Skip to main content

A Circuit Complexity Approach to Transductions

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9234))

  • 716 Accesses

Abstract

Low circuit complexity classes and regular languages exhibit very tight interactions that shade light on their respective expressiveness. We propose to study these interactions at a functional level, by investigating the deterministic rational transductions computable by constant-depth, polysize circuits. To this end, a circuit framework of independent interest that allows variable output length is introduced. Relying on it, there is a general characterization of the set of transductions realizable by circuits. It is then decidable whether a transduction is definable in \(\mathrm{AC}^0\) and, assuming a well-established conjecture, the same for \(\mathrm{ACC}^0\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrington, D.A.M.: Bounded-width polynomial size branching programs recognize exactly those languages in NC\(^1\). J. Comp. Syst. Sc. 38, 150–164 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrington, D.A.M., Compton, K., Straubing, H., Thérien, D.: Regular languages in NC\(^1\). J. Comput. Syst. Sci. 44(3), 478–499 (1992)

    Article  MATH  Google Scholar 

  3. Berstel, J.: Transductions and Context-Free Languages, Leitfäden der Angewandten Mathematik und Mechanik LAMM. Teubner, Stuttgart (1979)

    Book  Google Scholar 

  4. Beyersdorff, O., Datta, S., Krebs, A., Mahajan, M., Scharfenberger-Fabian, G., Sreenivasaiah, K., Thomas, M., Vollmer, H.: Verifying proofs in constant depth. TOCT 5(1), 2 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bojańczyk, M.: Transducers with Origin Information. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 26–37. Springer, Heidelberg (2014)

    Google Scholar 

  6. Chaubard, L., Pin, J.É., Straubing, H.: First-order formulas with modular predicates. In: LICS, pp. 211–220. IEEE (2006)

    Google Scholar 

  7. Choffrut, C., Schützenberger, M.P.: Counting with rational functions. Theor. Comput. Sci. 58(1–3), 81–101 (1988)

    Article  MATH  Google Scholar 

  8. Choffrut, C.: A generalization of Ginsburg and Rose’s characterization of G-S-M mappings. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 88–103. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

  9. Esik, Z., Ito, M.: Temporal logic with cyclic counting and the degree of aperiodicity of finite automata. Acta Cybern. 16(1), 1–28 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Filiot, E., Krishna, S.N., Trivedi, A.: First-order definable string transformations. In: Raman, V., Suresh, S.P. (eds.) FSTTCS. LIPIcs, vol. 29, pp. 147–159 (2014)

    Google Scholar 

  11. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Theor. Comput. Syst. 17, 13–27 (1984)

    MathSciNet  MATH  Google Scholar 

  12. Koucký, M., Pudlák, P., Thérien, D.: Bounded-depth circuits: separating wires from gates. In: STOC, pp. 257–265. ACM (2005)

    Google Scholar 

  13. Lange, K.-J., McKenzie, P.: On the complexity of free monoid morphisms. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 247–255. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Lautemann, C., McKenzie, P., Schwentick, T., Vollmer, H.: The descriptive complexity approach to LOGCFL. J. Comput. Syst. Sci. 62(4), 629–652 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pin, J.É., Straubing, H.: Some results on C-varieties. RAIRO-Theor. Inf. Appl. 39(01), 239–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Reutenauer, C., Schützenberger, M.P.: Variétés et fonctions rationnelles. Theor. Comput. Sci. 145(1–2), 229–240 (1995)

    Article  MATH  Google Scholar 

  17. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  18. Straubing, H.: On logical descriptions of regular languages. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 528–538. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Vollmer, H.: Introduction to Circuit Complexity. Springer-Verlag, Berlin (1999)

    Book  Google Scholar 

Download references

Acknowledgment

We thank Michael Blondin, Michael Hahn, and the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Cadilhac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cadilhac, M., Krebs, A., Ludwig, M., Paperman, C. (2015). A Circuit Complexity Approach to Transductions. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48057-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48056-4

  • Online ISBN: 978-3-662-48057-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics