Leveraging MPI-3 Shared-Memory Extensions
for Efficient PGAS Runtime Systems

Huan Zhou™), Kamran Idrees, and José Gracia

High Performance Computing Center Stuttgart (HLRS),
University of Stuttgart, Stuttgart, Germany
zhou@hlrs.de

Abstract. The relaxed semantics and rich functionality of one-sided
communication primitives of MPI-3 makes MPI an attractive candidate
for the implementation of PGAS models. However, the performance of
such implementation suffers from the fact, that current MPI RMA imple-
mentations typically have a large overhead when source and target of a
communication request share a common, local physical memory. In this
paper, we present an optimized PGAS-like runtime system which uses
the new MPI-3 shared-memory extensions to serve intra-node communi-
cation requests and MPI-3 one-sided communication primitives to serve
inter-node communication requests. The performance of our runtime sys-
tem is evaluated on a Cray XC40 system through low-level communication
benchmarks, a random-access benchmark and a stencil kernel. The results
of the experiments demonstrate that the performance of our hybrid run-
time system matches the performance of low-level RMA libraries for intra-
node transfers, and that of MPI-3 for inter-node transfers.

Keywords: MPI - One-sided communication - Remote-memory access *
RMA - Partitioned global address space + PGAS

1 Introduction

The Message Passing Interface (MPI, [7]) is the de-facto communication stan-
dard for distributed-memory parallel programming. One particular advantage
for parallel programmers is the portability of MPI performance across systems
with different underlying network hardware: While HPC hardware vendors and
the MPI community spend considerable effort to optimize MPI implementa-
tions for the latest HPC network infrastructure, other alternative communica-
tion libraries typically do not have optimized support for a wide range of network
hardware. With the advent of the remote-memory access (RMA, also referred
to as one-sided communication) functionalities in MPI-2 [6] and the significant
improvement of the RMA in MPI-3 [7], MPI has become an adequate com-
munication backend for the implementation of partitioned global address space
(PGAS) programming models [11].

DASH [4] is a C++ template library which implements a PGAS-like program-
ming model. Unlike other PGAS models, DASH acknowledges the multi-level

© Springer-Verlag Berlin Heidelberg 2015
J.L. Traff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 373-384, 2015.
DOI: 10.1007/978-3-662-48096-0_29

374 H. Zhou et al.

hierarchical or compositional nature of today’s supercomputing systems, e.g.
cores, processors, nodes, racks, islands, full system, and thus does not classify
data into remote and local only, but allows for various degrees of remoteness. The
template library sits on top of a runtime system (DART), which is responsible
for providing services to the DASH library, including the definition of semantics
and the abstraction of the underlying hardware. In particular, DART provides
functions for the management of teams (a concept similar to MPI communi-
cators), one-sided communications, collective operations, and global memory
management.

In an earlier paper [17], we have described DART-MPI, a portable imple-
mentation of the DASH runtime, that uses MPI-3 as low-level communication
substrate. There, we showed, that the overhead of DART-MPI RMA operations
on top of the corresponding MPI-3 operations is negligible in general. Most
other PGAS implementations however, do not use MPI as communication sub-
strate; UPC [2] for instance is frequently based on GASNet [1], while GA [9]
uses ARMCI [8] as underlying communication substrate.

Originally, all the RMA operations in DART-MPI are substantially mapped
directly to the corresponding MPI-3 RMA operations. In particular, DART-MPI
invokes MPI RMA operations when source and target of a transfer reside on the
same node and share local, physical memory. Alternatively, one could do direct
load/store operations without additional copies in the runtime layer. In this
paper, the contributions we make on DART-MPI are threefold:

— We utilize the MPI-3 shared-memory extensions to enable direct memory
access (memory sharing) for DART-MPI blocking operations for intra-node
transfers. However, we turn to the MPI RMA operations when the non-
blocking or inter-node data movements happen.

— We redefine the existing translation table to facilitate the reference to the
DART-MPI collective global pointer when beginning with the shared memory
window in mind.

— Using the low-level and application-level benchmarks, we show the improved
performance achieved by embedding the shared-memory-related functionality
into DART-MPI.

The rest of the paper is organized as follows: In Sect. 2, we present the back-
ground for our work. In Sect.3, we describe the improved implementation of
DART-MPI and evaluate the performance of DART-MPI in Sect. 4. We summa-
rize in Sect. 5.

2 Background

From the perspective of PGAS models, the recent MPI-3 standard [7] signif-
icantly improves the one-sided communication system. The relaxation of the
RMA semantics, the concretization of the memory consistency model, the intro-
duction of new window types, fine-grained mechanisms for synchronization and

Leveraging MPI-3 Shared-Memory Extensions 375

data movement, and atomic operations, make MPI-3 RMA attractive as back-
end for PGAS implementations. Additionally, the results in Dinan et al. [3]
indicate that the new MPI-3 RMA system has performance advantages over
the MPI-2 interface. In this section, we briefly explain two new MPI-3 window
types: dynamically-allocated window and shared-memory window, which will play
a central role in understanding how to enable memory sharing within a node in
DART-MPI. A more detailed description of the other new functionalities can be
found in Hoefler et al. [5].

2.1 MPI Dynamically-Allocated Memory Window

A dynamically-allocated window is a new concept in MPI-3 that allows to arbi-
trarily grow and resize a given window by repeatedly attaching/detaching mul-
tiple, non-overlapping, user allocated memory regions to/from the associated
window object.

The function MPI_Win_create_dynamic is called to generate a window object
d-win without associating any initial memory block with it. User allocated
memory is attached to d-win, and thus made available for RMA operations,
by invoking the function MPI_Win_attach, and detached with MPI_Win_detach.
Once memory regions are detached from d-win, they will not be the target of
any MPI RMA operation on d-win unless they are re-attached. Notably, any
local memory region may be attached and detached repeatedly, and multiple,
but non-overlapping memory regions are allowed to be attached to the same
window.

MPI_Get_address returns the address of the given memory and should be
called to validate the RMA operations on d-win. This is due to the fact that the
address of the target memory location is passed directly as window displacement
parameter to the MPI RMA operations. Therefore, the target process is required
to send the address of a certain memory location, that locals to it, to the origin
process who inquires for it.

Noticeably, Potluri et al. [13] have published benchmark results which demon-
strate that dynamically-allocated windows perform as good as the traditional
static MPI-created windows in terms of put latency.

2.2 MPI Shared-Memory Window

The unified memory model, which is fully supported in MPI-3 in order to utilize
the cache-coherence characteristics embodied in the modern hardware architec-
tures, is a requirement for exposing the MPI shared-memory window.

To collectively allocate the shared memory region across all processes in a
given communicator, MPI-3 defines a portable, shared-memory window alloca-
tion interface — MPI_Win_allocate_shared to generate a shared-memory allocated
window object shmem-win. In addition, the communicator that the shmem-
win associates with should be a shared-memory capability communicator, which
means it is allowed to build a memory sharing region on top of this communica-
tor. Therefore, the additional function MPI_Comm._split_type, as an extension of

376 H. Zhou et al.

the function MPI_Comm._split, identifies sub-communicators on which the shared
memory region can be created with the type of MPI. COMM_TYPE SHARED.
The function MPI_Win_shared_query is provided to query the base pointer to
the memory on the target process. Coupled with the shmem-win, the locally-
allocated memory can even be accessed by the MPI processes in the group of
shmem-win with immediate load/store operations. Such access pattern can make
data movements bypass the MPI layer and directly go through memory sharing,
which brings in significant performance improvement.

3 The DART-MPI Implementation Design

In this section, we explain the approach of enabling the memory sharing option
for the blocking RMA operations in DART-MPI and address the modifications
and improvements that are made with respect to the existing DART-MPI.

There are two types of DART global memory, collective and non-
collective [17]. The collective global memory, pointed to by a collective global
pointer, is created and distributed across the given team. The non-collective
global memory, pointed to by a non-collective global pointer, is only allocated
in the global address space of the calling unit. We assume that all the follow-
ing collective global memory blocks are allocated across team 1" consisting of P
units.

3.1 Communication Hierarchy of the DART-MPI Blocking RMA
Operations

To make the DART-MPI intra-node communication more efficient, we alter the
existing implementation to let the DART-MPI blocking operations deal with the
data locality explicitly. Note, that the DART-MPI non-blocking RMA interfaces
do not yet support the memory sharing as described earlier in this paper.

In the team creation code, the team T is split into sub-teams on which it is
possible to enable communication via sharing memory. We accomplish this by
calling MPI_Comm_split_type with key MPI_.COMM_TYPE_SHARED. In addi-
tion, a d-win is generated without any memory attached when team T' is created,
indicating one-to-one relationship is built between d-win and T. Such relation-
ship is stored in an array named dart_win_lists. Therefore, the position of the
team T in teamlist [17] can also be a perfect index into the array dart_win_lists.
The d-win can potentially be utilized to complete all the data movements where
the units are located in different sub-teams.

In the collective global memory allocation code, instead of allocating a block
of memory from a memory pool that is reserved for T, we need to create a
shmem-win spanning the memory of the specified size on each sub-team men-
tioned above. On top of that, each unit of the team T should attach the locally-
allocated memory to the d-win explicitly to make them available for the units
in the varying sub-teams. As the Fig.1 shows, there are two overlapping win-
dows sharing the same memory region for different purposes. On the one hand,

Leveraging MPI-3 Shared-Memory Extensions 377

MPI Operations on d-win

A Sub-teamT1 B J Team T Sub-team T2 C l

\ shmem-win I d-win shmem-win

Memory Sharing

Fig. 1. Nesting of shared-memory window inside RMA window for blocking put/get
operations

the units covered by the same shmem-win can communicate with each other
via memory sharing (e.g., memcpy). On the other hand, the units located in
different sub-teams should turn to the d-win for completing the remote accesses
with MPI RMA operations. Note, that using shared-memory in the DART-MPI
non-blocking RMA operations is anything but trivial as for instance the direct
memcpy function itself is a blocking operation. Furthermore, the introduction
of DMA copy engine could be a workaround to support asynchronous memory
copying [16] for DART-MPI.

In the non-collective global memory allocation code, we provide two over-
lapping global windows, which indicates that all the DART-MPI non-collective
allocations fall into two pre-defined global windows. One of the two windows is
generated first spanning a large amount of shared memory region on the default
communicator — MPI_.COMM_WORLD [7] for intra-node communications, the
other is then created with MPI_Win_create covering the above shared memory
region to enable the message transferring across different nodes. As a result, these
two windows share the same static shared memory region, and independently
implement the data movements on them in an efficient manner.

3.2 DART-MPI Collective Global Pointer Dereference

In this section, we mainly explain the collective global pointer dereference of the
updated DART-MPI since the non-collective global pointer basically continues
to use the original dereference mechanism.

Besides the altered communication pattern, the meaning of the member segid
in the global pointer is also re-specified for management convenience and data
access efficiency. Therefore, the segid in the collective global pointer is no longer
set to the related team ID but rather an increasing positive integer number,
which can be used to determine any collective global block uniquely.

With the aid of the translation table [17], collective global pointer can get
analyzed adequately. Thus it is critical for us to understand how the translation
table reacts to the hierarchical communication pattern and the modification
made in the global pointer, which also has an impact on the original collective
global pointer deference method.

To be consistent with the modified definition of segid in global pointer, the
key in the translation table is altered and the segid is utilized instead. The

378 H. Zhou et al.

translation table is arranged in an ascending order based on the key segid. As
a result, we do not need to bind a separate translation table to each team,
instead a single translation table is active during the lifetime of a DART-MPI
program. Once a block of collective global memory is created, a unique segid and
the related shmem-win are generated and then added to the translation table
together, signifying the one-one relationship between collective global pointer
and the related shmem-win. In addition, according to the Sect. 2, we learn that
after attaching the shared memory region onto the d-win locally, the routine
MPI_Get_address should be invoked so as to collect the beginning address of the
local shared memory region of each unit in team 7. Thus, the translation table
should also contain an array disp-set storing those separate addresses. As an
example, when unit ¢ in the team T is targeted, then the ith item in the related
disp-set should be obtained and be utilized in the future to locate the target
memory location in unit 4. The offset returned in the generated collective global
pointer is initialized to O.

The location of target data is given by DART global pointer, which incor-
porates the information on the target unit, segid and a specific offset. For the
collective global pointer, in the case of intra-node communications, we firstly
query the appropriate shmem-win that covers the expected target location from
the translation table according to the segid, then decode the location with offset.
In the case of inter-node communications, we firstly query the disp-set, indicates
the beginning address of the window segment of each unit in team 7', from the
translation table according to the segid, and then get the correct d-win from the
array dart_win_lists and translate the absolute unit id to the relative unit id 4
in T, and finally access the remote data through MPI RMA operations, where
the value of offset+disp-set[i] is passed as parameter target_disp.

4 Performance Evaluation

In the following, we evaluate the performance of DART-MPI using a set of bench-
marks which includes low-level communication and application benchmarks. All
the benchmarks are carried out on a Cray XC40 system named Hornet. Each
compute node features two Intel Haswell E5-2680v3 2.5 GHZ processors and con-
sists of 24 cores. The different compute nodes are interconnected through a Cray
Aries network using Dragonfly topology. They use the Cray-MPI implementation
of MPI-3.

Foremost, we are interested in the evaluation of the performance advantage
of our DART-MPI, using MPI-3 shared-memory and RMA, over native MPI-3
RMA. As shown in a previous paper [17], the difference in performance of DART-
MPI and MPI-3 RMA operations for non-local transfers is negligible. In that
sense, MPI-3 can be seen as a proxy for the old DART-MPI. We will thus not
show the latter explicitly in this paper. In addition, we compare DART-MPI with
two important PGAS implementations: UPC and OpenSHMEM, which are both
fully implemented and tuned on the Cray XC40 system. In all cases we use the
Cray compiler, which also supports UPC (through the compiler flag -k wupc)

379

Leveraging MPI-3 Shared-Memory Extensions
1000 1000
DART-MPI -=- DART-MP| =
MPI-RMA -»- MPI-RMA o~
UPC = UPC =
100 |- OpenSHMEM —- /// 100 |- OpenSHMEM —- //
Tnj‘ 10 ’g‘ 10
5 B
§ &
5 T e L s a—— /
0.1 0.1
e ,,.»-/
0.01 0.01
1 32 1024 32768 1.04858e+06 1 32 1024 32768 1.04858e+06
Message Size (bytes) Message Size (bytes)
(a) Blocking put (intra-node) (b) Blocking get (intra-node)
Fig. 2. Blocking put/get latency on 2 ranks/units
° DART-MPI 260 DART-MPI
Y Pl -
MPI-RMA -o- — 240 MPI-RMA -o- \
UPC — N UPC = /
OpenSHMEM OpenSHMEM -
pen: 1 220 | Open /
4 200
’%T § 180 //
3 3 160
g g
o1 120] //
1 100 V%
80
0.01 60
1 2 4 64 128 255 1 2 4 64 128

Target Processor

(a) Blocking put (8 bytes)

Fig. 3. Blocking put latency as a function of
involved ranks/units on 256 PEs

(b) Blocking put (1 Mb)

Target Processor

255

logically increasing distance between two

1100

DART-MP! -#- DART-MPI -#-
MPI-RMA - | 1000 MPI-RMA -o- e
UPC - UPC -
—
OpenSHMEM - — 900 |- OpenSHMEM
———— —
800
' /

700

7 3 /

< < 600 /

3 3

I3 & 500

g 3 /

01 400 /
300 /
200
100 b
0.01 0
1 2 4 64 128 255 1 2 4 32 64 128

Target Processor

(a) Blocking get (8 bytes)

(b) Blocking get (1 Mb)

Target Processor

255

Fig. 4. Blocking get latency as a function of logically increasing distance between two
involved ranks/units on 256 PEs

380 H. Zhou et al.

and OpenSHMEM (as a library). All low-level communication benchmarks are
averaged over 10000 executions. We do not show the error bars in the following
figures, as these are always small and would only confuse the plots.

4.1 Low-Level Communication Benchmarks

In this section, we assess the raw communication performance based on the
OSU Micro Benchmark [10]. Firstly, we test the average latencies of the blocking
operations of DART-MPIT as well as the counterparts of MPI (with passive target
communication calls), UPC and OpenSHMEM [12] only in the case of intra-
node (communication within one node). Secondly, we evaluate how the blocking
put and get operations perform when increasing logical distance between two
involved processes for DART-MPI, MPI, UPC and OpenSHMEM.

Figure 2 shows the average latency of intra-node blocking put and get oper-
ations for message size ranging from 2° to 22'. In all cases the latency roughly
keeps constant for small messages (here < 1024 byte). Beyond that the comple-
tion time is dominated by the actual message transfer time and basically grows
linearly with the message size as expected. Noticeably, the curves for UPC,
OpenSHMEM and DART-MPT are very close to each other. For small messages,
native MPI performs more than 10 times slower than the other three models.
This fully illustrates that the overhead of MPI one-sided operations is relatively
high compared to that of direct load/store operations when data movements
happen within one node.

A careful comparison shows, that DART-MPI always performs better for
blocking put operations than UPC (by about 20 %) and OpenSHMEM (by about
40 %), although such advantage becomes negligible as the message size increases.
For blocking get operations, the variance between them is much lower in absolute
terms, but the trend of curves seems to suggest that DART-MPI (and to a lesser
extend, also UPC) performs slightly slower than OpenSHMEM.

Next, we evaluate the performance of the blocking RMA operations as a
function of logical distance between source and target. We send messages of
fixed size from process 0 to target processes varying from 1 to 255. Note that
the job consists of 256 ranks/units in total, which corresponds to 11 nodes on
Hornet. Figures 3 and 4 show the performance of blocking put and get operations,
respectively, for the short message size of 8 bytes and the long message size of
1Mb as a function of logically increasing distance between the origin and target.

As expected the latency remains constant for message transfers within one
node. However, at a logical distance between 16 and 32, i.e., when leaving one
node and targeting the second one, the latency goes up significantly in all cases
except for native MPI, as the overhead of native MPI intra-node data transfers
is relatively high to begin with (as reported above). The curves for DART-
MPI nearly sit above those for native MPI for inter-node data transfers. This is
expected since DART-MPI falls back on MPI when communicating across nodes.
Both, however, perform in general slightly worse than UPC and OpenSHMEM in
latency for inter-node communications. An exception occurs when executing the

Leveraging MPI-3 Shared-Memory Extensions 381

0.1

DART-MP| =
MPI-RMA -o-
UPC -
OpenSHMEM
0.01 .
@ ./%l
o
S / / /
0] — ./| /4
0.001 . —
Vr/
0.0001
2 4 8 16 32 64 128 256 512 1024

Number of Processors

Fig. 5. Random Access performance comparison

0.013 38

DART-MPI = DART-MPI
MPI-RMA 36 MPI-RMA m
0.012 UPC m I UPC m
OpenSHMEM m OpenSHVMEM m
3 0011 s 32
o o
E oo g%
E o [
o > 28
<] <3
§ 5 26
© 0.009)
g g 2
g g
o Qo
O 0.008 O 2
20
0.007
18
0.006 16
8 16 12 56
Number of Processors Number of Processors
(a) 64 x 64 (b) 1024 x 1024

Fig. 6. Five-point stencil performance comparison

OpenSHMEM blocking get operation when transferring large messages; it per-
forms 5 to 10 times worse than the other three models in latency. We do not have
an explanation for such behavior, but the full data set we have seems to suggest
that OpenSHMEM blocking get operations show relatively poor performance for
large messages.

4.2 Application Benchmarks

In this section we present the results of two application benchmarks, namely
Random Access and a stencil code kernel. All benchmarks were run on up to
1024 cores, i.e., 45 nodes on Hornet.

Random Access: The Random Access (RA) benchmark [14] is one of the HPC
Challenge benchmarks developed for the HPCS program. It consists of concur-
rent, atomic updates of random elements of a distributed array by all ranks [15].

382 H. Zhou et al.

The general performance metric is giga-updates per second (GUPs). The mes-
sages involved are very small, i.e., 8 bytes. Figure5 shows the performance in
terms of GUPs for the DART-MPI, native MPI, UPC and OpenSHMEM ver-
sions of the RA benchmark for the number of processes varying from 2 to 1024.
Interestingly, DART-MPI, UPC and OpenSHMEM achieve similar performance.
The performance of the native MPI version is relatively poor in all cases, and
the performance of the DART-MPI version suffers at large number of ranks due
to the underlying MPI.

The relative performance evaluation of the DART-MPI, UPC and OpenSH-
MEM versions is complex stemming from the fact, that the blocking get, put and
atomic operations are involved. DART-MPI performs slightly better than Open-
SHMEM when RA runs on a single node. However, we can see there is a clear
gap between the performance of DART-MPI and that of UPC and OpenSHMEM
when the application is carried out across nodes. This is due to the fact that the
amount of the inter-node remote accesses increases as the growing of the running
nodes. The inter-node communication time performance of DART-MPI is poor
relative to that of UPC and OpenSHMEM for smaller messages (e.g., 8 bytes),
as obvious from Figs.3 and 4. In addition, the atomic operation contributes
partly to such performance gap between the DART-MPI, UPC and OpenSH-
MEM versions, respectively. Noticeably, although the increase in the number of
inter-node remote accesses exacerbates the performance of DART-MPI, DART-
MPI can still perform better than native MPI, which has to do with the fraction
of memory sharing for the intra-node data movements.

Five-Point 2D Stencil Computation: This kernel computes the 2D Poisson
equation by applying a five-point stencil on a square grid, and solving in an iter-
ative way with the Gauss-Seidel method. The grid of N x N elements is decom-
posed evenly by rows among numprocs distributed processes. Each element holds
a 4-byte floating point number. The kernel uses extra halo zones to exchange
boundary elements between neighbors, A total of 4 x N x (2 X numprocs— 2) bytes
of data per iteration is transmitted using blocking put operations. With those
halo data, all the inner grid cells can get updated successfully. We run the sten-
cil kernel until convergence of solution. The time recorded in the benchmark
includes the execution time of the Gauss-Seidel solver (local computation part)
and communication time for halo exchange.

We run the five-point stencil benchmark for DART-MPI, MPI, UPC and
OpenSHMEM versions on the grids of 64 x 64 elements and 1024 x 1024 elements
respectively. Figure 6(a) shows comparison results of a 64 x 64 grid distributed
across 4, 8 and 16 processes on a single node. We can see that the DART-MPI
version always performs slightly better than the UPC version, when all the data
movement happen within a single node. In addition, DART-MPI, UPC and
OpenSHMEM outperform native MPI by ~ 35% for 16 processes.

The performance of the DART-MPI version degrades when there are data
movements across nodes. Figure 6(b) shows benchmark results of a 1024 x 1024
grid for 64, 128, 256 and 512 processes. The convergence time of the DART-MPI
and OpenSHMEM versions decreases as the number of processes involved is

Leveraging MPI-3 Shared-Memory Extensions 383

increased, which suggests that DART-MPI and OpenSHMEM are more scalable
than native MPI and UPC from the perspective of this benchmark.

5 Conclusions

DART-MPI is the runtime system for the PGAS-like C+4 template library
DASH and built on top of MPI-3 one-sided communication primitives. In this
paper we present an optimized design of DART-MPI which uses the new MPI-3
shared-memory extension for intra-node communications. In essence, we nest
MPI-3 shared-memory windows inside RMA windows to do direct load/store
operations for intra-node transfers, and MPI-3 one-sided communication opera-
tions on the RMA windows for inter-node transfers.

We expect that this optimization will improve the performance of DART-
MPI for intra-node communication. To verify this claim, we run three classes
of benchmarks, namely low-level put/get benchmarks, a Random Access bench-
mark and a stencil application kernel on the Cray XC40 system. We evaluate
the performance of DART-MPI against that of native MPI. In addition, we com-
pare DART-MPI to OpenSHMEM and UPC as two other PGAS-like program-
ming models. The results of the evaluation demonstrate, first, that DART-MPI
performs significantly faster than MPI RMA when messages are transmitted
within a single node, i.e., that our optimization of DART-MPI leads to a better
intra-node communication performance, second, that the comparison to Open-
SHMEM and UPC show that the performance improvement that is brought by
our optimization makes DART-MPI comparable with UPC and OpenSHMEM.
Additionally, our performance evaluation also shows, that for some relevant oper-
ations — especially the inter-node RMA operations — DART-MPI still performs
slower than the alternative PGAS approaches.

In this paper, we have only considered blocking RMA put and get operations.
The current design of DART does not include an asynchronous progress engine,
and therefore relies on other parts of the software stack to do progress as neces-
sary for non-blocking operations. In particular, we rely on MPI for non-blocking
RMA operations and thus see no benefit for non-blocking DART operations.
An asynchronous progress engine which allows optimization of non-blocking
intra-node transfers is a subject of further research.

Acknowledgments. The authors would like to thank Karl Fiirlinger for fruitful discus-
sion on the DASH runtime design. We gratefully acknowledge funding by the German
Research Foundation (DFG) through the German Priority Programme 1648 Software
for Exascale Computing (SPPEXA).

References

1. Bonachea, D., Jeong, J.: GASNet: A Portable High-Performance Communication
Layer for Global Address-Space Languages. Technical report, CS258 Parallel Com-
puter Architecture Project (2002)

384

2.

10.
11.
12.

13.

14.

15.

16.

17.

H. Zhou et al.

Carlson, W., Draper, J., Culler, D., Yelick, K., Brooks, E., Warren., K.: Introduc-
tion to UPC and Language Specification. Technical report CCS-TR-99-157, IDA
Center for Computing Sciences (1999)

Dinan, J., Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Thakur, R.: An imple-
mentation and evaluation of the MPI 3.0 one-sided communication interface. In:
Preprint ANL/MCS-P4014-0113. IEEE Computer Society (2013)

. Fiirlinger, K., et al.: DASH: data structures and algorithms with support for

hierarchical locality. In: Lopes, L., et al. (eds.) Euro-Par 2014, Part II. LNCS,
vol. 8806, pp. 542-552. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/
978-3-319-14313-2_46; http://dblp.uni-trier.de/rec/bib/conf/europar/Furlinger
GGKTHIMMZ14

Hoefler, T., Dinan, J., Thakur, R., Barrett, B., Balaji, P., Gropp, W., Underwood,
K.: Remote Memory Access Programming in MPI-3. Technical report, Argonne
National Laboratory (2013)

MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2 (September
4th 2009), December 2009. http://www.mpi-forum.org

MPI Forum: MPI: A Message-Passing Interface Standard. Version 3.0 (September
21st 2012), September 2012. http://www.mpi-forum.org

Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library for
distributed array libraries and compiler run-time systems. Technical report (1999)
Nieplocha, J., Harrison, R.J., Littleeld, R.J.: Global arrays: a nonuniform memory
access programming model for high-performance computers. J. Supercomputing
10, 169-189 (1996)

OSU Micro-Benchmarks (2014).http://mvapich.cse.ohio-state.edu/benchmarks/
Partitioned Global Address Space (2014). http://www.pgas.org/

Poole, S., Hernandez, O., Kuehn, J., Shipman, G., Curtis, A., Feind, K.: OpenSH-
MEM - toward a unified RMA model. In: Padua, D. (ed.) Encyclopedia of Parallel
Computing, pp. 1379-1391. Springer, US (2011)

Potluri, S., Sur, S., Bureddy, D., Panda, D.K.: Design and implementation of key
proposed MPI-3 one-sided communication semantics on InfiniBand. In: Cotronis,
Y., Danalis, A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS,
vol. 6960, pp. 321-324. Springer, Heidelberg (2011). http://dblp.uni-trier.de/
db/conf/pvm/eurompi2011.html#PotluriSBP11; http://dx.doi.org/10.1007 /978- 3-
642-24449-0_38; http://www.bibsonomy.org/bibtex /2b8d79bab12610e243ae48eceb
2905b91/dblp

RandomAccess GUPS (Giga Updates Per Second) (2013). http://icl.cs.utk.edu/
projectsfiles/hpcc/RandomAccess/

Shamis, P., Venkata, M.G., Poole, S., Welch, A., Curtis, T.: Designing a high per-
formance OpenSHMEM implementation using universal common communication
substrate as a communication middleware. In: Poole, S., Hernandez, O., Shamis, P.
(eds.) OpenSHMEM 2014. LNCS, vol. 8356, pp. 1-13. Springer, Heidelberg (2014)
Vaidyanathan, K., Chai, L., Huang, W., Panda, D.K.: Efficient asynchronous mem-
ory copy operations on multi-core systems and I/OAT. In: IEEE International
Conference on Cluster Computing (2007)

Zhou, H., Mhedheb, Y., Idrees, K., Glass, C.W., Gracia, J., Firlinger, K., Tao, J.:
DART-MPI: an MPI-based implementation of a PGAS runtime system. In: PGAS
2014, 06-10 October 2014. http://dx.doi.org/10.1145/2676870.2676875

http://dx.doi.org/10.1007/978-3-319-14313-2_46
http://dx.doi.org/10.1007/978-3-319-14313-2_46
http://dblp.uni-trier.de/rec/bib/conf/europar/FurlingerGGKTHIMMZ14
http://dblp.uni-trier.de/rec/bib/conf/europar/FurlingerGGKTHIMMZ14
http://www.mpi-forum.org
http://www.mpi-forum.org
http://mvapich.cse.ohio-state.edu/benchmarks/
http://www.pgas.org/
http://dblp.uni-trier.de/db/conf/pvm/eurompi2011.html#PotluriSBP11
http://dblp.uni-trier.de/db/conf/pvm/eurompi2011.html#PotluriSBP11
http://dx.doi.org/10.1007/978-3-642-24449-0_38
http://dx.doi.org/10.1007/978-3-642-24449-0_38
http://www.bibsonomy.org/bibtex/2b8d79bab12610e243ae48eceb2905b91/dblp
http://www.bibsonomy.org/bibtex/2b8d79bab12610e243ae48eceb2905b91/dblp
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://dx.doi.org/10.1145/2676870.2676875

	Leveraging MPI-3 Shared-Memory Extensions for Efficient PGAS Runtime Systems
	1 Introduction
	2 Background
	2.1 MPI Dynamically-Allocated Memory Window
	2.2 MPI Shared-Memory Window

	3 The DART-MPI Implementation Design
	3.1 Communication Hierarchy of the DART-MPI Blocking RMA Operations
	3.2 DART-MPI Collective Global Pointer Dereference

	4 Performance Evaluation
	4.1 Low-Level Communication Benchmarks
	4.2 Application Benchmarks

	5 Conclusions
	References

