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Abstract. This paper analyses the cryptography used in the Open
Smart Grid Protocol (OSGP). The authenticated encryption (AE)
scheme deployed by OSGP is a non-standard composition of RC4 and a
home-brewed MAC, the “OMA digest”.

We present several practical key-recovery attacks against the OMA
digest. The first and basic variant can achieve this with a mere 13 queries
to an OMA digest oracle and negligible time complexity. A more sophis-
ticated version breaks the OMA digest with only 4 queries and a time
complexity of about 2%° simple operations. A different approach only
requires one arbitrary valid plaintext-tag pair, and recovers the key in
an average of 144 message verification queries, or one ciphertext-tag pair
and 168 ciphertext verification queries.

Since the encryption key is derived from the key used by the OMA
digest, our attacks break both confidentiality and authenticity of OSGP.

1 Introduction

Authenticated encryption [7] (AE) is the standard technology to protect data
that needs to be sent over unsecured communication channels and is deployed
in countless applications and protocols, such as (D)TLS, SSH and IPSec. In
comparison to regular symmetric encryption schemes, AE not only ensures pri-
vacy of the data but also guarantees integrity and authenticity. Unfortunately,
failures in the design and implementation of authenticated encryption schemes
are a common sight and there are numerous examples. To name just a few (see

also [9]):

— Vaudenay’s 2002 CBC padding oracle attack on MAC-then-encrypt AE modes
allows an active adversary to decrypt messages without access to the secret
key [30]. This attack stemmed from the authenticity verification leaking
whether the decrypted message was adequately padded. Over the years, this
strategy has been used quite successfully against TLS [4,10,12,26].

— In 2007, an attack [29] on the Wired Equivalent Privacy (WEP) standard,
used in many 802.11 Wi-Fi networks, allowed to recover the secret key within
minutes from a few thousand intercepted messages. The attack exploited
weaknesses in RC4.

© International Association for Cryptologic Research 2015
G. Leander (Ed.): FSE 2015, LNCS 9054, pp. 297-316, 2015.
DOI: 10.1007/978-3-662-48116-5_15



298 P. Jovanovic and S. Neves

— In 2009, Albrecht, Paterson, and Watson [2] exploited a flaw in the SSH pro-
tocol and its OpenSSH implementation, when coupled with a block cipher in
CBC mode. The attack allowed an adversary to recover 14 plaintext bits with
probability 27 or 32 plaintext bits with probability 2718,

— In 2012, a flaw was uncovered in EAXprime [5], an AE block cipher mode
derived from EAX [8], standardized as ANSI C12.22-2008 for Smart Grid
applications, and also subject of a forthcoming NIST standard. The flaw facil-
itates forgery, distinguishing, and message-recovery attacks [25].

In this paper, we investigate another flawed authenticated encryption scheme,
which is deployed in the Open Smart Grid Protocol (OSGP) [15]. The latter is
an application layer communication protocol for smart grids built on top of the
ISO/IEC 14908-1 protocol stack [21], has been developed by the Energy Service
Network Association (ESNA), and is a standard of the European Telecommu-
nications Standards Institute (ETSI) since 2012 [1]. According to estimations,
OSGP-based smart meters and devices are deployed in over 4 million devices
worldwide as of 2015, making OSGP one of the most widely used network pro-
tocols for smart grid applications.

Our Results. Table1l summarises the results of the different attacks on the
authenticated encryption scheme of OSGP and also lists the corresponding sec-
tions where the attacks are described. While the attacks have various tradeoffs
between the number of oracle queries and the computational complexity, each
constitutes a complete break of the OSGP AE scheme. We also want to highlight
the fact that the attacks from Sect. 3.4 are particularly powerful in the context
of the protocol: verification oracles are easy to come across and the attack in
its XOR variant does not need to know plaintext at all, since differences can be
injected directly into the ciphertext. In other words, this is a practical attack on
the AE scheme of OSGP and completely compromises its security.

Related Work. In late 2013, Kursawe and Peters independently analysed
OSGP and identified several security flaws, some of which overlap with our
own findings [22]. Their work gives a good overview on the various security flaws
and shows how they can be exploited to mount some basic attacks on OSGP’s
cryptographic infrastructure. We, on the other hand, focus on the digest func-
tion in more detail and, as a consequence, are able to further move the attacks
into practicality. We note that our analysis has been performed solely against
the OSGP specification [15] and not against any deployed devices.

Outline. The paper is organised as follows. Section 2 introduces notation and
the cryptographic infrastructure used in the Open Smart Grid Protocol. In
Sect. 3, we give a detailed analysis of the said AE scheme. We start with some
basic attacks that already allow recovery of the entire secret key but are not
feasible within the scope of the protocol. Based on that we describe further
improvements which eventually allow us to mount fast forgery attacks on the
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Table 1. Required number of queries and expected complexity for the attacks of Sect. 3,
with varying time-query tradeoff parameter B. The abbreviation KP4+ means known-
plaintext with common prefix, CP denotes chosen-plaintext, CC stands for chosen-
ciphertext, and TG and TV denote tag-generation and tag-verification oracles, respec-
tively.

Attack B Queries Complexity Type  Oracle
Section 3.1 13 2%:%8 Cp TG
2 7 210458
3 5 218.00
4 4 22558
5 4 233458
6 3 241.00
Section 3.2 1 24/13 210-58 KP+/CP TG
2 12/7 21758
3 8/5 225.00
4 6/4 232.58
5 6/4 240432
6 4/3 248.58
Section 3.4 (XOR) — =168 ~168 cp/CC TV
Section 3.4 (Additive) — =144 ~144 CP

OSGP AE scheme and furthermore enable recovery of the complete secret key
and in this case all within the context of the protocol. Finally, Sect.4 concludes
the paper.

2 Preliminaries

2.1 Notation

An n-bit string z is an element of {0, 1}". For n = 8 we call = a byte. The size of
x in bits is denoted by |z|. Concatenation of bit strings is denoted by ||. Given a
vector of bit strings (o, . .., Zn—1), we denote by z; ; the jth bit of the ith word
where 0 < i < n — 1. When interpreting bit strings as integers we always use
little-endian format and denote them in hexadecimal format using typewriter.
A bit string consisting of n zeros is denoted by 0™. A cyclic rotation of a bit
string x by m bits to the left and right is denoted by z << m and =z =>> m,
respectively. The difference of two bit strings x and z’ with respect to XOR
is denoted by Az, whereas a difference with respect to addition modulo 2™ is
denoted by AFz.
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2.2 The Cryptographic Infrastructure of OSGP

In this paper, we focus solely on OSGP’s cryptographic infrastructure, and not on
the protocol itself. The high-level structure of OSGP’s authenticated encryption
(AE) scheme is depicted in Fig. 1.
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Fig.1. The OSGP AE scheme. Notation: zo = {81,3F,52,94,7B,E3,89,BA}, z1 =
{72,B0,91,8D,44,05,AA, 57}, k = k1 || ko : Open Media Access Key (OMAK), m :
message, n : sequence number, t : authentication tag, k' = ki || kj : Base Encryption
Key (BEK), c¢: ciphertext.

The OSGP AE scheme is based on three algorithms: the EN 14908 algo-
rithm!, the stream cipher RC4 and the so-called OMA digest, a message authen-
tication code (MAC). These three algorithms are combined in a mixture of the
generic composition [7] approaches MAC-and-encrypt and MAC-then-encrypt to
form an authenticated encryption scheme, see again Fig. 1. We note that, while
the OMA digest is described in the OSGP specification [15], public informa-
tion on the EN 14908 algorithm, specified in ISO/IEC 14908-1 [21], is hard to
come by. All information on the latter was retrieved from the OSGP specifica-
tion [15] and the related standard ISO/IEC CD 14543-6-1 [20, p. 232] which, like
ISO/IEC 14908-1 and a few other standards [6,19,28], is also a direct descendant
of LonTalk [13].

The security of OSGP’s AE scheme depends on the 96-bit Open Media Access
Key (OMAK) k = k; || ko from which all other key material is derived. The
OMAK is usually unique to a device but not hardcoded and can be changed,
often to be shared with other devices under the same concentrator [15, Sect. 7.1].
Two things are derived from the OMAK: firstly, a so-called Base Encryption

! The OSGP specification describes EN 14908 as an encryption algorithm, but it is
clearly nothing of the sort. We therefore only talk about the EN 14908 algorithm in
this work.
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Key (BEK) k' = ki | k{ is computed [15, Sect.7.3] which is a 128-bit key
forming the basis for the RC4 encryption key. The BEK is constructed? using
the EN 14908 algorithm which appears to have been the basis for the OMA digest
but uses smaller 48-bit keys and processes message bytes in reversed order. The
EN 14908 algorithm is applied to each of the halves ky and k; of the OMAK
and the two constants zy = {81, 3F,52,9A,7B,E3,89,BA} and z; = {72,B0,
91,8D,44,05,AA,57}. The two 64-bit results are then concatenated to form &',
see Fig. 1. Note that the BEK only depends on the OMAK and is thus fixed as
long as k remains unchanged.

Secondly, an authentication tag ¢ is produced using the OMA digest on the
message m concatenated with a sequence number n and the OMAK k. Let [
denote the size of m || n in bytes. The OMA digest starts with its 8-byte internal
state a = (ag,...,ar) set to zero. First, m || n is zero-padded to a multiple of
144 bytes, meaning

m/ —m || n || 0—l mod 144.
Let m' = my || --- || mi,us denote the first, and possibly only, 144-byte block
of the message. The internal state is updated continuously using a nonlinear
function fy . where b = k; mod 12,7—; is a key bit and ¢ = j is the current position
in the state. Its specification is as follows:

(z,y,2) = i
fo.e(x,y,2) y+z—(=(x+c))>1 otherwise.

{y+z+(—|(x+c)) «1 ifb=1

In order to update state element a;, the function f takes, for 0 <¢ <17 and 7 >
J > 0, two adjacent state elements a; and a;41 moa 8 and a message-byte mé¢+7—j
as input, i.e., aj = fr; o 12.7—,.5 (@55 @511 mod 8, Msi+7—;), and depending on the
value of the key bit k; mod 12,7—; one of the two branches depicted above is
evaluated. The next 144-byte message block is processed similarly, with the initial
internal state carried over from the previous block. The complete pseudocode
of the OMA digest is shown in Algorithm 1 and a visualisation of its innermost
loop, where the message bytes are processed, is given in Fig. 2. For the reference
implementation we refer to [15, Annex EJ.

After the tag generation, t is XORed into the lower half of the BEK &’ which
then produces the final 128-bit RC4 encryption key k" =k || (k{ @), see again
Fig. 1. This measure is intended to provide RC4 with ever-changing key material,
thus producing a fresh keystream with every new message, since, according to
the OSGP specification, the sequence number n, which is appended to m, is
continuously increased.

Sequence numbers are shared between sender and receiver in OSGP. The
receiver of a message verifies that the correct sequence number was appended

2 The OSGP specification is rather unclear on how the BEK is derived. The pre-
sented description is based on our investigations also involving other standards [20,
p.232]. The key observation here is that the BEK derived from the OMAK. The
concrete realisation is not too important, though, and is only described for the sake
of completeness.
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Fig. 2. Data processing (right-to-left) in the OMA digest, with 4 = 4 mod 12.

Function OMADigest (m,k)
a +— (0,0,0,0,0,0,0,0)
m—m || 07|m| mod 144
foreach 144-byte block b of m do
for i — 0 to 17 do
for j — 7 to 0 do
if kz mod 12,7—j = 1 then
aj < Q(j4+1) mod 8 + bsit(r—j) + (=(a; +7)) K 1
else a; < a(j11) mod s + bsi+(7—j) — (—(a; +7)) > 1
end

end
end
return a

Algorithm 1. The OSGP OMA digest.

to the latter. Messages with sequence numbers in the range {n,...,n + 8} are
accepted as valid requests. If a message with sequence number n — 1 is received,
then the recipient does not execute the request but instead re-sends the answer
of the (previously executed) request of number n — 1. Sequence numbers outside
of this range trigger an error and the OSGP device replies with a failure code and
the correct sequence number. More details on the handling of sequence numbers
can be found in [15, Sect. 9.7].

After the setup phase is finished, &” is used to encrypt m || n via RC4 to
obtain the ciphertext c. Finally, ¢ || ¢ is transmitted. Messages m || n processed
in OSGP are allowed to have a maximum size of 114 bytes [15, Sect.9.2]. This
complicates some attacks that require up to 136-byte messages. Nevertheless, we
will also describe scenarios that respect this message size limit.

3 Analysis

OSGP uses RC4 for encryption without discarding any initial bytes. RC4 has
known statistical key- and plaintext-recovery attacks, and these have been shown
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to be practically feasible [3,16-18,27,29,31]. However, in this work we do not
focus on RC4, but instead on the OMA digest, see Algorithm 1.

The OMA digest algorithm presents multiple flaws. Firstly, it uses a simple
zero byte message padding, which results in messages with any number of trailing
zeroes sharing the same tag. Secondly, given a tuple (a, m, k) where a is the OMA
digest’s state or authentication tag, m a message and k the OMAK, the function
is fully reversible (see Algorithm 2) which is a very useful property for the attacks
presented in Sects. 3.1 and 3.2. Likewise, it is also possible to take an arbitrary
internal state, and continue to process it as if to resume a partially digested
message. This is depicted in Algorithm 3.

Function OMABackward(a,m,k,n)

// Assumes |m| < 144.
m—m || 0—\m| mod 144
for[—0ton—1do

4,5 < [1/8],1 mod 8

if k(17-i) mod 12,75 = 1 then @ « (a; — a(j+1) mod 8 — M143—si—;) > 1

else = «— (a(j+1> mod 8 T M143-8i—j — aj) K1

aj T —j
end
return a

Algorithm 2. The “backward” OSGP OMA digest, reverting the internal
state back by n message bytes.

Function OMAForward(a,m,k,n)

/* Essentially Algorithm 1, but start at byte m, with a known
state a, and assume |m| < 144. */

m—m || 0—\m| mod 144

for [ — n to 143 do
4,5 «— [1/8],7—1 mod 8
if ki mod 12,7—; = 1 then a; < a(j+1) mod s +msi+7—; + (=(a; +J)) K 1
else a; < a(j41) mod 8 +Msit7—; — (7(a; +7)) > 1

end

return a

Algorithm 3. The “forward” OSGP OMA digest, starting with a known initial
state and processing message bytes starting at position n.

3.1 Chosen-Plaintext Key Recovery Attacks

Let a = (ag,...,ar) denote the 8-byte internal state of the OMA digest. The
attacks discussed below use chosen 144-byte messages m = myq || -+ || m1a3>,
and exploit differential weaknesses in the OMA digest.

3 For simplicity, we use 144-byte messages throughout this section. Note, however,
that the presented attacks use messages which are never longer than 136 bytes.
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Bitwise Key Recovery. The first attack recovers the key one bit at a
time by differential cryptanalysis. Specifically, we exploit the XOR-differential
(Am;, Aa;) = (80, 80), where Am; and Aa; denote input and output differences,
respectively, for j = 7—14 mod 8. The output difference is obtained immediately
after processing message byte m; (see Algorithm 1) and can be written as

fr5(aj, @541 mod 8, mM;i ® 80)
= @j11 mod 8 + (m; ©80) £ (FF® (a; +j) K1)
= (aj4+1 mod 8 + m; £ (FF & (a; +j) <« 1)) © 80

= fr,;(aj, @541 mod 8, M;) B 80

where the rotation offset » € {1,7} and the + operation depend on the value
of the key bit k£ € {0,1}. This differential has probability 1, by well-known
differential properties of addition modulo 2" [23], and propagates cleanly through
the state a for the next 8 iterations, resulting in the following difference over the
state:

Aa = (80,80,80, 80,80, 80, 80, 80).

The next iteration reveals one key bit. By XOR-linearising the state update
function f, the new output difference Aa; is of the form

Aay = ((a41 mod 8 ® 80) ® m; @ (FF & ((a; ® 80) @ j) <« 7)) ®
(@j+1 mod s ®m; & (FF @ (a; © j) < 1))

where r € {1,7}. As a consequence, we have Aa’; = 81, if bit 7 — i mod 8 of
k|i/8) mod 12 is 1, and Aa; = C0, if the same key bit is 0. While integer addition
and XOR behave differently with respect to the propagation of XOR-differences,
the least significant bit of integer addition and XOR behave identically in this
case and can be used to recover the key bit with probability 1.

The above leak, combined with Algorithm 2, can be turned into a chosen-
plaintext key-recovery attack retrieving the OMAK k bitwise in at most 96 + 1
queries. Algorithm 4 describes this attack in full detail. Looking at Fig. 1, we see
immediately that the reconstruction of k breaks the complete OSGP AE scheme.
In the following, we will explore how the attack can be further improved.

Bytewise Key Recovery. Analysing the above attack more thoroughly, we
noticed that we can recover one key byte at a time by injecting the input differ-
ence 80 into the message a couple of steps earlier. This reduces the number of
queries and the work load of the attack drastically. In other words, we will show
how to reconstruct the entire OMAK with only 12 + 1 chosen-plaintext queries.

Let k; mod 12,; denote the jth bit of key byte ¢« mod 12, for ¢ = 17,16, ...,6
and j = 0,...,7. When injecting the message difference Amsg;_g = 80 and
thereupon processing 16 message bytes, we obtain an XOR-difference of the
internal state of the form Aa = (Aay,...,Aar) = (Axyg,...,Az7) where Az
are arbitrary values for [ = 0,...,7. The evolution of the difference propagation
in the internal state can be visualised as follows:
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Function RecoverKey (O)
// O is an oracle returning a message’s OMADigest under key k.
k — {0}12
m < {0..255)144
a — O(m)
for i — 0 to 11 do
for j — 0 to 7 do
m —m
Mi36_gi—1—j < Mize_sgi—1—j B 80
a — O(m")

b «— OMABackward(a,m, k, 8t) // Algorithm 2
b’ «— OMABackward(a’,m’, k,8i) // Algorithm 2
k(17— mod 12,75 — (bj0 © b 0)
end
end
return k

Algorithm 4. Bit-by-bit chosen-plaintext key-recovery attack.

i:17,...,6 Aao Aal Aag Aa3 Aa4 Aa5 Aas Aa7

mei—9 00 00 00 00 00 00 00 00

mgi—8 00 00 00 OO0 00 OO0 00 80

msgi—1 80 80 80 80 80 80 80 80
ms; 80 80 80 80 80 80 80 Axr

msi+1 80 80 80 80 80 80 Axg Ax7

msi+7 Amo AQS1 AJSQ Axg Al‘4 Al‘5 AJSG AJ?7

By analysing again the XOR-linearisation of the state update function f, one
realises that a key byte can be recovered in its entirety by exploiting, as in the
case of the bitwise key recovery attack, the information on the key bits stored in
the least significant bit of the output differences Axy, ..., Axy. More precisely,
key byte k; mod 12 can be reconstructed as follows:

1. ki mod 12,0 = 1sb(Az7) @ 1sb(80) 5. ki mod 12,4 = 1sb(Ax3) @ 1sb(Axy)
2. ki mod 12,1 = lsb(Amg) (&) 1Sb(A$7) 6. ki mod 12,5 = lsb(ACL‘Q) (&) lsb(AI:),)
3. ki mod 12,2 = 1sb(Azs) @ 1sb(Aws) 7. ki mod 12,6 = 1sb(Ax1) ® 1sb(Axz)
4. ki mod 12,3 = 1sb(Axy4) @ 1sb(Axs) 8. ki mod 12,7 = 1sb(Axzo) @ 1sb(Azy)

In order to verify that the above key recovery indeed works, consider the
following steps. As we have already seen in the bitwise key recovery attack, the
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value of k; mod 12,0 can be read off right away from Ax7, see step 1 above. The
remaining key bits k; mod 12,j41, for j = 0,...,6, can be recovered from the
XOR-linearisation of f which gives us the relation

Arg_j = Axq_j & (Azg_; K 1) = Azy_; © (80 K 1)

where Az7_; and Azg_; denote output differences and Azf_ ; corresponds to
the difference before ag_; is updated in the jth step. The latter simply has the
value 80 as can be seen in the table on the difference propagation. The above
equation can be re-written as

1sb(80 <« 1) = 1sb(Azg_;) & 1sb(Ax7_;)

and since the rotation offset r € {1,7} depends on k; mod 12,j+1, the formula
above gives us the value of the latter key bit.

Function RecoverKey (O)
// O is an oracle returning a message’s OMADigest under key k.

k — {0}12

m < {0..255}144

a+— O(m)

for i — 0 to 11 do
m «—m
Mi36_gi—s — Mi36_gi—s O 80
a’ — O(m")

b < OMABackward(a,m, k, 8i) // Algorithm 2
b’ < OMABackward(a',m’, k,8i) // Algorithm 2
k(17—4) mod 12 < RecoverByte(b, )

end

return k

Function RecoverByte(a,a’)

x«— 0

Xo < ar,0 D a'7,o

for 1 — 0 to 6 do Tit1 < A6—i,0 D ag_w D ar—io0 D ll{7_i70
return

Algorithm 5. Byte-by-byte chosen-plaintext key-recovery attack.

3.2 Known-Plaintext Key Recovery Attack

The second attack is not differential in nature and requires a weaker attacker.
We only assume in the following that the attacker is able to capture plaintexts
with a common prefiz of various lengths. This may be feasible by, e.g., capturing
repeated messages with different sequence numbers.

This attack relies uniquely on the OMA digest’s invertibility, as seen in Algo-
rithm 2. The basic idea here is to have two messages, m and m’ that are equal
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except in the last r bytes; partially reversing the final state of m by r iterations,
then using that state to process the final bytes of m’ should only happen when
the (guessed) key bits used in those iterations are correct. This does not always
happen, but it reduces the keyspace to virtually one or two guesses per key byte.
The concrete realisation of the attack is also described in Algorithm 6.

However, due to the slow diffusion of differences already described in Sect. 3.1,
to recover 7 bits of the key one needs more than r iterations back; this is not
a problem, though, as long as the key bits corresponding to the common prefix
bytes of the message are the same for the forwards and backwards processing of
the message. In practice, we have found that r 4+ 8 iterations suffice to recover
the key with overwhelming probability.

Function RecoverKey (O)
// O is an oracle returning a message’s OMADigest under key k.
k — {0}12
m < {0..255}144
a+— O(m)
for i — 0 to 11 do
m' —m
m/128—8i<.|m’\—1 & {0"255}‘”1'71287&
a — O(m")
for z — 0 to 255 do
k(17—i) mod 12 < T
b <« OMABackward(a, m, k, 8¢ + 16) // Algorithm 2
b« OMAForward(b,m’, k, 128 — 8i) // Algorithm 3
if ' = b’ then
‘ break // May be a false positive; handling omitted.
end

end
end
return k

Algorithm 6. Byte-by-byte known-plaintext key-recovery attack.

3.3 Optimizing the Attacks

The attacks of Sects.3.1 and 3.2 have an obvious generalization that trades
queries for computation time. This is also a consequence of the OMA digest’s
reversibility.

Let B > 1 be the number of key bytes to recover per query; the attack from
Sect. 3.2 generalizes trivially to any B, by guessing B adjacent key bytes per
query, at an average cost of [42] 4+ 1 queries and [42] 285~ operations®.

The method from Sect. 3.1 also generalizes well to any B, by guessing the
last B —1 bytes and recovering the first one by injecting a difference. Its average
cost is (%] + 1 queries and P—Bz—| 28(B=1)=1 gperations. We note that for B > 2

4 An “operation” here is taken to mean at most the cost of an OMA digest evaluation
over a message.
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the messages used in either case need not be longer than 113 bytes, bypassing
OSGP’s restriction on message sizes.

3.4 Forgeries and a Third Key-Recovery Attack

Forgeries in the OMA digest are possible by exploiting the differential proper-
ties described in Sect.3.1. To this end, we first explore XOR differentials and
afterwards describe attacks using additive differentials.

Forgeries Using XOR-Differentials. For this attack, we consider input

XOR-differences of the shape (Amg;t;, Ams;tjy1, Amgiyjrs) = (80, 80,
Az) for ¢ = 0,...,17 and j = 0,...,7. After processing message bytes
Mgitj, MBitj+1,- - -, Mgi+j+7, the XOR-differences in the internal state are, up to

a rotation, of the form Aa = (80, 00, 00, 00, 00, 00, 00, 00). More precisely,
after injecting Amsg,;1; = 80, the difference Amg;yj+1 = 80 is used to prevent
the difference of Amsg;;; from spreading to the rest of the state. Creating this
stationary difference can be achieved with probability 1. Finally, the difference
Amg;q s = Az is used to cancel the stationary difference from above thereby
creating a forgery. The success of the forgery hinges on whether the formula

(mgitj+8 ® Azx) £ (FF® ((a; ®80) +j) K r) = mgiyjr8 £ (FFD (a; +j) K1)

is satisfied. Note that the above formula again includes both possible cases which
depend on the value of the key bit & € {0,1}. Using the formulas of Lipmaa
and Moriai [23], we can determine the optimal value for Az with respect to its
probability p and the value of the key bit ki1 mod 12,5:

Kit1 mod 12,5 0 1
Az CO 40 01 03 07 OF 1F 3F T7F FF
—logop 1 1 1 2 3 4 5 6 7 7

Thus, choosing Az € {CO0, 40, 01} has a probability of about 1/4 of creating
a valid forgery, assuming a uniformly random key bit.

Forgeries Using Additive Differentials. Injecting additive differences is also
useful to get a wider range of possible high-probability differences, since every
operation in the OMA digest, with the exception of the cyclic rotation, has
additive differential probability 1°.

Using a similar approach as above, one can inject the additive differ-
ence (ABz, —ABz, —ABy) at (my;, miy1,miys). The success of the forgery here
depends on the quality of the approximations

ABy=((—aj—j—1) 1) = ((—a; - APz —j—1) « 1)
Ay =—((—a; —j—1)>> 1)+ ((—a; - APz —j - 1) > 1)

5 Note that ~z = z ®FF = —z — 1.
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for a; chosen uniformly at random. Since cyclic rotation is not a deterministic
operation with respect to additive differences, one cannot obtain APy that works
with probability 1. By replacing ((—a; — ASz—j—1) < 1) by ((—a;—j—1) <
1) + (~AB2 <« 1), and taking advantage of Daum’s results on the inter-
action of integer addition and rotation [11], we have AFy = —((-APz «
1) — 2a + ), where (a,3) has, as a function of ABzr = [(~APz)/2] and
ABz; = (—=AB2z) mod 27, one of the following values of probability p:

p
278(2" — ABzR)(2 4 AFzp)
278ABzR(2 — APz — 1)
278(27 — AEZL‘R)AELL‘L
278AE|.TR(AEI$L + 1)

2
=

—_~ o~~~ |~
— = O O
—_ O = O
_ T — =

Similar remarks apply to the rotation by 7 case. By choosing APz carefully,
one can maximize the probability of APy as well, as also previously exploited
by Daum [11]. For instance, choosing the difference APz = 02, one obtains
ABy € {01, FC, 81, FB, FD}, with respective probabilities {127/256,126/256,
1/256,1/256,1/256}. Therefore, one can expect 2 queries to be sufficient in over
~98 % of the time with this method.

Using Forgeries for Key Recovery. Such a high-probability forgery attack,
dependent on the value of key bits, gives us yet another attack vector for key
recovery. This attack is much simpler than the previous ones, and unlike those
it does not need to work “right to left” on the message bytes: given a known
plaintext, inject (02, —02, —APy) and query a verification oracle. If the forged
message is validated, recover the key bit corresponding to m;ts by looking up
which APy corresponds to which key bit. This process can be repeated 96 times
to recover the entire key.

Additionally, this attack can work even over ciphertext, by using the XOR-
differences (80, 80, Az) with Az €{40,0,01}. The approach here is the same,
albeit requiring a few more queries, but it can be applied over unknown ciphertext
encrypted with RC4, as is the case with OSGP. The attack thus completely breaks
not only the OMA digest, but also the entire cryptographic security of OSGP.

The average number of queries can be reduced by using the following trick:
instead of picking a difference at random from the possible set of differences,
pick CO and 40 in order. If none of them results in a forgery, the key bit can
only be 1; this results in key recovery in an average of 168 queries. Algorithm 7
illustrates the XOR key-recovery attack on OSGP using this trick, only taking
as input a valid ciphertext-tag pair and an oracle that verifies ciphertezts.

3.5 Extension of the OSGP Analysis to Other Standards

The EN 14908 algorithm, used in OSGP for key derivation and quite similar to
the OMA digest, is also used in other LonTalk-derived standards for authenti-
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Function RecoverKey (O, c,a)
// O is an oracle that returns 1 if (c,a) is a valid 0SGP
ciphertext-tag pair, O otherwise.
// ¢,a is a valid 0SGP ciphertext-tag pair, i.e., O(c,a) =1.
k — {0}12
for i — 0 to 95 do
d —c
¢« c; ©80
Cit1 < Cit1 D8O
Ciys = Cits © CO
if O(c’,a) =1 then
kL(i+8)/8J mod 12,(i+8) mod 8 < 0
continue
end
C;+g «— Ci+8 D 40
K| (i4+8)/8] mod 12,(i+8) mod 8 < 1 — O(c’, a)
end
return k

Algorithm 7. Bit-by-bit chosen-ciphertext key-recovery attack, in the context
of the OSGP protocol.

cation [6,13,19-21,28]. We found evidence that the foundations of the technol-
ogy (presumably also including the EN 14908 algorithm) were laid in 1988 [24,
p. 3]. LonTalk was estimated to be implemented in over 90 million devices as of
2010 [14]. Given that the EN 14908 algorithm has a 48-bit key, it is already
broken by design. That said, the attacks described in the previous sections can
be adapted to key recovery attacks on the EN 14908 algorithm—Iikely present
in every other LonTalk-derived standard—in much less than 248 work.

4 Conclusion

We have presented a thorough analysis of the OMA digest specified in OSGP.
This function has been found to be extremely weak, and cannot be assumed to
provide any authenticity guarantee whatsoever. We described multiple attacks
having different levels of applicability in the context of OSGP. The forgery
attacks presented in Sect.3.4 belong to the most powerful and practical, and
allow to retrieve the 96-bit secret key in a mere 144 and 168 chosen-plaintext
queries to a tag-verification oracle exploiting the very slow propagation of addi-
tive and XOR-differences in the OMA digest. We also described how the latter
variant can work as a ciphertext-only attack, making it even more devastat-
ing. For easier verifiability, we implemented the attacks of Sect. 3 in the Python
language; the code is listed in Appendix A.

In summary, the work at hand is another entry in the long list of examples
of flawed authenticated encryption schemes, and shows once more how easily a
determined attacker can break the security of protocols based on weak cryptog-
raphy.
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A Proof of Concept

import os

def ROT8(x, c):
return ((x%256 << c%8) | (x%256 >> -c%8)) % 256

def OMADigest(m,k):
a = [0] * 8
m =m[:] + [0] * (-len(m) % 144)
for 1 in range(0, len(m), 144):
b = m[1:1+144]
for i in range(18):
for j in range(7, -1, -1):
if (k[i%12] >> (7 - §)) & 1:
aljl = (al(j+1)%8] + b[8*i+7-j]1 + ROT8(~(aljl + j), 1)) % 256
else:
aljl = (al(j+1)%8] + b[8*i+7-j1 - ROT8(~(aljl + j), -1)) % 256
return a

def EN14908(r, m, k):
mlen, a = len(m) - 1, r[:]
while True:
for i in range(6):
for j in range(7, -1, -1):
b =0 if mlen < 0 else m[mlen]
mlen -= 1
if k[i] & (1 << (7 - §)):
aljl = al(j+1)%8] + b + ROT8(~(alj]l + j), 1)
else:
aljl = al(j+1)%8] + b - ROT8(~(aljl + j), -1)
if mlen < O:
break
return a

def RC4Encrypt(X,key):
def RC4(key, Db):
B,S,i,j,1=[],range(256),0,0,len(key)
while i < 256:
j = (j + S[il + key[i%1]) & Oxff
S[il, s[jl = s[jl, slil

i+=1
i, 3j=1,0
while b:

t = S[i]

j (j + S[il) & Ooxff
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S[il, s[jl = s[jl, sS[il
B += [S[(S[i]+S[j]) & Oxff]]

b-=1
i=(i+ 1) & Oxff
return B

S = RC4(key,len(X))

for i in xrange(len(X)):
X[i]l ~= s[il

return X

def 0SGPKeyDerive(k):
k1 = EN14908([0x81, 0x3f, 0x52, 0x9a, 0x7b, Oxe3, 0x89, Oxbal, [], k)
k2 = EN14908([0x72, Oxb0, 0x91, 0x8d, 0x44, 0x05, Oxaa, 0x57], [1, k)
return k1 + k2

def OSGPEncrypt(m, k):
k_ = 0SGPKeyDerive (k)
a = OMADigest(m, k)
for i in range(8):
k_[i] "= alil
return RC4Encrypt(m, k_) + a

def 0SGPDecrypt(c, k):
assert(len(c) >= 8)
k_ = k_ = 0SGPKeyDerive (k)

a = c[-8:]
for i in range(8):
k_[i] ~= alil
m = RC4Encrypt(c[:-8], k_)
return OMADigest(m, k) == a, m

# Test wector

m = [0x02,0x02,0x00,0x30,0x00,
0x03,0x7f,0x30,0xea,0x6d,
0x00,0x00,0x00,0x0d,0x00,
0x20,0x98,0x00,0x31,0xc3,
0x00,0x08,0x00,0x00,0x00,
0x00,0x00,0x11]

k [0xDF] * 12

a = [0Oxdb, Oxe5, Oxcd, Oxe5, 0x07, Oxbl, Oxcb, 0x3d]

assert (OMADigest(m, k) == a)

def OMABackward(a,m,k,n):
a, m=al:], m[:] + [0] * (-len(m) % 144)
for 1 in range(n):
i, j=1//8,17%38
if (k[(17-1)%12] >> (7 - §)) & 1:
x = ROT8(aljl - al(j+1)%8] - m[143-8*xi-j], -1)
else:
x = ROT8(al(j+1)%8] + m[143-8*i-j] - aljl, 1)
aljl = (~x - j) % 256
return a

def OMAForward(a,m,k,n):
a, m=al:], m[:] + [0] * (-len(m) % 144)
for 1 in range(n, 144):
i, j=1//8,7-1%8
if (&k[i%12] >> (7 - j)) & 1:
aljl = (al(G+1)%8] + m[8%i+7-j] + ROT8(~(aljl + j), 1)) % 256
else:
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aljl = (al(j+1)%8] + m[8*i+7-j] - ROT8(~(aljl + j), -1)) % 256
return a

m = map(ord, os.urandom(144))

k = map(ord, os.urandom(12))

a = OMADigest(m, k)

assert( OMAForward([0]*8, m, k, 0) == OMADigest(m,k) )
assert( OMAForward(OMABackward(a,m,k,8),m,k,144-8) == a )

def TagGenOracle(m,init=[True]):
if init[0]:
print ’[ORACLE] k = ’ + str(k)
init[0] = False
return OMADigest (m,k)

def TagCheckOracle(m,a):
return TagGenOracle(m) == a

def O0SGPEncryptOracle(m, init=[Truel):
return 0SGPEncrypt(m, k)

def 0SGPCheckOracle(c):
ok, _ = 0SGPDecrypt(c, k);
return ok

def Algorithm_4(Q):
m = map(ord, os.urandom(144))
a = TagGenOracle(m)
k = [0] * 12
for i in range(12):
for j in range(8):

m_ = m[:]
m_[136-8*i-j-1] ~= 0x80
a_ = TagGenOracle(m_)

b = OMABackward(a,m,k,8%i)

b_ = OMABackward(a_,m_,k,8%i)

k[(17-1)%12] |= ((b[3] = b_[jDD&1) << (7 - j)
return k

print ’Algorithm 4: ’ + str(Algorithm_4())

def Algorithm_5Q):
def RecoverByte(a, b):
x = (al[7] = p[7]) & 1
for i in xrange(0,7):
x |= ((al6-1] = bl6-i] ~ al[7-i] ~ b[7-i]1) & 1) << (i+1)
return x
k = [0] * 12
m = map(ord, os.urandom(144))
a = TagGenOracle (m)
for i in range(12):
m_ = m[:]
m_[136-8%i-8] ~= 0x80
a_ = TagGenOracle(m_)
b = OMABackward(a,m,k,8%i)
b_ = OMABackward(a_,m_,k,8%i)
k[(17-1)%12] = RecoverByte(b, b_)
return k

print ’Algorithm 5: ’ + str(Algorithm_5())
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def Algorithm_6(Q):
def recurse(m,a,k,i=0):
if i >= 12:
a_ = OMADigest(m,k)
return a_ ==
m_ = m[:]
m_[128-8%i:] = map(ord, os.urandom(144-(128-8%1i)))
a_ = TagGenOracle(m_)
for x in range(256):
k[(17-1)%12] = x
b = OMABackward(a, m, k, 8*i + 16)
b_ = OMAForward(b, m_, k, 128 - 8%i)
if a_ == b_ and recurse(m,a,k,i+1):
return True
return False
k = [0] = 12
m = map(ord, os.urandom(144))
a = TagGenOracle(m)
recurse(m,a,k)
return k

print ’Algorithm 6: ’ + str(Algorithm_6())

def Algorithm_7():

k = [0] * 12
¢ = 0SGPEncryptOracle(map(ord, os.urandom(96+8)))
for i in range(96):

c_ = cl[:]

c_[i+0] ~= 0x80

c_[i+1] ~= 0x80

c_[i+8] "= 0xCO

if 0SGPCheckOracle(c_):

continue

c_[i+8] = c[i+8] ~ 0x40

k[((i+8)//8)%12] |= (0 if 0SGPCheckOracle(c_) else 1) << ((i+8)%8)
return k

print ’Algorithm 7: > + str(Algorithm_7())

# Key-recovery attack from Section 3.4, using additive differences
def Algorithm_8():
k = [0] * 12
m = map(ord, os.urandom(96+8))
a = TagGenOracle(m)
for i in range(96):
m_ = m[:]
m_[i+0] = (m[i+0] + 0x02) % 256
m_[i+1] = (m[i+1] - 0x02) % 256
m_[i+8] = (m[i+8] - 0x01) % 256
if TagCheckOracle(m_, a): continue
m_[i+8] = (m[i+8] - Oxfc) % 256
if TagCheckOracle(m_, a):
k[((i+8)//8)%12] |= 1 << ((i+8)%8)
continue
m_[i+8] = (m[i+8] - 0x81) % 256
k[((i+8)//8)%12] |= (0 if TagCheckOracle(m_, a) else 1) << ((i+8)%8)
return k

print ’Algorithm 8: ’ + str(Algorithm_8())
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