
Secure Key Generation from Biased PUFs

Roel Maes1(B), Vincent van der Leest1, Erik van der Sluis1,
and Frans Willems2

1 Intrinsic-ID, Eindhoven, The Netherlands
{roel.maes,vincent.van.der.leest,erik.van.der.sluis}@intrinsic-id.com

2 T.U. Eindhoven, Eindhoven, The Netherlands
f.m.j.willems@tue.nl

Abstract. PUF-based key generators have been widely considered as a
root-of-trust in digital systems. They typically require an error-correcting
mechanism (e.g. based on the code-offset method) for dealing with bit
errors between the enrollment and reconstruction of keys. When the used
PUF does not have full entropy, entropy leakage between the helper data
and the device-unique key material can occur. If the entropy level of the
PUF becomes too low, the PUF-derived key can be attacked through the
publicly available helper data. In this work we provide several solutions
for preventing this entropy leakage for PUFs suffering from i.i.d. biased
bits. The methods proposed in this work pose no limit on the amount
of bias that can be tolerated, which solves an important open problem
for PUF-based key generation. Additionally, the solutions are all evalu-
ated based on reliability, efficiency, leakage and reusability showing that
depending on requirements for the key generator different solutions are
preferable.

1 Introduction

A Physically Unclonable Function (PUF) implemented on an integrated circuit
(IC) can be used as a hardware root-of-trust for a digital system, e.g. to generate
and store the system’s private master keys. These PUF-based key generators pro-
vide a secure and efficient alternative for protected non-volatile memories (e.g.
Flash, EEPROM, antifuses, etc.). For such applications, a high-quality PUF is
needed which is both unpredictable as well as reliable, i.e. PUF responses are
random per instantiation but repeatable with limited noise over time and under
all circumstances. To achieve this, both entropy extraction (for unpredictabil-
ity) and error-correction coding (for reliability) are required in key generators.
A secure key derivation function is used for entropy extraction to derive a cryp-
tographic key from a random seed. For error-correction, a commonly used tech-
nique is the code-offset method that stores helper data during an enrollment
phase, which is later used to correct bit errors that occur in the PUF response
when reconstructing the key. This helper data should not provide any informa-
tion about the key, because it is generally stored and/or transferred publicly.

It has recently been pointed out [9] that if a PUF does not have full entropy,
information about the secret key material is leaked by the helper data. If this
c© International Association for Cryptologic Research 2015
T. Güneysu and H. Handschuh (Eds.): CHES 2015, LNCS 9293, pp. 517–534, 2015.
DOI: 10.1007/978-3-662-48324-4 26

518 R. Maes et al.

entropy leakage becomes too large, the derived key will not have full entropy;
this poses a serious threat to the security of the key generator. The main focus
of this work is the development of (pre-)processing methods that prevent this
leakage in case of biased PUFs. Using innovative approaches, the overhead of
these algorithms on PUF size is minimized, while guaranteeing reliability of the
system.

Related Work. PUF-based key generators based on error-correcting codes were
firstly introduced in [13] for Arbiter PUFs and later on in [5] for SRAM PUFs,
both using a configuration based on linear block codes. Efficiency optimiza-
tions were proposed based on code concatentation [1] and soft-decision decod-
ing [10,17]. Later key generators based on ring oscillator PUFs were presented
in [18,22]. Potential security issues can arise with these key generators when
their input (i.e. the PUF response) does not have full entropy, see e.g. [6], which
was recently emphasized strongly in [9].

Contributions. The primary contribution of this work is the introduction of a
number of solutions that prevent entropy leakage between helper data and the
secret of a PUF-based key generator, in case of i.i.d. but biased PUF response
bits. The presented solutions are all scalable in that they can handle an arbi-
trary amount of PUF response bias, given that the available PUF response is
large enough to provide a sufficient input bits. This solves an important open
problem with existing PUF-based key generators, which was even hypothesized
to be unsolvable in [9]. The introduced methods are all proven to be secure and
are compared based on their reliability, efficiency, leakage and reusability. This
comparison shows that depending on requirements for the key generator, differ-
ent solutions are preferable. Additionally, this work provides a new model for
entropy leakage due to PUF bias as well as a model for the relation between
PUF bias and the bit error rate of the corresponding PUF. The first model is an
improvement over existing models, e.g. as used in [9], while the second model is
a new concept which is an extension on the models from [14].

2 PUF-based Key Generation and Bias

2.1 General Construction

Figure 1 shows a generic PUF-based key generator using the code-offset method
from [4], with which many earlier proposed implementations (e.g. [1,5,10,17])
conceptually comply. Encode() and Decode() are the encoding and corresponding
decoding function of an error-correcting code. In this work it is considered that
the error-correcting code is a binary linear block code. KDF() is a key derivation
function for generating a strong key from a random source with possibly reduced
entropy. This can be a strong extractor [4] (for information-theoretic security),
or a cryptographically secure key derivation function, see e.g. [11,12]. KDF()
could also be applied on the PUF response X instead of on the random seed S.
However, for analysis in this work, both variants are equivalent (see [16]). Key
generators have the following two key properties:

Secure Key Generation from Biased PUFs 519

Fig. 1. PUF-based key generator based on the code-offset method.

1. Reliability: if the occurence of (bit) errors between X and X ′ is limited, then
with high probability K ′ will be equal to K.

2. Security: if X is sufficiently unpredictable, then K is secure even to a party
which observes W .

Reliability is accomplished by use of an error-correcting code able to cope with
typically occuring amounts of bit errors. In a construction like Fig. 1 this results
in a disclosure of information by W on X, since W is assumed to be public.
However, the security property guarantees that if there is sufficient entropy in
X, there will be enough left after this disclosure to derive a secure key. The
security of the key is hence conditioned on the entropy of X. This aspect is the
main subject of this work, where we will make this condition explicit and study
its implications.

2.2 Entropy Leakage

Given that KDF() is a secure key derivation function, the security of the derived
key K depends on the unpredictability of the input of KDF(). In a construction
as in Fig. 1, the input of KDF() is a seed S which is randomly generated during
the one-time enrollment, and reconstructed from W and a noisy PUF response
X ′ during later reconstructions. Since W is considered public, S needs to be
sufficiently unpredictable even when conditioned on W . In terms of entropy,1

this is expressed as follows:

H(S|W) = H(S) − I (S;W), (1)

or the conditional entropy of S given W is the original entropy of S reduced with
the entropy leakage of S by W , which is expressed by the mutual information
between S and W .2 For the remainder of this work it is assumed that S is a fully
random bit string of length k, i.e. H(S) = |S| = k. For a key generator design
as in Fig. 1, deploying a linear block code with generator matrix G (where all
rows of G are independent) and parity-check matrix H, the entropy leakage is:

I (S;X ⊕ SG) = k − H(X) + H(XH�), (2)
1 In this work, unpredictability of random variables is expressed by Shannon entropy,

as is done in many earlier work on this subject, e.g. [7]. Note that Shannon entropy
serves as a lower bound for average guesswork [19]. For a stronger (less practical)
provable security notion, the more pessimistic min-entropy measure should be used.

2 Note that H(X|W) = H(S|W), see [16]. This shows the equivalence in security (in
terms of entropy) for a key generated from S or X.

520 R. Maes et al.

(proof, see [16]). This expression of entropy leakage is a known fact about code-
offset schemes,3 but is not very well-established in the context of PUF-based key
generators.4 Combining (1) and (2) gives:

H(S|W) = H(X) − H(XH�). (3)

The remaining entropy of S after observing W is hence equal to the entropy of
the PUF response X reduced with the entropy of the syndrome of X under the
used linear error-correcting block code.

If X has full entropy then the entropy leakage as given by (2) becomes zero
and H(S|W) = k. Hence, in that case S remains fully random and can be used
as a secure input for key derivation. However, if X does not have full entropy,
the entropy leakage might no longer be zero and S might not be completely
unpredictable after observation of W . In the following, we study the effect of
reduced entropy of X on the security of S, and in particular what occurs when
X suffers from bias.

2.3 Entropy Leakage Due to PUF Bias

The most common cause of reduced entropy of X is the presence of global bias on
the bits of X, i.e. globally ‘0’-bits occur consistently more often than ‘1’-bits or
vice-versa. We say that an n-bit PUF response X is p-biased (0 ≤ p ≤ 1) if the
a-priori expected number of ‘1’-bits in X is p · n, or p is the a-priori probability
of a random bit of a PUF response evaluating to ‘1’. An unbiased PUF has
p = 50%, but from experiments it is clear for most PUFs p deviates slightly
from 50%, or even significantly (see e.g. [7,8,13]).

We now investigate entropy leakage on S when X has reduced entropy caused
only by global bias. In that case H(X) = nh(p) with h() the binary entropy
function. From (2) and (3) it is evident that the quantity H(XH�) plays a central
role in the entropy leakage. In any case, it holds that H(XH�) ≤ |XH�| =
(n − k), which results in the lower bound:

H(S|W) ≥ k − n(1 − h(p)). (4)

This is a known practical bound for constructing a secure PUF-based key gen-
erator (see e.g. [15]), but it needs to be stressed that this is a lower bound and
hence any conclusions based on it could be overly pessimistic.5

We present two methods for calculating the entropy leakage exactly in the
case of global bias for codes with certain properties:

3 E.g., a variant thereof appeared before in an early version of [21].
4 This has led to some confusion and occasional misinterpretations, i.e. under- or

overestimations of the leakage. A discussion on this is e.g. found in [3].
5 Note that in particular for a too high bias this entropy bound even becomes negative,

making it absolutely clear that this is a pessimistic lower bound.

Secure Key Generation from Biased PUFs 521

Fig. 2. H(S|W) in case of a p-biased PUF response.

– For codes with a simple structure, a closed expression for H(XH�) can be
derived. In particular for repetition codes it holds that:6

H(XHrep
�) = −

n−1∑

t=0

(
n − 1

t

)
f(t;n, p) log2 f(t;n, p) (5)

with f(t;n, p) = pt(1 − p)n−t + pn−t(1 − p)t.
– For non-trivial but relatively short codes (e.g. n < 32), the distribution of

XH� can be determined exhaustively from the known distribution of X.
H(XH�) then follows from the distribution of XH�.

Figure 2(a) shows H(S|W) for repetition codes with a p-biased PUF.7 Both
the lower bound (4) and the exact calculation (5) are shown. It is clear that
for p �≈ 50%, the lower bound is not tight and significantly underestimates the
remaining entropy; e.g. for n = 5 the lower bound reaches zero for p = 24%,
while exact calculation shows that about 0.35 bit of entropy is actually still left.
The lower bound is hence rather pessimistic for biases not close to 50% and
a more exact calculation is preferable. This also partially refutes the so-called
“repetition code pitfall” as stated in [9] which was solely based on the pessimistic
conclusions from (4).

On the other hand, it is clear from Fig. 2(a) that a biased PUF response still
severely reduces the remaining entropy of the seed S. This could be problematic,
in particular for key generators deploying concatenated codes with a repetition
code as the inner code, as shown next.

6 See [16] for the derivation of this formula and similar for min-entropy in [3].
7 Only p ≤ 0.5 is shown; entropy-vs-bias graphs are symmetrical around p = 0.5.

522 R. Maes et al.

2.4 Effect of PUF Bias on a PUF-based Key Generator

In [10], one of the most efficient key generators to date8 was proposed using a
concatenation of r = 15× a (24, 12)-Golay code word for the outer code and
a (8, 1)-repetition code as inner code. The decoder consists of a hard-in-soft-
out repetition decoder and a soft-in-hard-out Golay decoder. This construction
extracts a 128-bit key with a failure rate <10−6, from 2880 PUF response bits
with average bit error rate ≤15%.9 As a safety measure for reduced PUF entropy,
the seed S from which the key is derived has a length of 15 × 12 = 180 bits.10

We will study the effect of global PUF bias on this construction, and how much
protection this implemented safety measure offers.

Since the concatenation of two linear block codes forms a new block code, all
the entropy leakage results from Sects. 2.2 and 2.3 remain valid. Assuming the
bits of X are i.i.d., then it holds for r× a generic (n2, k2)-block code concatenated
with a (n1, 1)-repetition code that:

H(XH�) ≤ r ·
(
n2 · H(X1:n1Hrep

�) + H(X1:n2H2
�)

)
, (6)

with X1:n1 and X1:n2 vectors of n1 and n2 bits from X.11 This is an upper bound
(≤) since the entropy contributions of both right terms in (6) could partially
overlap,12 but the same entropy cannot be leaked twice. We evaluate (6) exactly
for the example key generator by calculating the repetition code entropy term
using (5), and the Golay code term using the exhaustive method. The result is
plugged into (3) and shown in Fig. 2(b).

From Fig. 2(b) it is clear that bias significantly affects the remaining seed
entropy for this realistic key generator. For p < 41.8% (p > 58.2%), the remain-
ing entropy (lower bound) even falls below 128 bits, and the input of the key
derivation function has potentially less than 128 bits of entropy. Hence one can
no longer claim that the derived 128-bit key has full entropy.13 Hence, the safety
measure of using a 180-bit seed effectively keeps this key generator secure for
PUFs with a bias 41.8% ≤ p ≤ 58.2%.

In case of a seed of only 128 bits, the key’s security would be reduced for
any PUF with even the slightest bias. On the other hand, in order to cope
with even more bias, overhead on the seed length will have to be increased even

8 Efficient in terms of PUF size, while following the design of Fig. 1 and using only a
single enrollment measurement per derived key.

9 The key generator from [10] is based on an SRAM PUF, but in this work we make
abstraction of the actual PUF used. Our analysis and solutions apply to all PUF
types with i.i.d. response bits suffering from bias.

10 [10] aims for a seed of 171 bits, but this is rounded up to 180 for practicality. The
need for having 171-bit seeds originated in [5], but the reasoning is not fully clear.

11 Since bits of X are assumed i.i.d., which particular bits from X are considered for
the entropy calculation is of no importance.

12 X1:n1Hrep
� and X1:n2H2

� are not necessarily independent.
13 Note that this does not directly imply that the key becomes predictable, just that

it is potentially less unpredictable than it should be according to its length.

Secure Key Generation from Biased PUFs 523

Table 1. Effect of scaling the seed length of the key generator from [10].

further. In Table 1 we scaled the seed length (and PUF size and failure rate) with
the same code construction but increasing the number of Golay code words r.
Unfortunately, the resistance to bias does not scale accordingly. The extra bias
this generator can handle by increasing the seed gradually becomes very small.
For the used code construction it cannot increase much beyond 50%± 13.0%14.
Also, the cost for achieving this (slightly) increased bias resistance is a doubling
of the PUF size.

The conclusions about the studied key generator from [10], as summarized by
Fig. 2(b) and Table 1, can be generalized to all key generators of the same design.
The details differ slightly depending on the used codes, but the tendencies are
always the same: global bias on PUFs relatively quickly reduces the remaining
seed entropy, and increasing seed length has only a limited effect on the bias
resistance and comes at a high cost in PUF size. This restricts the efficient use
of key generators like Fig. 1 to PUFs with a limited global bias, roughly in the
order 50% ± 10%. Since many experimentally studied PUF constructions have
a global bias within this range, this is not necessarily problematic. However,
for other PUFs with larger bias this key generator design cannot be used, and
it was hypothesized (e.g. in [9]) that secure key derivation from such PUFs
is impossible. In the following we will counter this by presenting a number of
solutions that efficiently generate secure keys from PUFs with arbitrarily large
global bias. These solutions are generic, so they could be used to deal with other
(than global) types of bias with only minor modifications.

3 Debiasing Solutions

3.1 Basic Concept

In Sect. 2.4 we have shown that classic code-offset based key generators can only
cope with a limited amount of PUF bias. In order to overcome this, we propose
to extend the key generator design with a debiasing step prior to generating the
code-offset helper data, as shown in Fig. 3. The idea is that the debiased PUF
response Y which is actually enrolled is less biased than the original X, and hence
the entropy leakage due to bias is reduced, or ideally zero. This seems a rather

14 Note that we cannot increase beyond r = 31, without increasing the length of the
repetition code, otherwise the failure rate gets too large.

524 R. Maes et al.

Fig. 3. Debiasing PUF-based key generator based on the code-offset method.

straightforward extension of the classic key generator design from Fig. 1, but there
are a number of important and non-trivial points to consider when doing this:

Reliability. A debiasing step should not compromise the reliability of the key
generator. This requirement excludes many potential debiasing options that
blow up the bit error rate of the enrolled bit string. On the other hand,
certain debiasing solutions allow for an intelligent combination of debiasing
and error-correction, as shown next.

Efficieny. A debiasing step typically compresses or discards part of the PUF
response, hence introducing a debiasing overhead. It will become clear that
basic debiasing methods have a rather high overhead. We propose innova-
tive optimizations specifically tailored for PUF-based key generation which
significantly reduce overhead.

Leakage. Debiasing typically also produces side information during enrollment
which is required during reconstruction. This debiasing data D hence needs to
be stored/transfered publicly with the code-offset helper data W , potentially
introducing new entropy leakage. For each presented debiasing method, we
will prove that the combined entropy leakage of the debiasing data D and
helper data W is zero.

Reusability. The classic code-offset scheme from Fig. 1 is reusable as shown
in [2]. This means that the same PUF can be enrolled many times, each time
producing a different key K and helper data W , without leaking more entropy
than under just one single enrollment. This property does not necessarily
hold when a debiasing step is used. We will investigate the reusability of
each proposed debiasing method.

We will now introduce and discuss a number of increasingly more sophisticated
debiasing methods and investigate these properties.

3.2 CVN: Classic von Neumann (VN) Debiasing

The classic randomness extractor as proposed by von Neumann [20] considers
consecutive pairs of bits. If both bits are equal they are discarded, if they are
opposed then the first bit is retained as a debiased bit. It is well known that if
the input bits are i.i.d. but globally biased, then the output bits are perfectly
random. Figure 4 shows how the classic von Neumann (CVN) extractor can be

Secure Key Generation from Biased PUFs 525

Fig. 4. Debiasing with a classic von Neumann extractor (enrollment only).

used as a debiasing step in a key generator. During enrollment (shown), the
output of the CVN extractor becomes the debiased response Y which is used to
calculate the code-offset helper data on. Also, for each considered bit pair of X a
selection bit is used to show whether (1) or not (0) the first bit of that pair was
retained in Y . These selection bits are the debiasing data D which is transfered
alongside the helper data W . During reconstruction, the retained bits Y ′ from
the noisy PUF reponse X ′ are selected with the bits in D.

Reliability. A nice feature of debiasing methods like CVN is that they hardly
affect the error rate of the PUF response bits, contrary to other methods
such as hash functions or XOR-combiners.15 This is the main motivation to
use a von Neumann-like extractor as a debiasing step in a PUF-based key
generator. Therefore, all following proposed debiasing solutions are variants
of this classic von Neumann debiasing.

Efficiency. If X is a p-biased n-bit PUF response, then the number of
unbiased bits retained by CVN is binomially distributed with parameters
(�n

2 �, 2p(1 − p)). The debiasing overhead of CVN is hence very high; even
when the input X is already unbiased, CVN will still discard on average
3/4 of the bits. However, in practical situations this ratio is even lower; to
obtain |Y | unbiased bits with a maximum failure rate pfail, n needs to be
large enough to meet:

F−1
bino

(
pfail; �n

2 �, 2p(1 − p)
) ≥ |Y |. (7)

E.g. for |Y | = 1000, p = 50% and pfail = 10−6, this yields n ≥ 4446, or
a debiasing overhead factor of about 4.4. If X is actually biased this even
becomes worse; e.g. for p = 30%, n ≥ 5334 or a factor of 5.3.

Leakage. Due to the properties of CVN, Y will be perfectly random regardless
of the bias on X, and hence according to (2) we have I (S;W) = 0. However,
since CVN debiasing also produces public information D, we need to consider
I (S; (W,D)) instead. It can be shown that I (S; (W,D)) = 0 for CVN (proof,
see full version [16]), hence the combination of (W,D) leaks no information
on the seed S.

Reusability. A key generator using CVN for debiasing is not reusable. An
example of the insecurity from enrolling the same PUF more than once
is shown in Fig. 5. Here one learns from the helper data W (1) of the first
enrollment that the first and fifth bit of X(1) are equal since they are both
XOR-ed with the same 2-bit repetition code word. In the second enrollment,
X(2) a noisy version of X(1) is enrolled, with differing bits marked in black.

15 Von Neumann extractors have a small effect on bit error rate, shown in Sect. 4.1.

526 R. Maes et al.

Fig. 5. Insecurity of CVN in case of reuse.

Because of these few differing bits, the first and fifth bit of X(2) are now
enrolled in two different code words. However, from the first enrollment one
has learned that these two bits are equal. From this knowledge, one can
deduce that the two code words in the second enrollment, and their corre-
sponding seed bits, are also equal (with high probability). The 2-bit seed S(2)

hence has only two possible values instead of four. In general, one can say
that I

(
S(2); (W (1),D(1),W (2),D(2))

)
> I (S; (W,D)) = 0 and hence there is

(more) leakage when the PUF is enrolled more than once. The reason for this
reuse insecurity is the stochastic nature of the CVN step which is caused by
random bit errors in between enrollments. Due to these differing bits, enrolled
bits can shift between code words in between enrollments, which causes this
particular type of leakage.

Summarizing, by using CVN as a debiasing step in a design like Fig. 3, one
can build a PUF-based key generator which leaks no information on the secret
seed S even if X is biased. Note that CVN poses no limit on the amount of
bias on X that can be tolerated; in theory X can have an arbitrarily high bias,
the leakage will always be zero. However, the efficiency restriction as expressed
by (7) will pose a limitation in practice, since the PUF size n cannot become
arbitrarily large. Nonetheless, this is still a major advancement in PUF-based
key generators, since it shows that a secure key can be derived from a PUF with
arbitrary bias, whereas the classic design of Fig. 1 was limited to PUFs with a
bias in the range 50% ± 10% as discussed in Sect. 2.4. The cost paid for this
advancement is an increase in the PUF’s size (overhead factor > 4) and the loss
of the reusability property. In the following we will address these issues, first by
proposing overhead optimizations in Sect. 3.3, and next by proposing a debiasing
solution which retains the reusability property in Sect. 3.4.

3.3 Pair-Output (2O-VN) and Multi-Pass Tuple-Output VN
Debiasing (MP-TO-VN)

The first proposed optimization (shown in Fig. 6(a)) consists of two minor mod-
ifications to the CVN debiasing solution of Sect. 3.2:

1. Instead of using only the first bit of each selected pair as in CVN, both bits
of a selected pair are retained, hence the name pair-output von Neumann or
2O-VN debiasing.

2. The most inner code in the code-offset scheme is an even-length repetition
code (e.g. 4 bits in Fig. 6(a)).

Secure Key Generation from Biased PUFs 527

Fig. 6. Key generators with improved efficiency VN debiasing. Extra retained bits are
marked in grey. Bit errors during reconstruction are marked in black.

The second modification ensures that each pair retained by the first modification
is used within the same repetition code word. This is an important condition
for the security of this construction. In Fig. 6(a) the helper data W and the
debiasing data D are combined in a single bit string (W,D), where a value 00
signifies that a pair is not retained, whereas a non-zero value (01 or 10) is the
code-offset helper data of a retained pair.16

Reliability. The reliability analysis of 2O-VN is comparable to CVN and is
explained in more detail in Sect. 4.1.

Efficiency. It is clear that the debiasing overhead of 2O-VN is about half that
of CVN. The constraint on n now becomes:

F−1
bino

(
pfail; �n

2 �, 2p(1 − p)
) ≥ |Y |

2 . (8)

E.g. for |Y | = 1000, p = 50% and pfail = 10−6, this yields n ≥ 2322, or a
debiasing overhead factor of about 2.3, and for p = 30%, n ≥ 2794 or an
overhead factor of 2.8.

Leakage. It can be shown that I (S; (W,D)) = 0 still holds for 2O-VN debi-
asing.This appears counterintuitive since Y is no longer i.i.d. but con-
tains explicit dependencies, i.e. for each pair (Y2i−1, Y2i)i>0 it holds that
Y2i−1 = Y2i or the parity is odd. However, note that the code-offset helper
data of a repetition code anyway discloses the parities of all bit pairs of Y
used within the same code word. Hence if a bit pair is used within the same
repetition code word, as guaranteed by the 2O-VN modifications, it is no
problem that its parity is known since it would have been disclosed anyway.
More intuitively, one can see (e.g. in Fig. 6(a)) that the known dependencies
in Y do not help an outsider in predicting anything about S from (W,D).

Reusability. 2O-VN debiasing is not reusable for the same reasons as CVN
debiasing (see Sect. 3.2).

16 This is just one possible exemplary representation of (W, D).

528 R. Maes et al.

Extension to Multi-pass Tuple Output (MP-TO-VN). The efficiency of 2O-VN
can be further improved by reconsidering the discarded bits in a second pass,
shown in Fig. 6(b). Bits are now grouped as quadruplets, and the extractor com-
pares the first half of a quadruplet to the second half. More passes are possible
(not shown in Fig. 6(b)) where in general the i-th pass considers tuples of 2i

bits which were not retained by any of the previous passes. Hence the name
multi-pass tuple-output von Neumann or MP-TO-VN. For (M=2)P-TO-VN, the
constraint on n becomes:

∑|Y |−1
a=0

∑�n4 �
b=0 fbino

(
a−4b

2 ; �n
2 �, 2p(1 − p)

) · fbino

(
b; �n−(a−4b)

4 �, 2p2(1−p)2

(p2+(1−p)2)2

)
< pfail (9)

E.g. for |Y | = 1000, p = 50% and pfail = 10−6, this yields n ≥ 1538, or an
overhead factor of 1.5, and for p = 30%, n ≥ 2068 or a factor of 2.1. For more
passes similar constraints can be derived and the overhead will reduce even
further. However, the extra reduction for each additional pass quickly becomes
small and almost negligible for more than three passes.

For MP-TO-VN to be leakage-free, it needs to be ensured that bits which were
retained as a 2i-bit tuple are always used within the bounds of a single repetition
code word for calculating the helper data. This could entail that retained tuples
need to be reshuffled or that a retained tuple is cropped when a code word bound
is reached; e.g. in Fig. 6(b) the final two bits are discarded, they cannot be used
for the next code word. Depending on the method used, it could be needed to
keep track in which pass a certain bit pair was retained. In Fig. 6(b), this is done
by letting D have three possible values for each bit pair, i.e. ‘not retained’ (00),
‘retained in first pass’ (01) or ‘retained in second pass’ (10). The leakage and
reusability analysis for MP-TO-VN are the same as for 2O-VN.

3.4 ε-2O-VN: Pair-Output VN Debiasing with Erasures

Now we propose (Fig. 7) a modification of the 2O-VN debiasing solution from
Sect. 3.3 which makes the key generator reusable again:

1. During enrollment 2O-VN debiasing is applied, yet bit pairs which are not
retained by 2O-VN are not completely discarded but replaced with erasure
symbols (ε), hence the name pair-output von Neumann debiasing with erasures
or ε-2O-VN. The length of Y (i.e. the number of symbols) is hence equal to
the length of X.

2. The most inner code is again an even-length repetition code (e.g. 6 bits in
Fig. 7). The code-offset helper data between the code words and Y is calcu-
lated with the ε-XOR operation denoted as ⊕©, which is defined as the regular
XOR (⊕) if both operands are regular bits, but produces an ε if one or both
of its operands is an ε.

3. During reconstruction, the noisy code words will also contain ε symbols. These
are to be treated as regular bit erasures by the decoder, which hence needs
to be able to handle both errors and erasures. Figure 7 uses a concatenated
code of an inner 6-bit repetition code and an (exemplary) (4, 2) outer code.

Secure Key Generation from Biased PUFs 529

Fig. 7. Debiasing with a pair-output von Neumann extractor with erasures. Bit pairs
discarded by 2O-VN are now retained as erasures (ε, marked in grey). Bit errors during
reconstruction (w.r.t. enrollment) are marked in black.

The repetition code is decoded with a hard-in-soft-out decoder which treats
erasures as non-preferential code bits. The outer code is decoded with a soft-
in-hard-out decoder (i.c. a trivial minimum-distance list decoder) to retrieve
the seed S.

Reliability. It is evident that ε-2O-VN debiasing impacts the reliability of a
key generator, since the used error-correcting code needs to be able to deal
with bit errors caused by noise, as well as with erasures caused by bias. For
an n-bit p-biased PUF response X, the probability of having e

2 erasures is
binomially distributed with parameters (�n

2 �, p2 + (1 − p)2). In Sect. 4.2, it
is demonstrated how this affects the reliability/efficiency of a realistic key
generator.

Efficiency. ε-2O-VN is very efficient in terms of debiasing overhead factor |X|
|Y | ,

since |X| = |Y |. However, the cost for ε-2O-VN sits in the fact that a more
powerful error-correcting code (hence with a smaller code rate) needs to be
used to account for the introduced erasures. For ε-2O-VN debiasing, reli-
ability and efficiency need to be considered together, as demonstrated in
Sect. 4.2.

Leakage. The ε-2O-VN debiasing method does not produce any explicit debi-
asing data D. All required information is contained in W which uses the
symbols 0, 1 and ε. For leakage, we need to consider I (S;W) again, but now
in the new setting of ε-2O-VN. It can be shown that classic von Neumann
debiasing with erasures is leakage-free (proof, see full version [16]). From this,
the security of pair-output von Neumann debiasing with erasures follows in
the same manner as for 2O-VN due to the fact that the most inner code is
a repetition code.

Reusability. ε-2O-VN debiasing is reusable, i.e. I
(
S(i); (W (1),W (2), . . .)

)
=

I (S;W) = 0 (proof, see full version [16]). This means that the same PUF
can be enrolled an arbitrary number of times without the combination of

530 R. Maes et al.

Fig. 8. Relations between PUF bias and error rate.

all produced helper data strings leaking anything about any of the enrolled
seeds. A key generator with ε-2O-VN debiasing (re)gains this property since
the debiasing is no longer stochastic: randomly differing bits between enroll-
ments do no longer affect the selection of bit pairs since all bit pair positions
are always retained. Unfortunately, ε-2O-VN cannot be extended to multi-
ple passes in the same manner as MP-TO-VN without compromising the
reusability property.

4 Objective Comparison of Debiasing Solutions

4.1 Relation Between PUF Bias and Bit Error Rate

Similarly to global bias, we define the global bit error rate to be pe if the a-priori
expected number of differing bits between two evaluations X and X ′ of the same
n-bit PUF response is pe · n, or put otherwise pe is the a-priori probability that
Xi �= X ′

i for a random bit i of a PUF.
Firstly, note that a biased PUF will have a different bit error rate for 0 and

1 bits; e.g. for a PUF which is biased towards 0, the probability of a bit error
will be higher for a 1-bit than for a 0-bit. Such behavior is typically expressed
as a channel model, shown in Fig. 8(a) for our situation. The assumptions are
that the bias of X and X ′ are the same, even with bit errors, and that the
average bit error rate is equal to pe. Note that von Neumann-based debiasing
methods will (negatively) affect this average bit error rate since the ratio of 0
and 1 bits which are retained will be changed, favoring the lesser occuring but
more error-prone kind.

Secondly, one notices that the heavier the bias p of a PUF response, the
smaller its bit error rate pe; e.g. in the extreme case of a p = 100% biased PUF,
the bit error rate pe will be zero. To objectively compare PUFs with different
bias levels, we need to make this relation between biases and error rates explicit;
e.g. there is a big difference between a PUF with pe = 15% but no bias p = 50%
and another PUF with pe = 15% and a heavy bias of p = 30%. For objective
comparison, we introduce the fixed point pe@50% which is the (hypothetical) bit

Secure Key Generation from Biased PUFs 531

Table 2. Comparison of debiasing solutions for the code-offset key generator from [10].
The fixed point bit error rate is set to pe@50% = 15%. The key generator is failure rate
< 10−6.

error rate a PUF would have if it would have been unbiased (p = 50%). For a
PUF with a given pe@50%, a relation pe = fbias(p; pe@50%) can be derived based on
the reliability model for PUFs from [14] (see derivation in full version [16]). This
function is shown for different values of pe@50% in Fig. 8(b). This graph should
be interpreted as follows: if one wants to objectively compare the efficiency of
a key generator for an unbiased PUF, e.g. with pe = 15%, to a key generator
for a biased PUF, e.g. with p = 30%, then the corresponding error rate for the
biased PUF should be set to fbias(30%; 15%) = 13.0%.

4.2 Comparison of Debiasing Solutions

The different debiasing solutions proposed in Sect. 3 are evaluated and compared
to each other in an objective manner. The evaluation is done for the key generator
from [10], which uses a repetition code-Golay code concatenation. The results
are shown in Table 2. Three different debiasing solutions are compared amongst

532 R. Maes et al.

each other and against the case when no debiasing is used (see also Table 1)17.
The row marked with a * is the best proposal from [10] and is used as reference
case. To make the comparison objective, the effective bit error rate pe for each
simulation scales with the bias level according to fbias(p; pe@50%) as shown in
Fig. 8(b) with pe@50% = 15% corresponding to the error rate assumed in [10]
and other works. For realistic simulations, the channel model from Fig. 8(a) is
used, so 0-bits and 1-bits have different error probabilities in case of bias.

The three debiasing methods have different properties. 2O-VN and 2P-TO-
VN have a non-zero enrollment failure rate; it is possible that insufficient bits are
retained after debiasing for successful enrollment. Also, for both of these systems
the error-correcting code used does not change depending on the amount of bias
(only the size of the PUF changes for maintaining reliability), while for ε-2O-VN
the repetition length scales with the amount of bias and enrollment is always
successful. The PUF size overhead in comparison to * also varies between the
mehods. It is clear that the 2P-TO-VN is the most efficient method considering
this parameter (only 1.70 times the amount of * is required to deal with the
extreme case of 25 % bias), but this method does not allow reuse for enrolling
multiple keys. If this property is required ε-2O-VN provides a strong alternative,
which requires more PUF data (2.57× * at 25 % bias), but provides a combina-
tion of properties that was not known to date.

5 Conclusion

This work solves the open problem of secure key generation from biased PUFs
using code-offset-based constructions. This is accomplished without compromis-
ing the secret key’s security and for arbitrary bias levels. Existing conventional
methods will lead to leakage on the secret key when the PUF is too biased,
whereas our proposed debiasing techniques prevent this leakage, while main-
taining the high reliability and for some solutions even the reusability of the
key generator. This comes at a cost of PUF size overhead, but using innovative
approaches we were able to limit this overhead and design a key generator based
on the requirements at hand.

Remaining open questions and interesting future research directions include:
how to further optimize the efficiency of these debiasing solutions, and how to
prevent key leakage for PUFs which suffer from reduced entropy for reasons
other than bias, e.g. because of bit correlations.

17 Failure rates differ slightly from the results in Table 1 which were extrapolated
from [10]. For objective comparison, the results of Table 2 are based on a new simu-
lations, with the Hackett Golay decoder from [10] implemented in Matlab. The sin-
gle Golay decoding failure rate pGolay-fail is estimated as the 95 %-confidence upper
bound from the simulations; the actual values for pGolay-fail are hence likely smaller.
The total reconstruction failure rate is computed as 1 − (1 − pGolay-fail)

r.

Secure Key Generation from Biased PUFs 533

References

1. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper
data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

2. Boyen, X.: Reusable cryptographic fuzzy extractors. In: ACM Conference on Com-
puter and Communications Security–CCS 2004, pp. 82–91. ACM Press, New York
(2004)

3. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Helper data algorithms for
PUF-based key generation: overview and analysis. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 34(1), 14 (2014)

4. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

5. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

6. Ignatenko, T., Willems, F.: Information leakage in fuzzy commitment schemes.
IEEE Trans. Inf. Forensics Secur. 5(2), 337–348 (2010)

7. Katzenbeisser, S., Kocabaş, U., Rožić, V., Sadeghi, A.-R., Verbauwhede, I.,
Wachsmann, C.: PUFs: myth, fact or busted? a security evaluation of physically
unclonable functions (PUFs) cast in Silicon. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 283–301. Springer, Heidelberg (2012)

8. Koeberl, P., Li, J., Maes, R., Rajan, A., Vishik, C., Wójcik, M.: Evaluation of
a PUF device authentication scheme on a discrete 0.13um SRAM. In: Chen, L.,
Yung, M., Zhu, L. (eds.) INTRUST 2011. LNCS, vol. 7222, pp. 271–288. Springer,
Heidelberg (2012)

9. Koeberl, P., Li, J., Rajan, A., Wu, W.: Entropy loss in PUF-based key genera-
tion schemes: the repetition code pitfall. In: IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 44–49 (2014)

10. van der Leest, V., Preneel, B., van der Sluis, E.: Soft decision error correction for
compact memory-based PUFs using a single enrollment. In: Prouff, E., Schaumont,
P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 268–282. Springer, Heidelberg (2012)

11. Lily, C.: NIST Special Publication 800–108: Recommendation for Key Derivation
Using Pseudorandom Functions (revised) (2009)

12. Lily, C.: NIST Special Publication 800–56C: Recommendation for Key Derivation
through Extraction-then-Expansion (2011)

13. Lim, D., Lee, J., Gassend, B., Suh, G., van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. VLSI
Syst. 13(10), 1200–1205 (2005)

14. Maes, R.: An accurate probabilistic reliability model for silicon PUFs. In: Bertoni,
G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 73–89. Springer,
Heidelberg (2013)

15. Maes, R.: Physically Unclonable Functions - Constructions, Properties and Appli-
cations. Springer, Heidelberg (2013)

16. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure key generation
from biased PUFs. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS,
vol. 9293, pp. xx–yy, Cryptology ePrint Archive, Report 2015/831, this is the full
version of this work (including all appendices). Springer, Heidelberg (2015). http://
eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

534 R. Maes et al.

17. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft deci-
sion helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009)

18. Maes, R., van Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-
based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012)

19. Massey, J.L.: Guessing and entropy. In: IEEE International Symposium on Infor-
mation Theory (ISIT), p. 204 (1994)

20. von Neumann, J.: Various techniques used in connection with random digits. In:
Applied Math Series 12. National Bureau of Standards, USA (1951)

21. Skoric, B., de Vreede, N.: The spammed code offset method. Cryptology ePrint
Archive, Report 2013/527 (2013). http://eprint.iacr.org/

22. Yu, M.-D.M., M’Raihi, D., Sowell, R., Devadas, S.: Lightweight and secure PUF
key storage using limits of machine learning. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 358–373. Springer, Heidelberg (2011)

http://eprint.iacr.org/

	Secure Key Generation from Biased PUFs
	1 Introduction
	2 PUF-based Key Generation and Bias
	2.1 General Construction
	2.2 Entropy Leakage
	2.3 Entropy Leakage Due to PUF Bias
	2.4 Effect of PUF Bias on a PUF-based Key Generator

	3 Debiasing Solutions
	3.1 Basic Concept
	3.2 CVN: Classic von Neumann (VN) Debiasing
	3.3 Pair-Output (2O-VN) and Multi-Pass Tuple-Output VN Debiasing (MP-TO-VN)
	3.4 -2O-VN: Pair-Output VN Debiasing with Erasures

	4 Objective Comparison of Debiasing Solutions
	4.1 Relation Between PUF Bias and Bit Error Rate
	4.2 Comparison of Debiasing Solutions

	5 Conclusion
	References

