some deblurring methods can fail because the detail sections have negative ef-
fects on the process by comparing the methods in [2] and [3]. After this discovery, 
many researchers used additional method such as shock filter for reducing the effort 
of little details. Hui [5] proposed a method for identifying motion blurs form image 
gradients. Using the gradients, he will estimate the blur kernels. Cho [6] proposes a 
fast deblurring method by accelerating both latent image and kernel estimation by 
introducing a novel prediction step and working with image derivatives rather than 
pixel values. In the auxiliary step, he use bilateral filter for enhancing  strong edges 
and eliminating tiny edges. For further accelerating the implementation, GPU is used 
for speed-up the method which makes the method fast enough for practical usage. Xu 
[7] use large gradients selection for reducing the negative effect of the tiny gradient. 
Then, kernel refinement procedure is used by the fact that motion caused blur kernel 
is spatially continuous. His method is a stable one for estimating blur kernels. Hong 
[8] used nonlinear diffusion method for motion deblurring. Then, the blur kernel cor-
rection is done by the consumption that blur path should be curve with single point 
width. Xu [9] proposed using L0 sparse prior [12] for gradient restriction. The L0 
term has the ability of enhancing large gradient and eliminating small edges. This 
feature can make the method doesn't need additional steps for kernel estimation.  

When the blur kernels are spatial variant, the blur image can be written into a ma-
trix form:  

f Ku n= +                                        (2) 

K represents the matrix form of k. Gupta et al. model the blur matrix as a motion 
density function and the blur image f as the summation over images taken from differ-
ent poses.  

i i
i

f a K u n= +                                    (3) 

where ia  is the weighting coefficient. There are little work on the non-uniform 

motion deblurring.  
There has been relatively little work on spatially varying blind motion blurring. 

Levin et al. [14] proposed a spatially varying motion deblurring method by segment-
ing the image into different areas through the depth information and then deblurred 
each region. Whyte et al. [16] proposed a new model for non-uniform motion deblur-
ring. In his method, he model the spatially varying motion blur by 3D rotational cam-
era motion model. Gupta et al. [17] proposed model the spatially variant motion blur 
by the motion density function which can represent a different set of 3D camera mo-
tions. Then the calculated motion density function can model the spatially varying 
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kernel function. Harmeling et al. [18] built on a framework for space-variant filtering by 
Hirsch et al. [20] and a fast algorithm for single image blind deconvolution for space-
invariant filters by Cho and Lee [6] to construct a method for blind deconvolution in 
the case of space-variant blur. Hirsch et al. [19] proposed a framework of the efficient 
filter flow for deblurring images with spatially varying motion blurring effects. In his 
method, he assume that in every small area the motion blur can be deemed as an uni-
form blur. Ji [20] proposed two-stage approach for blind spatially-varying motion 
deblurring. First, he calculated the blur kernels by patch based method. Then he re-
covered the clear image by using a robust non-blind deblurring method.  

3 Proposed Method 

In this paper, we also use patch-wise deblurring method for spatially varying blur im-
age. To obtain accurate blur kernels efficiently, we use patch wise normalized hyper 
laplacian prior in the energy function. After detecting the erroneous kernels, we use the 
neighborhood information to re-estimate the erroneous kernels. Because the patch 
based method is first proposed by Hirsch so we will introduce the efficient filter flow 
first.  

3.1 Framework of Efficient Filter Flow 

Hirsch et al. [19] proposed a framework of the EFF (Efficient Filter Flow) for han-
dling smoothly space-variant convolutions. He found that a spatially variant filtering 
can be implemented by chunking a signal into overlapping patches, then he filtered 
each patch with a spatially invariant PSF, finally assembling the filtered image from 
the filtered patches using the overlap-add method. The framework of the EFF aims to 
extend a uniform moton deblurring to a non-uniform motion deblurring and is defined 
as: 

            
( ) ( ) ( )

1 1

p s
r r r

i j i j i j
r j

f k w u− −
= =

= , for 1 i m≤ ≤                   (4) 

where p  is the number of the overlapping patches, ( )r
jk  is the blur kernel of the 

r -th patch (1 r p≤ ≤ ), and is a window function to fade the r -th patch in and 

masking the others out. The sum of the weights at each pixel should be equal to one, 

i.e., 
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= , for 1 r m≤ ≤ .Without the normalization, there will be artifacts 

in the overlapping areas. 

As indicated in Eqn. (3), the EFF is linear in u  and in k , where k is a vector 

stacked by p  PSFs 
(1) ( ), pk k…, . It implies there are matrices K  and U  

such that B Ku Uk= = . According to [19], the matrices are expressed as 
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where bZ  is a matrix that appends zeros to the valid part of the space-variant 

convolution such that its size matches the full size of an input image u, rC  is a ma-

trix that crops the r -th patch from the input image, is the Discrete Fourier Transform 
matrix, Diag(v) is a diagonal matrix with along its diagonal, is a matrix that appends 
zeros to such that its size matches the patch size, and is a matrix that crops the r-th 
PSF from the vector k. 

Eqn. (6) implies that the patches are firstly recovered locally and then assembled 
into a latent image. Eqn. (7) implies that each PSF can be estimated from the corres-
ponding patch locally. It indicates that space-variant convolutions can be implemented 
in the EFF as efficiently as space-invariant ones. In the next section, we will introduce 
our method under the framework of EFF.  

3.2 Normalized Hyper Laplacian Prior in EFF 

In the deblurring process, the image gradient's amplitude will became bigger while the 
image get more clearer. This phenomenon makes the traditional methods failed. So 
additional steps such as shock filter and bilateral filter should be added for the kernel 
estimation. Krishnan [11] proposed using normalized total variation term [10] for the 
motion deblurring. The energy is decreasing in the deblurring processing by using the 
normalized total variation term. So he needn't use additional filters for the deblurring. 
In this paper, we use hyper laplacian prior for motion deblurring. The hyper laplacian 
prior is a good model for reflecting the clear image's gradient distribution which is 
expressed as heavy tailed distribution. The energy function incorporating normalized 
hyper laplacian prior can be expressed as:  
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The first term in the energy equation is the data fidelity term where k , u  and f  

denote the blur kernel, the recovered image and the blurred image respectively, ∗  is the 
convolution operation. In this paper, we use the residual error of the deblurred image's 
gradient and the kernel convolved with the gradient of the image for the data fidelity. 
This term is easy for energy resolving because the smoothing term also containing the 
gradient operation. r  denotes the r  th patch. The second term is the normalized hy-
per laplacian item. This term can make the energy decreasing while in the deblurring 
process. The third term is the restriction term of the blur kernel. The absolution operator 
make the kernel sparse. For convenience, we let ux ∇= , fy ∇= . 
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After dividing the image into overlaped patches, we use the following energy equa-
tion for solving the blur kernels. 

( ) dxk
dxx

dxx
dxyxkkxE r

r

pr

rrrrr 



 Ω

Ω

Ω

Ω
++−= )(

22)(

)(

1

2)()()()()( *
2

1
),( λλ      (9) 

We use iterative minimization method for solving the above equation.  

Fixing 
)(rk  for solving 

)(rx , the relative energy function is: 
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In above equation, because the denominator containing x, so the energy is not con-
vex and the energy solving is a hard work. In the iteration of energy solving, because 

the item of dxx
2

Ω  doesn't change dramatically, we can use the value of the last 

step. So the Euler-Lagrange equation can be written as:  
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where ),(),(' )()( yxkyxk rr −−= ，in other word 'k  is the centrosymmetric 

matrix of k. 
)(rx  is not easy to be solved, so we rewrite the equation in the following form.  
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The 
)(rx  can be got by using soft shrinkage-thresholding [13]: 
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For calculate k, the energy function is: 
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The Euler-Lagrange equation is: 
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Because the dimension of x is much larger than k, we use unconstrained iterative 
re-weighted least squares (IRLS) [14] for solving k for the calculation precision. Then 
a projection is followed by the contraints which is setting negative elements to 0 and 
renormalizing the elements to [0,1].  

Although the proposed method can make the energy decreasing while in the deb-
lurring processing, we will use multiscale method which is a common approach for 
motion deblurring for avoiding the kernels falling into local minimization.  

After the blur kernels are estimated, we choose to use the TV[15] model as non-
blind deconvolution method, since it is fast and robust to small kernel errors. 

( ) ( )( ) ( ) ( ) ( ) 2 ( )1

2
r r r r rE u k u f dx u dx

Ω Ω
λ= ∗ − + ∇                    (17) 

3.3 Removing Poorly Estimated Blur Kernels 

In the patch based non-nuniform deblurring procedure, there are always erroneous 
initial estimation of local kernels because the edges are not efficient for kernel estima-
tion. So after the initial kernel estimation, we will detect erroneous kernels. We use 
the method proposed by Ji [20] for the reason of simplicity and efficient. For each 
patch P, let kdenote the kernel obtained from the previous step. We use the residual 

( ) 2
i i i ir k u f= ∗ −  to measure its accuracy and set the accuracy threshold  by 

{ }1 2
3

, , ,
2 n×median r r rε = … . Then any local kernel whose residual ir  larger than 

the accuracy threshold  is considered as wrongly estimated kernel and discarded. 
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3.4 Re-estimating Erroneous Local Kernels 

Several method for re-estimating erroneous kernels only use the estimated kernels in 
the neighborhood. To re-estimate the discarded local blur kernels, we need some  
additional information outside these regions to help the estimation of blur kernels as 
these regions by themselves do not have sufficient image content for a reliable kernel 
estimation.  

We use a minimization method using neighborhood information for estimating the 
kernels. It is observed that the blur kernels of neighboring regions changes not dra-
matically. This motivates us to combine the local image information and the correla-
tion among the kernel to estimate and the available kernels in its neighborhood. We 
incorporating the neighborhood information into the energy equation and the equation 
can be written as: 
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In the above equation, m  is the number of the patches used for re-estimating ker-
nels. In our experiment, we set m as 4. That is to say, we use the north, south, east and 
west neighbors of re-estimating erroneous kernels.  

The Euler-Lagrange equation is: 
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Because the dimension of u is larger than k, we also use unconstrained iterative re-
weighted least squares (IRLS) [14] for solving k. Using the estimated kernels, we will 
get the patch-based clear images.  

4 Numerical Experiments 

To validate the effect of our proposed method, we use several images selected from 
several papers as experiments. The deblurred images and the calculated kernels are 
also shown in the experiments. Figure 1 shows an elephant and several people stand-
ing before a church. We divide the image into 7*5 patches. From the deblurred kernel, 
we can see that the image is blurred with camera rotation. The deblurred image is 
clear and has no ringing artifacts. In the following two experiments, using the same 
procedure, we also get the clear image and the corresponding kernels.  

To prove the effect of our method, we also compare our method with the method of 
Jia [7]. Figure 2 shows the results using the proposed non-uniform method. From the 
results, we can find that our method can reasonable results. The estimated blur kernel 
is reasonable for motion camera's trajectory. The blur kernel is sparse because only on 
the motion path, the elements are not zero. This finding conforms the sparse prior of 
the kernel. The divided patches have different blur kernels and the neighborhood ker-
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