
MPI Thread-Level Checking
for MPI+OpenMP Applications

Emmanuelle Saillard1(B), Patrick Carribault1, and Denis Barthou2

1 CEA, DAM, DIF, F-91297 Arpajon, France
emmanuelle.saillard.ocre@cea.fr

2 Bordeaux Institute of Technology, LaBRI / INRIA, Bordeaux, France

Abstract. MPI is the most widely used parallel programming model.
But the reducing amount of memory per compute core tends to push
MPI to be mixed with shared-memory approaches like OpenMP. In such
cases, the interoperability of those two models is challenging. The MPI
2.0 standard defines the so-called thread level to indicate how MPI will
interact with threads. But even if hybrid programs are more common,
there is still a lack in debugging tools and more precisely in thread level
compliance. To fill this gap, we propose a static analysis to verify the
thread-level required by an application. This work extends PARCOACH,
a GCC plugin focused on the detection of MPI collective errors in MPI
and MPI+OpenMP programs. We validated our analysis on computa-
tional benchmarks and applications and measured a low overhead.

Keywords: Static verification · OpenMP · MPI · MPI thread level

1 Introduction

To address the challenges of exascale systems, MPI evolves to be mixed with
shared-memory approaches like OpenMP. E. Lusk and A. Chan report for
instance some successful use cases of OpenMP threads exploiting multiple cores
per node with MPI communicating among the nodes [11]. But combining models
does not facilitate the debugging task and requires special care for MPI calls [4].
Indeed, in an MPI+OpenMP program, not only the correctness of MPI should
be ensured but also the multi-threaded model should not interfere with MPI.
As an example, within a process, the same communicator may not be concur-
rently used by two different MPI collective calls. This means MPI collective
operations may not be called by multiple parallel threads. The MPI-2 stan-
dard defines four thread-safety levels to indicate how MPI should interact with
threads. According to the MPI standard, it is the user responsibility to prevent
races when threads within the same application post conflicting communication
calls ([17], p. 482). This should be checked above all for the fully multithreaded
case (MPI THREAD MULTIPLE). This paper presents a static analysis to verify MPI
Thread-level compliance required by an MPI+OpenMP application.

Figure 1 illustrates some of the possible issues related to MPI communica-
tions in a multithreaded context through three examples. MPI Allreduce in
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 31–42, 2015.
DOI: 10.1007/978-3-662-48096-0 3

32 E. Saillard et al.

Fig. 1. MPI+OpenMP examples showing different uses of MPI calls.

Listing 1.1 is called in a single block, MPI THREAD SERIALIZED then corre-
sponds to the minimum level of compliance. However if the function f is called
itself in a parallel construct, the collective is then executed in a nested parallel
region, possibly leading to more than one concurrent call to this collective. This
erroneous situation always occurs unless only one thread is created in the first
parallel region or in both regions. Listing 1.2 illustrates a more complex case: two
MPI Reduces are executed in single constructs in the same OpenMP parallel
region. As the first construct contains a nowait clause, both MPI Reduce can be
executed concurrently by different threads. This requires a thread-level equal to
MPI THREAD MULTIPLE, assuming the communicators used by the two collectives
are different. If they are identical, the code is incorrect. In Listing 1.3, func-
tion f is compliant with the MPI THREAD FUNNELED level. However, if the master
directive is replaced by a single directive, the MPI THREAD SERIALIZED level is
the minimum thread-level required. Thus, these examples illustrate the difficulty
for a developer to ensure that MPI calls are correctly placed inside an hybrid
MPI+OpenMP application whatever the required thread-level support.

This paper proposes a static analysis that helps the application developer to
check which thread-level support is required for a specific code. For this pur-
pose, we suppose the programs are SPMD (Single Program Multiple Data) MPI
programs. It means that every MPI rank calls the same functions in the same
order. This covers a large amount of scientific simulation applications for High-
Performance Computing. We integrated our analysis in the GCC plugin PAR-
COACH [13,14] and we designed it to be compatible with other dynamic tools.
Our paper makes the following contributions:

– Analysis to check the conformance of MPI+OpenMP codes with any MPI
thread level (including MPI THREAD MULTIPLE level) defined in the MPI-2 stan-
dard and code transformation to verify the non-compliance at runtime.

– Full implementation inside a production compiler (GCC).
– Experimental results on multiple benchmarks and production applications.
– Functional integration with existing dynamic debugging tools (our approach

is designed to be complementary to existing dynamic PMPI-based debugging
tools like MUST [6]).

MPI Thread-Level Checking for MPI+OpenMP Applications 33

This paper is organized as follows: Sect. 2 summarizes the related work
on debugging of MPI and hybrid MPI+OpenMP applications, focusing on
MPI thread-level compliance. Section 3 describes the basis of our approach.
Then Sect. 4 exposes our static analysis detecting the thread-level compliance.
Section 5 illustrates our approach on experimental results and finally Sect. 6 con-
cludes.

2 Related Work

As most HPC applications are parallelized with MPI, a lot of work has been
done to help programmers to debug MPI applications (TASS [15], DAMPI [21],
MPI-CHECK [10], Intel Message Checker [2], Marmot [9], Umpire [20], MUST
[6], MPICH [3]). Existing tools, static or dynamic, are able to detect the line in
the source code where an error occured but rarely the line responsible for this
situation. Although the compile-time offers the possibility to detect and correct
possible errors earlier than at runtime, few tools rely on purely static analysis
because of the combinatory aspect of methods used. We have developed in pre-
vious work a GCC plugin named PARCOACH [13,14], to statically detect MPI
collective errors in MPI and MPI+OpenMP programs. It combines compile-time
code analysis with an instrumentation to prevent the application from deadlock-
ing. This approach avoids systematic instrumentation, highlights conditionals
that can lead to a deadlock and issues warnings with precise information.

One of the MPI challenges is its interoperability with other programming
models. Even if it is now possible to profile and visualize profiles and traces
for MPI+OpenMP programs, debugging tools especially those detecting thread
levels compliance are practically non-existent. To our knowledge, Marmot [5] is
the only tool that provides a support for detecting violations in MPI+OpenMP
programs. Marmot uses the MPI profiling interface (PMPI) to introduce arti-
ficial data races only occuring when some constraints are violated and detect
them with the Intel Thread Checker tool. The authors define five restrictions for
hybrid MPI applications based on the definition of the thread levels mentioned
in the MPI standard. The fifth restriction is the non-violation to the provided
thread level. However, as Marmot only relies on profiling, it may find for one
run that the program is non compliant to a given thread level, and for another
run find its compliance (so defining a compliance per run). The same happens
for bugs, where detection may require many runs in a profile-only approach. On
the contrary, PARCOACH finds statically the possible non-compliance of the
code, pinpointing non-compliant code fragments and situations. The runtime
instrumentation only checks whether these situations occur.

3 Analysis of the Multithreaded Context

Our static analysis verifies the thread-level compliance of hybrid applications.
The analysis proposed does not depend on one particular run and finds all pos-
sible situations of non-compliance to a given thread level. As it is conservative,

34 E. Saillard et al.

it can be complemented by an instrumentation phase that checks the occurence
of these situations. An essential part of the static analysis consist in determining
the multithreaded context in which MPI calls (Point-to-point and collectives) are
performed. The method described in this section computes a parallelism word
to characterize this context in each point of the function analyzed.

3.1 Parallelism Words Construction

The analysis operates on the code represented as an intermediate-code form.
We consider the program is represented as a control-flow graph (CFG), built
in almost all compilers. The compile-time verification then consists in a static
analysis of the CFG for each function of a program. The CFG is defined as a
directed graph with artificial entry and exit nodes. Each node corresponds to a
basic block and has a set of successors and predecessors. The CFG is augmented
to highlight nodes containing MPI calls (collectives and P2P). As for the GCC
compiler, OpenMP directives are put into separate basic blocks. Hence new nodes
are added for explicit and implicit thread barriers. For sake of clarity, implicit
thread barriers at the end of parallel regions are denoted by end parallel.

entry

2 - parallel

3 - single

4 - MPI Reduce

5 - single

6 - MPI Reduce

7 - barrier

8 - end parallel

exit

Initial prefix: ∅

2: P 2

3: P 2S3

4: P 2S3

5: P 2S5

6: P 2S5

7: P 2B

8: ∅

(a) CFG of Listing 1.2

entry

2

3 - parallel

4

5 - master

6 - MPI Recv

MPI Send

7 - end parallel

8

exit

Initial prefix: ∅

2: ∅

3: P 3

4: P 3

5: P 3M5

6: P 3M5

7: P 3B

8: ∅

(b) CFG of Listing 1.3

Fig. 2. Control Flow Graph and parallelism words of Listings 1.2 and 1.3

To highlight the thread context in which an MPI call is performed, we extend
the notion of parallelism words defined in [14], taking into account the needs
of a thread level compliance analysis. The parallelism word of a basic block
is the sequence of OpenMP parallel constructs (pragma parallel, single, . . .)
surrounding this block and the barriers traversed from the beginning of a function
to the block. Parallel regions containing the block are denoted by P i, with i the

MPI Thread-Level Checking for MPI+OpenMP Applications 35

id of the basic block with the OpenMP construct. Similarly, regions executed
by the master thread are denoted by M i and other single threaded regions are
denoted Si. Finally, barrier corresponds to B. OpenMP defines a perfectly-
nested parallelism, thus the control flow has no impact on the parallelism word.
Each node (basic block) n is associated to a parallelism word denoted pw[n].
With a depth-first search starting at the entry node, each node then sets its
parallelism word depending on its predecessor and the OpenMP directives it
contains. P is added when a parallel region is encountered, S is added when a
single, section or task region is traversed, M is added when a master construct
is traversed and B is added when an implicit or explicit thread barrier is met.
Figure 2 shows examples of CFG with their associated parallelism words.

3.2 Parallelism Words Analysis

The automaton Fig. 3 defines the possible parallelism words. Nestings forbidden
by the OpenMP specification (SS, MS,...) are not considered by the automaton.
If the target obtains such forbidden nested regions, our analysis returns the error
message: invalid state, error. The language of accepted parallelism words will
depend on the specified thread level. As we check each function independently,
the level of parallelism in which a function is called is unknown. To provide an
accurate picture of the level of thread parallelism in which function occurrence
is called, the statistics on the NAS Parallel Benchmarks multizone (NASPB-
MZ) using class B [18] have been collected and are shown in Table 1 per thread,
in each process. We notice that functions are mainly called within one level of
multithreading. Thus to consider all possible initial conditions, each callsite is
instrumented in order to capture the initial parallelism word of each function.
This word corresponds to a prefix Pi for all basic blocks of the called function
and defines an initial state in Automaton Fig. 3 (all states are possible initial
states). The user can choose the initial state at compile-time.

Table 1. Level of threads parallelism at function entries for NASPB-MZ

Benchmark # function calls # calls in # calls in # calls in

state 0,2,3 state 1,4 state 5,6

BT-MZ 396,918,403 45,379 396,873,024 0

SP-MZ 15,479,425 116,161 15,363,264 0

LU-MZ 3,017,513 40,745 2,976,768 0

The following section describes the analysis checking the thread-level com-
pliance based on the parallelism words of the basic blocks containing MPI com-
munications.

36 E. Saillard et al.

0 1

2

3

4

5

6

of the application
starting point P

P

P

M,S

P
M

PS

S,M P

S,M,B

B

B

P,B P: Parallel

M: Master

S: Single

B: Barrier

Fig. 3. Automaton of possible parallelism words. Nodes 0, 2 and 3 correspond to code
executed by the master thread or a single thread. Nodes 1 and 4 correspond to code
executed in a parallel region, and 5 and 6 to code executed in nested parallel region.

4 Thread-Level Compliance Checking

This section describes how the non-compliance of thread levels can be detected
at compile-time. For that purpose we use parallelism words introduced in the
previous section to check the placement of MPI calls within a process.

4.1 Static Analysis and Interface to Dynamic Checkings

For each possible thread level we define a language of valid parallelism words
based on the automaton Fig. 3. For a given basic block, its parallelism word con-
sists in the prefix (obtained from the callsite of the function or user-defined) and
the word computed from previous analysis. The analysis verifies if nodes contain-
ing MPI calls (P2P and collectives) are associated with an accepted word. Thread
barriers can be safely ignored as they do not influence the level of thread paral-
lelism. In case of the detection of a possible error, a warning related to the initial
level with the name of the call is returned to the programmer. Algorithm 1 takes
as input the CFG and the language L of correct parallelism words and outputs
the sets S and Sipw. These sets respectively contain the nodes violating the input
language and the nodes that dominate these nodes before the execution/control
flow changes. This set will be given as one of the input parameters of the dynamic
analysis. In the algorithm, line 5, the node u corresponds to the node preceed-
ing n in the CFG and that is the immediate successor of a control flow node
(with two successors) or of a pragma node (changing the parallelism word). The
nodes in the set Sipw correspond to execution points where compliance should
be tested at runtime, in order to handle possible false-positives detected stati-
cally. A unique parallelism word is computed at runtime and updated after each
OpenMP construct. Compared to the compile-time parallelism words, parallel
regions created with only one thread correspond to the parallelism word ε. This
implies that such region has no impact on the current multithreaded context.

MPI Thread-Level Checking for MPI+OpenMP Applications 37

The insertion of such computations and checks can be conducted in tools such
as MUST [6], Marmot [9] or following the techniques proposed in [12].

Algorithm 1. Detection of parallelism words for multithreaded regions
1: function Multithreaded regions(G = (V, E), L) � G: CFG, L: language
2: Sipw ← ∅ , S ← ∅
3: for each n ∈ V |n contains a MPI call do
4: if pw[n] �∈ L then
5: u ← Node that dominates n before execution/control flow changement
6: S ← S ∪ {n}, Sipw ← Sipw ∪ u
7: end if
8: end for
9: Output nodes in S as warnings

10: end function

4.2 MPI THREAD SINGLE

By setting the MPI THREAD SINGLE level, the user ensures only one thread
will execute MPI calls ([17], p. 486). This means all MPI calls should be per-
formed outside multi-threaded regions. Thus all nodes of the CFG containing
a MPI call must be associated with an empty parallelism word. The language
L of accepted parallelism words is then defined by L = {ε}. Algorithm 1 with
L = {ε} returns the non-compliant MPI calls (set S).

4.3 MPI THREAD FUNNELED

The use of MPI THREAD FUNNELED level means the process may be multi-
threaded but the application must ensure that only the thread that initialized
MPI can make MPI calls ([17], p. 486). For this level, State 3 in Automaton Fig. 3
is the accepting state and the language L = (PB∗M)+ describes the accepted
words. With Algorithm 1 and L, our analysis detects MPI calls that are not
executed in a master region.

4.4 MPI THREAD SERIALIZED

The MPI THREAD SERIALIZED level means the process may be multi-
threaded but only one thread at a time can perform MPI calls ([17]). The
accepting states in Automaton Fig. 3 are states 2 and 3. Thus, the language
L = (PB∗S|PB∗M)∗ describes the accepted words. This language contains par-
allelism words ending by S or M without a repeated sequence of P . Critical
sections and locks are not supported here and is part of our future work.

To verify the compliance of this level, Algorithm 1 is used to make sure
all MPI calls are performed in a monothreaded context. Different MPI calls in

38 E. Saillard et al.

the same monothreaded region are sequentially performed as only one thread
executes it. However, calls in different monothreaded regions may be called
simultaneously if monothreaded regions are executed in parallel (no thread syn-
chronization between monothreaded regions). Special care is requested for MPI
collective operations. All MPI processes should execute the same sequence of
MPI collective operations in a deterministic way. That means there is a total
order between MPI collective calls. Algorithm 2 shows the detection of concur-
rent calls. It takes as input the CFG and outputs two sets: S and Scc. When
nodes containing a MPI call with the same number of B are detected these nodes
are put in the set S and the nodes that begin the monothreaded regions are put
in the set Scc for the dynamic analysis. A warning is issued for nodes in S.

Algorithm 2. Detection of potential concurrent calls
1: function Concurrent calls(G = (V, E)) � G: CFG
2: Scc ← ∅, S ← ∅
3: Remove loop back edges
4: if ∃ u, v ∈ nodes in concurrent monothreaded regions then
5: i, j ← nodes immediate successors of nodes creating monothreaded regions
6: S ← S ∪ {u, v}, Scc ← Scc ∪ {i, j}
7: end if
8: Output nodes in S as warnings
9: end function

To dynamically verify the total order of MPI collective sequences in each
MPI process, validation functions are inserted in nodes in the sets Sipw and
Scc generated by Algorithms 1 and 2: CCipw and CCcc. Function CCipw detects
incorrect execution parallelism words and Function CCcc detects concurrent col-
lective calls. In Fig. 2, nodes 4 and 6 have the same number of thread barriers
in their parallelism words (node 4: P 2S3, node 6: P 2S5) so the collective opera-
tions involved are potential concurrent collective calls. Indeed, the nowait clause
remove the implicit barrier at the end of the first single region. The algorithm
outputs a warning for collective calls located nodes 4 and 6 (S = {4, 6}) and
flags nodes 4 and 6 for dynamic checks (Scc = {4, 6}). CCcc functions are then
inserted in nodes 4 and 6.

4.5 MPI THREAD MULTIPLE

This level is the least restrictive level. It enables multiple threads to call MPI with
no restriction ([17], p. 486). However MPI calls should be thread safe, meaning
that when two concurrently running threads make MPI calls, the outcome will
be as if the calls executed sequentially in some order. The verification of this
level follows the same analyses as for the MPI THREAD SERIALIZED level.

MPI Thread-Level Checking for MPI+OpenMP Applications 39

5 Experimental Results

This section is intended to show the impact of our analysis on the compila-
tion time. For that purpose we present experimental results obtained on the
NAS Parallel benchmarks multizone (NAS-MZ v3.2) using class B [18], five
MPI+OpenMP Coral benchmarks [19] (AMG2013, LULESH, HACC, SNAP,
miniFE) and a production test case named HERA [8], which is a large multi-
physics 2D/3D AMR hydrocode platform. To highlight the functionality of our
analysis, we created a microbenchmark suite called BenchError containing five
hybrid programs that violate thread level constraints (coll single, coll funneled,
coll serialized, p2p multiple) and contain MPI collective (coll deadlock) errors.
All compilation experiments were conducted on the Tera-100 supercomputer
(peak performance of 1.2 PFlops) and computed with BullxMPI 1.1.16.5.

5.1 Functionnalities of the Analysis

We extended PARCOACH, a GCC plugin located in the middle end of the com-
pilation chain after the CFG generation and before OpenMP directives trans-
formation. Hence the plugin is language independent allowing the verification
of programs written in C, C++ and Fortran. Our analysis is therefore simple
to deploy in existing environment as it does not modify the whole compilation
chain. The analysis issues warnings at compile-time with potential error infor-
mation (lines of MPI calls, line where the dynamic check is inserted,...). The
following example shows what a user can read on stderr when compiling the
program coll serialized corresponding to Listing 1.2.

in function ’f’:

Warning: PARCOACH: possible non-compliance of MPI_THREAD_SERIALIZED level. Potential concurrent

coll. calls within a process : MPI_Reduce l.11 may be called simultaneously with MPI_Reduce l.6

PARCOACH: Minimum thread-level required: MPI_THREAD_MULTIPLE

PARCOACH inserted a check after the single directive l.4 | the single directive l.9

In this example, MPI Reduce calls were done on different communicators. As
our analysis does not check communicators, both single regions are instrumented
to check if the non-compliance of the thread level is confirmed at runtime. In
comparison, the error message returned by Marmot at runtime is the following:
Marmot finds that the code should be executed within the MPI THREAD FUNNELED
thread level whereas PARCOACH finds the level MPI THREAD MULTIPLE. The rea-
son comes from the fact that Marmot detects conformance w.r.t. one execution,
and in particular to one parallel schedule. During the execution monitored by
Marmot, the single constructs are executed by the master thread leading to a
serialized sequence of these constructs. However, from a conformance point of
view, this is incorrect and the thread level MPI THREAD MULTIPLE as analyzed by
PARCOACH should be chosen.

5.2 Static Analysis Results

Table 2 shows the language and the number of lines of each benchmark we tested.
The 4th and 5th columns depict the thread level provided (level actually returned

40 E. Saillard et al.

to the user, might be lower than the desired level, depending on the MPI imple-
mentation) and the minimum thread level required by the application (thread-
level the user should use). The last column displays the compliance our analysis
returned. Our analysis was able to find the thread-level non-compliance in our
microbenchmark suite. Notice that the MPI THREAD MULTIPLE level was not sup-
ported by the MPI implementation we used. For each benchmark, the overhead
obtained at compile-time (serial compilation) is presented Fig. 4. This overhead
is acceptable as it does not exceed 6 %.

Table 2. Compliance results

Benchmark Language Lines of code Thread level

provided

Thread level

required

Compliant

BT-MZ || SP-MZ Fortran 6,779 || 4,862 SINGLE SINGLE yes

LU-MZ Fortran 6,542 SINGLE SINGLE yes

AMG2013 || LULESH C 75,000 || 5,000 SINGLE SINGLE yes

miniFE || HACC C++ 50,000 || 35,000 SINGLE SINGLE yes

SNAP Fortran 3,000 SINGLE SINGLE yes

HERA C++ 500,000 SERIALIZED SERIALIZED yes

coll single C 29 SINGLE FUNNELED no

coll funneled C 36 FUNNELED SERIALIZED no

coll serialized C 47 SERIALIZED MULTIPLE no

coll deadlock C 38 FUNNELED FUNNELED yes

p2p multiple C 45 SERIALIZED MULTIPLE no

PARCOACH issues warnings for potential MPI collective errors within an
MPI process and between processes. The type of each potential error is specified
(collective mismatch, concurrent calls in an MPI process,...) with the names

 0

 1

 2

 3

 4

 5

 6

BT-MZ SP-MZ LU-MZ AMG2013LULESH miniFE HACC SNAP HERABenchError

O
ve

rh
ea

d
in

 %

Compile-time overhead

Fig. 4. Overhead of average compilation time

MPI Thread-Level Checking for MPI+OpenMP Applications 41

and lines in the source code of MPI collective calls involved. Table 3 shows the
number of static MPI collective calls and the number of nodes in the set S
found by PARCOACH (Algorithms 1 and 2 of our analysis). The 4th column
depicts the percentage of the benchmarks functions instrumented. We notice a
good impact of the static analysis on the selective instrumentation. The two last
columns give the number of expected errors and the number of errors actually
found.

Table 3. Debugging results

Benchmark # collective

calls

nodes

in S

% instrumented

functions

expected

errors

errors

found

BT-MZ || SP-MZ 15 || 15 7 || 7 8,57% || 8,57% 0 || 0 0 || 0

LU-MZ 20 7 8,82% 0 0

AMG2013 86 75 13.33% 0 0

LULESH || miniFE 3 || 4 1 || 6 1.44% || 2.56% 0 || 0 0 || 0

HACC || SNAP 26 || 9 11 || 13 1.41% || 10% 0 || 0 0 || 0

HERA 574 375 <1% 0 0

coll single || coll funneled 1 || 1 1 || 1 100% || 100% 1 || 1 1 || 1

coll serialized 2 2 100% 1 1

coll deadlock 1 1 100% 1 1

p2p multiple 0 2 100% 1 1

6 Conclusion and Future Work

Augmenting MPI applications with OpenMP constructs is one possible app-
roach to face exascale systems. But the development of such hybrid applications
requires effective debugging methods to assist programers. In this paper, we pre-
sented a compiler analysis to verify the MPI thread-level compliance of C/C++
and Fortran MPI+OpenMP codes. The analysis proposed finds the right MPI
thread level to be used and identifies code fragments that may prevent confor-
mance to a given level. We have shown a small impact on compilation-time with
an overhead lower than 6 %. For future work, our analysis could be extended to
include critical sections and locks. Furthermore, it could be integrated into exist-
ing tools like Marmot or MUST to cover other errors like calls arguments (e.g.,
communicators) or to report warnings concerning the execution path responsible
for bugs related to thread-level MPI compliance.

References

1. Chiang, W.-F., Szubzda, G., Gopalakrishnan, G., Thakur, R.: Dynamic verification
of hybrid programs. In: Keller, R., Gabriel, E., Resch, M., Dongarra, J. (eds.)
EuroMPI 2010. LNCS, vol. 6305, pp. 298–301. Springer, Heidelberg (2010)

42 E. Saillard et al.

2. DeSouza, J., Kuhn, B., de Supinski, B.R., Samofalov, V., Zheltov, S., Bratanov,
S.: Automated, scalable debugging of MPI programs with intel message checker.
In: SE-HPCS 2005, pp. 78–82. ACM (2005)

3. Falzone, C., Chan, A., Lusk, E., Gropp, W.: A portable method for finding user
errors in the usage of MPI collective operations. IJHPCA 21(2), 155–165 (2007)

4. Gropp, W., Thakur, R.: Thread safety in an MPI implementation: requirements
and analysis. Parallel Comput. 33(9), 595–604 (2007)

5. Hilbrich, T., Müller, M.S., Krammer, B.: Detection of violations to the MPI stan-
dard in hybrid OpenMP/MPI applications. In: Eigenmann, R., de Supinski, B.R.
(eds.) IWOMP 2008. LNCS, vol. 5004, pp. 26–35. Springer, Heidelberg (2008)

6. Hilbrich, T., de Supinski, B.R., Hänsel, F., Müller, M.S., Schulz, M., Nagel, W.E.:
Runtime MPI collective checking with tree-based overlay networks. In: EuroMPI,
pp. 129–134 (2013)

7. Hilbrich, T., Protze, J., de Supinski, B.R.d., Schulz, M., Müller, M.S., Nagel, W.E.:
Intralayer communication for tree-based overlay networks. In: International Con-
ference on Parallel Processing, pp. 995–1003 (2013)

8. Jourdren, H.: HERA: a hydrodynamic AMR platform for multi-physics simula-
tions. In: Plewa, T., Linde, T., Gregory Weirs, V. (eds.) Adaptive Mesh Refine-
ment - Theory and Applications, vol. 41, pp. 283–294. Springer, Heidelberg (2003)

9. Krammer, B., Bidmon, K., Müller, M.S., Resch, M.M.: MARMOT: an MPI analysis
and checking tool. In: PARCO. Advances in Parallel Computing, vol. 13, pp. 493–
500. Elsevier (2003)

10. Luecke, G.R., Chen, H., Coyle, J., Hoekstra, J., Kraeva, M., Zou, Y.: MPI-CHECK:
a tool for checking Fortran 90 MPI programs. Concurrency Comput. Pract. Expe-
rience 15(2), 93–100 (2003)

11. Lusk, E.R., Chan, A.: Early experiments with the OpenMP/MPI hybrid program-
ming model. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS,
vol. 5004, pp. 36–47. Springer, Heidelberg (2008)

12. Saillard, E., Carribault, P., Barthou, D.: Combining static and dynamic validation
of MPI collective communications. In: EuroMPI, pp. 117–122. ACM (2013)

13. Saillard, E., Carribault, P., Barthou, D.: PARCOACH: combining static and
dynamic validation of MPI collective communications. IJHPCA 28, 425–434 (2014)

14. Saillard, E., Carribault, P., Barthou, D.: Static/Dynamic validation of MPI collec-
tive communications in multi-threaded context. In: PPoPP. ACM (2015)

15. Siegel, S., Zirkel, T.: Automatic formal verification of MPI based parallel programs.
In: PPoPP. pp. 309–310 (2011)

16. Smith, L., Bull, M.: Development of mixed mode MPI/OpenMP applications. Sci.
Program. 9(2,3), 83–98 (2001)

17. Message Passing Interface Forum. http://www.mpi-forum.org/docs/docs.html
18. NASPB site: http://www.nas.nasa.gov/software/NPB
19. CORAL site: https://asc.llnl.gov/CORAL-benchmarks/
20. Vetter, J.S., de Supinski, B.R.: Dynamic software testing of MPI applications with

Umpire. In: ACM/IEEE Conference on Supercomputing (2000)
21. Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., de Supinski, B.R.d., Schulz,

M., Bronevetsky, G.: A scalable and distributed dynamic formal verifier for MPI
programs. In: ACM/IEEE SC 2010, pp. 1–10 (2010)

22. Wolff, M., Jaouen, S., Jourdren, H.: High-order dimensionally split lagrange-remap
schemes for ideal magnetohydrodynamics. In: Discrete and Continuous Dynamical
Systems Series S. NMCF (2009)

http://www.mpi-forum.org/docs/docs.html
http://www.nas.nasa.gov/software/NPB
https://asc.llnl.gov/CORAL-benchmarks/

	MPI Thread-Level Checking for MPI+OpenMP Applications
	1 Introduction
	2 Related Work
	3 Analysis of the Multithreaded Context
	3.1 Parallelism Words Construction
	3.2 Parallelism Words Analysis

	4 Thread-Level Compliance Checking
	4.1 Static Analysis and Interface to Dynamic Checkings
	4.2 MPI_THREAD_SINGLE
	4.3 MPI_THREAD_FUNNELED
	4.4 MPI_THREAD_SERIALIZED
	4.5 MPI_THREAD_MULTIPLE

	5 Experimental Results
	5.1 Functionnalities of the Analysis
	5.2 Static Analysis Results

	6 Conclusion and Future Work
	References

