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Abstract. The common approach to defining secure channels in the lit-
erature is to consider transportation of discrete messages provided via
atomic encryption and decryption interfaces. This, however, ignores that
many practical protocols (including TLS, SSH, and QUIC) offer stream-
ing interfaces instead, moreover with the complexity that the network
(possibly under adversarial control) may deliver arbitrary fragments of
ciphertexts to the receiver. To address this deficiency, we initiate the
study of stream-based channels and their security. We present notions
of confidentiality and integrity for such channels, akin to the notions for
atomic channels, but taking the peculiarities of streams into account.
We provide a composition result for our setting, saying that combining
chosen-plaintext confidentiality with integrity of the transmitted cipher-
text stream lifts confidentiality of the channel to chosen-ciphertext secu-
rity. Notably, for our proof of this theorem in the streaming setting we
need an additional property, called error predictability. We finally give an
AEAD-based construction that achieves our notion of a secure stream-
based channel. The construction matches rather well the one used in
TLS, providing validation of that protocol’s design.

Keywords: Secure channel - Data stream - AEAD - Confidentiality -
Integrity

1 Introduction

The most widely-used application for cryptography today is still secure commu-
nications—providing a ‘secure channel’ for the transmission of data between two
parties. Secure channel protocols are numerous and diverse in their features,
operating at different network layers and offering different security services.
Prominent examples can be found in GSM, UMTS and LTE [1] mobile telecom-
munications systems, in WEP, WPA and WPA2 [19] (which secure wireless LAN
communications), IPsec [22] (which provides security at the IP layer), TLS [15]
and DTLS [31] (which run over TCP [30] and UDP [29], respectively), Google’s
QUIC protocol [33], and SSH [36] (an ‘application layer’ secure protocol).
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AEAD and Secure Channels in the Literature. Authenticated Encryption with
Associated Data (AEAD) [32] has emerged as being the right cryptographic tool
for building secure channels. AEAD provides both confidentiality and integrity
guarantees for data. However, on its own, AEAD is insufficient for constructing
secure channels. For example, in most practical situations, a secure channel should
provide more than simple encryption of messages, but also guarantee detection of
(and possibly recovery from) out-of-order delivery and replays of messages. Fur-
thermore, a secure channel should deal with error handling, with errors potentially
arising from both cryptographic and non-cryptographic processing —whether or
not to tear-down a secure channel session when an error is encountered, and how
(and indeed whether) to signal errors to the other side. As another difference,
some secure channel designs (such as IPsec and to a limited extent TLS) have
additional features that can be used to provide protection against traffic analysis.
A secure channel may accept messages of arbitrary length and need to fragment
these before encryption, and may reassemble these fragments again after decryp-
tion; alternatively, it may present to applications a maximum message size that is
well-matched to the underlying network infrastructure. Finally, and most impor-
tantly in the context of the paper here, a secure channel may be designed to protect
a stream of data rather than the series of discrete messages that is usually found
in cryptographic abstractions.

There is, then, a substantial gap between what the AEAD primitive can
reasonably provide and the needs of secure channels. We are not the first to
recognize this gap, of course. For example, Bellare et al. [5] extended the standard
security notions of confidentiality and integrity for symmetric encryption to the
stateful setting, enabling the treatment of security of the ordering of discrete
messages in a secure channel, with application to the analysis of SSH being their
principle motivation. Their notions were later extended by Black et al. [23] to
include a richer variety of features, suitable for handling channels that permit (or
deny) replays, message drops, and reordering. Additional literature concerning
the formalization of secure channels includes [3,12,13,20,24-27,34].

Stream-Based Channels. Characteristic of all the above-mentioned prior works
is that they treat secure channels as providing an atomic interface for messages,
meaning that the channel is designed only for sending and receiving sequences
of discrete messages. However, this only captures a fraction of secure channel
designs that are actually used in the real world. In particular, TLS, SSH, and
QUIC all provide a streaming interface for the applications that use them: appli-
cations submit segments (or fragments) of message (or plaintext) streams to
an application programming interface (API), and similarly receive fragments of
message streams from the API. The sending side may arbitrarily buffer and/or
fragment the message stream before encapsulating it for sending. Moreover, in
some cases, even under normal operations, it is not guaranteed by the network
that the resulting stream of ciphertext fragments (which we refer to as cipher-
texts henceforth treating them as opaque bit strings) that is sent will arrive at
the receiver with the same pattern of fragmentation, even if the reconstructed
message streams are in the end identical. Under adversarial conditions, such
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guarantees certainly do not hold: for example, TLS runs over TCP and an
active man-in-the-middle adversary can tinker with the TCP segments, adding,
removing and reordering TLS data at will. Thus practical secure channels need
to securely process arbitrarily fragmented ciphertexts. Finally, to make things
even more complex, and coming full circle, applications (like HT'TP [17]) often
attempt to use stream-oriented secure channels (like TLS) to perform secure,
atomic message delivery.

This discussion points to a mismatch between atomic descriptions of secure
channels in the cryptography literature and the reality of the operation of secure
channels. As one may expect, such mismatches can have negative consequences for
security. The starkest example of this comes from the plaintext recovery attack
against SSH given by Albrecht et al. [2]. Their attack specifically exploits the
adversary’s ability to deliver arbitrary sequences of SSH packet fragments to the
receiver (over TCP) and observe the receiver’s behavior in response. The attack
is possible despite the analysis of [5] which proved that the SSH secure channel
satisfies suitable atomic stateful security notions. Related attacks against certain
IPsec configurations (and exploiting IPsec’s need to handle IP fragmentation)
were presented in [14]. Attacks highlighting a disjunction between what applica-
tions expect and what secure channels provide, in the specific context of HTTP
and TLS, can be found in [7,35]. All these attacks show the incompleteness of pre-
vious approaches to modeling and analyzing secure channels.

Boldyreva et al. [9] extended the classical, atomic secure channel notions to
cover the case of SSH-like stream-based secure channels, broadening the SSH-
specific work of [28]. However, while they allow for fragmented delivery of cipher-
texts to the receiver, their work still assumes that the encryption process on
the sender’s side is atomic, meaning that there is a one-to-one correspondence
between message and ciphertexts. This may be the case for SSH when used in
interactive sessions, but it is not the case for the tunneling mode of SSH, and
never the case for other secure channels protocols. For example, even though the
TLS specification [15] does not include a formal APT definition, it is clear that
the design intention is to provide a secure channel for data streams (and the
application programmer is in practice offered a TCP-like socket interface), and,
as noted above, the sending side can arbitrarily buffer and fragment the message
stream when preparing ciphertexts for sending.

Our Contributions. In this paper we develop formal functional specifications,
security notions, and a construction (using AEAD as a building block) for stream-
based channels. Our models are in the game-based tradition, and extend those
of [5,9] to handle the streaming nature of the channels that we consider.

While our methodology and modeling closely resemble those of [9], and indeed
build upon them, a crucial difference comes in our treatment of the sending (or
encrypting) function of a stream-based channel: in [9], this is still atomic (while
decryption is not), whereas in our stream-based channel setting, both the send-
ing and receiving function support streams of data, with potentially arbitrary
buffering and fragmentation on the sending and receiving side. This requires care-
ful modification of the confidentiality definitions of [9]. In addition, we develop



548 M. Fischlin et al.

suitable integrity notions for the streaming setting, whereas [9] does not con-
sider this aspect. This is important because the (informal) security properties
that applications expect a secure channel to provide include confidentiality as
well as integrity, while security in the most powerful ‘chosen fragment attack’
setting of [9] does not provide any integrity guarantees.

Bringing integrity into the picture for stream-based channels also enables us
to prove a composition result analogous to the classical result of [6] for symmetric
encryption schemes, which states that IND — CPA security in combination with
integrity of ciphertexts (INT — CTXT security) guarantees IND — CCA security.
This provides an easy route to proving that a given stream-based channel con-
struction provides appropriate confidentiality (indistinguishability under chosen
ciphertext-fragment attacks, or IND — CCFA security) and integrity (integrity of
plaintext streams, INT — PST security).

The composition theorem brings an interesting technical challenge to sur-
mount: as was already recognized in [10] for the classical (atomic) setting, the
possibility that realistic models of encryption schemes may involve multiple error
messages means that the original composition proof of [6] does not go through.
In [10], this was overcome by assuming the scheme is such that only one of the
possible error messages has a non-negligible chance of being produced during
operation of the scheme. Here we take a different tack, introducing the concept
of error predictability, which guarantees the existence of an efficient algorithm
that can predict which errors should be output during decryption of a ciphertext
stream.

We demonstrate the feasibility of our security notions by providing a generic
construction for a stream-based channel that uses AEAD as a component and
achieves our strongest confidentiality and integrity notions. The resulting stream-
based channel closely mimics the TLS Record Protocol. So our security results
provide validation for this important real-world protocol design, whilst fully
taking its streaming behavior into account. In the full version of this paper
we moreover propose a generic construction of a stream-based channel from
symmetric encryption supporting fragmentation as per [9].

Also in the full version, we return to the starting point of our discussion
and analyze how applications can use stream-based channels to safely transport
atomic messages by encoding distinguished end-of-message symbols into the sent
message stream to identify the atomic messages’ boundaries. Establishing the
security of this simple and natural approach however requires the introduction of
an additional technical property orthogonal to integrity and confidentiality. Our
analysis sheds a new formal light on the truncation [35] and ‘cookie-cutter’ [7]
attacks on HTTP running over TLS, showing how they can be seen as arising
from a misunderstanding of the security guarantees that can be provided by a
stream-based channel to applications expecting an atomic-message channel.

Further Related Work. Bhargavan et al. [8] have developed notions of security for
stream-based channels as part of their detailed analysis of the TLS Record Pro-
tocol. Their approach involves expressing channel security properties as types in
a programming language, and then formally proving that the type definitions are
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respected in an adversarial setting (where the adversary is modeled as another
program interacting with the code for the send and receive functions of the
channel).

A seemingly similar line of work to ours concerns blockwise-adaptive security
and on-line symmetric encryption schemes, as developed in [4,11,18,21]. There,
the schemes operate in an on-the-fly manner, processing one fixed-size block
of plaintext or ciphertext at a time; meanwhile the adversary is given access to
blockwise encryption (and possibly decryption) oracles. However, in these papers
messages and ciphertexts are ultimately regarded as discrete entities, rather than
as streams of message and ciphertext fragments as in our treatment.

Paper Organization. After introducing some basic notation and terminology
in Sect. 2, we present in Sect. 3 our formal definition for stream-based channels.
Section 4 contains our security notions for confidentiality and integrity of stream-
based channels as well as our composition theorem. Finally, in Sect.5 we show
feasibility of our notions by providing a generic construction of a stream-based
channel. We conclude with open questions arising from this work in Sect. 6.

2 Preliminaries

Notation. Let X be an alphabet and s € X*. We indicate by |s| the length of s,
by s[é] its é-th character, and by s[i, ..., j| the substring s[i]||...||s[j], where ||
denotes the string concatenation. Let s,t € X*. We say that s is a prefiz of ¢
and write s < t if there exists r € X* such that s||r = ¢; in this case we write
r =1t % s. We denote the longest common prefix of s and ¢ by [s,t] = [¢, s]. Note
that s < ¢ if and only if [s, ¢] = s. Using the above notation we will often consider
s % [s,1], i.e., the suffix of s with the longest common prefix of s and ¢ stripped

off. Let 8 = (s1,...,5¢) € (X*)f be a vector of strings for some integer ¢; if s
is empty, i.e., £ = 0, we denote this by s = (). For every 0 < i < j < / we
denote s[i] = s; and s[i,...,j] = (s;,...,8;); we use the shortcut ||s for the
concatenation s1l|...|[|s¢, and conventionally define ||() = €. We say that two
vectors § = (s1,...,8¢) and t = (t1,...,tp) are equal and write s = ¢ if and
only if £ = ¢ and s[i] = t[¢] for all 1 < ¢ < {. Slightly overloading notation, we
denote the merge of two vectors s and ¢ as s||t = (s1,..., 8¢, t1,...,t¢).

Channel Terminology. Our syntax for channels is intentionally independent of
the targeted security properties as these may vary from one specific applica-
tion to another. To reflect the generic functionality of channels and maintain a
higher level of abstraction than, e.g., in the case of authenticated encryption, we
define sending (Send) and receiving (Recv) rather than encryption and decryption
algorithms.

3 Stream-Based Channels

We capture the functionality of channel protocols that offer a reliable trans-
mission of streams like the Transmission Control Protocol (TCP) [30] and, in
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a second step, we define confidentiality and integrity properties expected from
(stream-based) secure channel protocols like the Transport Layer Security (TLS)
Record Protocol [15] or the Secure Shell (SSH) Binary Packet Protocol [37].!
To do so we first need to define the syntax of stream-based channels that, in
constrast to previous models for channel, send fragments of a message (or plain-
text) stream rather than atomic messages. In order to remain close to real-world
implementations we restrict both the message space and the ciphertext space
to the set of bit strings, where we understand ‘messages’ and ‘ciphertexts’ not
as atomic units, but as fragments (i.e., substrings) of a message stream and a
ciphertext stream.

Additionally, we do not stipulate a particular input/output behavior on the
sender side, but instead allow the sending algorithm Send to process input data
at its discretion, e.g., implementing some form of buffering. We enforce send-
ing out particular chunks of the message stream by employing the established
concept of ‘flushing a stream’ known from network socket programming, and
provide the Send algorithm with an additional flush flag f € {0,1} which, if set
to f = 1, ensures that all the message fragments fed so far are sent out instan-
taneously. Jumping ahead, in our security model this choice conservatively also
allows the adversary to control fragmentation. If the flush flag is set to zero,
Send may internally decide to keep accepting more message fragments or to
send out a ciphertext fragment, depending on its implementation and resources.
In our definition below we demand that each message fragment m; processed
by Send results in a ciphertext fragment ¢;. Since a ciphertext fragments can be
empty (¢; = €), this implicitly enables Send to wait for more data by outputting
empty ciphertext fragments. Figure 1 illustrates the behavior of the sending and
receiving algorithms of a stream-based channel.

We proceed with defining syntax and correctness of stream-based channels.

Definition 1 (Syntax of stream-based channels). A stream-based chan-
nel Ch = (Init, Send, Recv) with associated sending and receiving state space Sg
resp. Sg and error space £ consists of three efficient probabilistic algorithms:

— Init. On input of a security parameter 1, this algorithm outputs initial states
sts0 € Sg, str,0 € Sgr for the sender and the receiver, respectively. We write
(St570,StR70) —g Init(1>‘).

! Our model inherently assumes that, in a benign scenario, ciphertext fragments
are delivered reliably and in order (i.e., in a TCP-like manner). While we recog-
nize that efficient and secure transmission protocols can be designed also on top
of unreliable protocols like the User Datagram Protocol (UDP) [29] as done, e.g.,
in Google’s Quick UDP Internet Connections (QUIC) protocol [33], we deem these
approaches orthogonal or unrelated to our work. In such cases, a reliable and ordered
stream transmission can be implemented non-cryptographically either by TCP-like
preprocessing of the UDP datagrams before handing them over to a stream-based
channel according to our definition or by postprocessing UDP datagrams which are
encrypted and authenticated in an isolated manner (e.g., using an AEAD scheme).
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Fig. 1. Illustration of the behavior of the Send and Recv algorithms of a stream-based
channel, indicating the message and ciphertext fragments being sent (m; resp. ¢;) and
received (m] resp. c}).

- Send. On input of a state sts, € Sg, a fragment m € {0,1}*, and a flush
flag f € {0, 1}, this algorithm outputs an updated state sty € S; and a cipher-
text fragment ¢ € {0,1}*. We write (sty € Ss,c) < Send(stg,,m, f).

- Recv. On input of a state str, € Sg and a ciphertext fragment ¢ € {0,1}*,
this algorithm outputs an updated state st; € Sg and a message fragment
m € {0,1}* UE. We write (st, m) < Recv(stg,c).

Given a state pair (stgo,stgr,), an integer ¢ > 0, and tuples of message frag-
ments m = (my,...,my) € ({0,1}*)¢ and of flush flags f = (f1,...,fr) €
{0,1}*, let (sts,c) < Send(sts o, m, f) be shorthand for the sequential exe-
cution (stg1,c1) <5 Send(sts,m1, f1),. .., (sts,e,ce) < Send(stse—_1,m¢, fe)
with ¢ = (c1,...,¢¢) and stg, = stgy. For £ = 0 we define ¢ to be the empty
vector and stg, = stg, to be the initial state. We use an analogous notation for
the receiver’s algorithm.

Intuitively, correctness of stream-based channels guarantees that for every
message fragments input to Send, if the corresponding ciphertext stream is
processed by Recv, then no matter how the ciphertext stream is (re)fragmented
at the receiver side the returned message stream is a prefix of the initial message
stream. Moreover, when Recv consumes a ciphertext fragment generated by a
call to Send with the flush flag set to 1, its output stream contains all the message
fragments input to Send up to that call. We next formalize this intuition.
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Definition 2 (Correctness of stream-based channels). Let Ch = (Init,
Send, Recv) be a stream-based channel. We say that Ch provides correctness if for
all state pair (stso,str,o) <s Init(1}), all £,/ > 0, all choices of the randomness
for algorithms Init, Send and Recv, all message-fragment vectors m € ({0, 1}*),
all flush-flag vectors f € {0,1}¢, all sending output sequences (stsg,€) s
Send(sts,0,m, f), all ciphertext-fragment vectors ¢ € ({0,1}*)Y, and all receiv-
ing output sequences (st ,,m') <5 Recv(stp,o,c’), we have

le=ll¢" = [Im[L,....q <[m' < ||m,

where i = max({0} U {j : f; = 1}) is the largest index such that the flush
flag fi =1 (i.e., if all flush flags are set to zero then i =0 and m[l,...,i] =¢).

Remark 1. Correctness implies that if we feed Recv with a prefix of the ciphertext
stream output by Send, i.e., ||¢’ < ||e, then the receiver outputs a prefix of the
corresponding message stream, ||m’ < ||m, since

e < lle= 3" € (0,1} : [l || = || |lm/ [|m" < [jm = |jm < ||m
for all receiving output sequences (stp , 1, m") < Recv(stf 4, c”).

Remark 2. Tt is instructive to compare our correctness definition with that of
Boldyreva et al. [9]. There, correctness requires that if a sequence m of discrete
messages is encrypted, and the resulting ciphertext stream [|c is then decrypted
(possibly in a fragmented manner), then the obtained message sequence (when
message separators § are removed) is identical to the original sequence m. In
the special case of a single message, this implies that encryption ‘always flushes’
in the setting of [9], and is in turn the reason why encryption is necessarily an
atomic operation. By contrast, in our setting the Send algorithm is equipped
with a flush flag and, when the latter is set to zero, potentially the entire mes-
sage fragment is buffered for later sending. This is, then, an essential difference
between the setting of Boldyreva et al. [9] and the streaming one. An additional
difference is that the correctness condition in [9] is stronger than ours as it
incorporates a certain amount of robustness. More specifically, the sequence of
ciphertext fragments ¢’ submitted for decryption in the correctness definition of
[9] may extend the sequence produced by encryption (in other words, ||c is only
required to be a prefix of ||¢’ for decryption to still work correctly up to ||c).

4 Security for Stream-Based Channels

In the following we introduce both confidentiality and integrity notions attuned
to the stream-based setting and analyze their composition. We provide corre-
sponding notions in terms of asymptotic security; analogous notions in the con-
crete setting are easy to infer.?

2 Tt is straightforward to define a concrete notion of security by considering the advan-
tage of the adversary as a concrete function of its running time, the numbers of oracle
queries, and bounds on the size of the input streams for oracle queries.
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4.1 Confidentiality

As in the ciphertext fragmentation setting introduced by Boldyreva et al. [9],
whose confidentiality notion in turn is inspired by the IND — sfCCA notion by
Bellare et al. [5], our security notions have to deal with the fact that stream-
based channels support processing of arbitrary fragments of the message resp.
ciphertext stream. While Boldyreva et al. [9] considered only fragmented decryp-
tion (but atomic encryption) and therefore focused their attention on the CCA-
like setting, the fragmented message processing of stream-based channels in our
case also affects the adversarial capabilities in the CPA-like setting. We hence
define security notions both for the case of chosen plaintext-fragment attacks
(IND — CPFA) as well as chosen ciphertext-fragment attacks (IND — CCFA).

Adapting the chosen-plaintext capabilities of an adversary to the stream-based
settings is relatively straightforward (incorporating the standard left-or-right
oracle). However, deriving a sound security notion for an adversary controlling
the fragmentation on the received ciphertext stream turns out to be more delicate.
In general, chosen-ciphertext-like oracles strive to allow decryption of as much of
the input as possible without enabling trivial attacks. We follow the approach of
Bellare et al. [5] to model stateful (decryption) security notions by considering
the receiving oracle Orec, to be in-sync and not returning a response to the adver-
sary A as long as A supplies (parts of) the original ciphertext stream output by
the left-or-right sending oracle O\ 4R in correct sequential order. When A deviates
from the original ciphertext stream, the Orec, oracle is considered out of sync and,
from that point on, the output of the Recv algorithm is given to the adversary.

For a sound definition we are faced with the question: At which point ezactly
shall Ogecy be considered out-of-sync? Boldyreva et al. decided to stay close to the
original definitions of Bellare et al. and conservatively defined synchronization to
be lost at ciphertext boundaries (i.e., their notion reveals the decryption of the
full ciphertext as output by Send whenever any part of it is modified). However
this option is inappropriate in our stream-based setting where the output of Send
is not necessarily an atomic unit.

As an example to illustrate this, consider the case of TLS and the Send
algorithm being called on a (2'* + 1)-byte input message with the flush flag set
to 1—mimicking the behavior of many TLS implementations that keep no send
buffer. Obeying the limit of at most 2'* bytes payload in a single TLS record,
Send is forced to output a ciphertext fragment which contains (at least) two
TLS records. An adversary which now forwards this fragment to the decryption
oracle in the IND — sfCFA definition of Boldyreva et al. [9, Definition 4] with
the second record modified but the first record untouched will be provided with
the decryption of both records, thereby trivially revealing parts of the challenge
message string.

Mindful of this example and taking into account that the output of Send in
our case is a bit stream without any further structure in general, the natural
choice appears to consider Oge, to become out-of-sync exactly when the first
bit of its ciphertext stream input deviates from the genuine output of Send.
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Exptdy " (17): If A queries Oree(c):
1 (sts,stgr) < Init(1*) 1 if sync = 0 then
2 sync + 1 2 (str,m) s Recv(stg,c)
3 Csg«e, Crtc 3  return m to A
4 b g A1) OLor(+):Oreey () 4 else if Cr||c < Cs then
5 return b’ 5 Cr+ Cglle
6  (str,m) <s Recv(stg,c)
If A queries Oror(mo, m1, f): 7 returneto.A
8 else

1 if |mo| # |ma| then

2  return € to A

3 (sts,c) s Send(sts, my, f)
4 Cs «— Csﬂc

5 return ¢ to A

9 sync+ 0
10 ¢+ [Cglle,Cs] % Cr
11 stg + stg
12 (stgr,m) <s Recv(stg, )
13 (stgr,m) <5 Recv(stg,c)
14 m + m%[m,m)

15 return m’ to A

Fig. 2. Security experiment for confidentiality (IND — atk) of stream-based channels.
A CPFA-attacker only has access to the oracle Opor.

In more detail, we define our stream-based confidentiality notions IND — CPFA
(indistinguishability under chosen plaintext-fragment attack) and IND — CCFA
(indistinguishability under chosen ciphertext-fragment attack) through the exper-

iment Expt'c'\llq?;atk’b (where atk is a placeholder for either CPFA or CCFA), depicted

in Fig. 2. The adversary’s goal in the experiment ExptlcﬁD;atk’b is to guess the bit b.

In the experiment the O\ 4r oracle provides the adversary with the response of Send
to the (left or right) message fragment input. The oracle first checks if the input
message fragments mg and m, have the same bit length (i.e., |mg| = |m|). If this
is the case, it invokes Send on my, adds its response ¢ to the internal ciphertext
stream variable C's and provides A with c.

The Ogecy oracle in the experiment processes the ciphertext fragment input
(thereby updating the receiving state stg ), but artificially suppresses the out-
put of Recv as long as the fragments are in sync. In case synchronization has
been already lost (i.e., sync = 0), ORecy simply passes the output of Recv to A.
Otherwise, it checks whether the concatenation C'g of ciphertext fragments seen
so far together with the current fragment c is still a prefix of the ciphertext
stream C's output by Ojr: if this is the case, Recv is invoked on ¢ but its
output is suppressed. Otherwise ORecy is now considered out-of-sync and there
are two definitional options available, both following the paradigm of giving as
much information to the adversary as possible without enabling trivial attacks:
The first option is to split the call to the receiver into two, one for the longest
common prefix ¢ of the received ciphertext ¢ which still matches the ciphertext
stream Cg output by O|or, and one for the remaining ciphertext part where they
diverge. The second option, and this is the one we use here and which turns out
to be more appropriate than the first one (as we discuss in the full version), is to
run the receiver on the full ciphertext ¢ and later suppress parts of the message
stream which the receiver would have obtained when run on ¢.
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More formally, our suppression strategy on the level of the message stream
first simulates a Recv call on a copy of the current state str, and ¢ and registers
its output m. Second, Recv is regularly invoked (again for the original state
stp,) on the full ciphertext fragment ¢ provided by the adversary, resulting in
a message m being output. Finally, the common prefix of m and m (i.e., any
potential challenge message stream bits in m) is suppressed and the remaining
part of m is passed to A.

Definition 3 (IND — CPFA and IND — CCFA Security). Let Ch = (Init, Send,
Recv) be a stream-based channel and experiment Exptlcm?;atk’b(l)‘) for an adver-
sary A and a bit b be defined as in Fig. 2, where atk is a placeholder for either
CPFA or CCFA. Within the experiment the adversary A is given access to a
(stateful) left-or-right sending oracle O\or and, in the case of IND — CCFA secu-
rity, a (stateful) receiving oracle Oreey. We say that Ch provides indistinguisha-
bility under chosen plaintext-fragment (resp. ciphertext-fragment) attacks
(IND — CPFA resp. IND — CCFA) if for all PPT adversaries A the following
advantage function is negligible in the security parameter:

AVE L™ (V) = |Pr [Exptdy 1 (1%) = 1] = Pr [Bxpeliy (1) = 1]

For the sake of completeness we comment on the alternative, intuitively
appealing way for defining the receiving oracle by splitting the ciphertext in
our setting in in the full version, which however leads to a confidentiality notion
that only covers a smaller class of channels.

4.2 Integrity

In this section we formalize integrity notions for stream-based channels. We high-
light that, while integrity properties for atomic messages (and atomic cipher-
texts) are well-understood, no previous work considered integrity in the non-
atomic setting. In particular Boldyreva et al. [9] only addressed confidential-
ity in the presence of ciphertext fragmentation. We define integrity notions
for stream-based channels as refinements of standard (stateful) properties of
plaintext integrity (INT — sfPTXT), resp., ciphertext integrity (INT — sfCTXT)
from [5] and refer to the new properties as plaintext-stream integrity, resp.,
ciphertezt-stream integrity (INT — PST, resp., INT — CST).

Similarly to the setting with atomic messages, INT — PST ensures that no
adversarial query to the receiving oracle causes the message stream output
by Recv to deviate from the message stream input to Send. Formalizing the
stronger INT — CST property demands more care. Intuitively, from ciphertext
integrity we expect that when processing any ‘out-of-sync’ ciphertext, the algo-
rithm Recv should return an error message. However, when considering a stream-
based interface it may happen that Recv processes an out-of-sync ciphertext
which does not yet contain ‘enough information’ to be recognized as being
invalid; in this case the receiving algorithm would buffer (part of) the ciphertext
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and wait for further fragments until a sufficiently long ciphertext string is avail-
able to be processed and deemed as valid or invalid. In such a scenario, a naive
adaptation of the INT — sfCTXT definition of [5] would allow trivial attacks by
declaring successful any adversary that makes the Recv buffer (part of) an out-of-
sync ciphertext. Our notion of ciphertext-stream integrity carefully identifies the
case just described and, by letting the receiving oracle wait for further ciphertext
fragments, declares the adversary successful only if Recv outputs a non-emtpy
message fragment resulting from an out-of-sync portion of the ciphertext stream.

Exptdy 2™ (1*): INT-CST
1 (sts,str) s Init(1*) If A queries Orecv(c):
2 sync < 1,win < 0 1 if sync = 0 then
3 Ms,Cs — g, MR,CR<—E 2 (StR,m) s ReCV(StR,C)

4 A(17)Osend () OReer () 3 ifm¢E” then win + 1
5 return win 4 else if Cr||c < Cs then
5  (str,m) <s Recv(stg,c)
If A queries Osend(m, f): g | Cr < Crlle
1 (st Send(st else
(sts,c) <5 Send(sts, m, f) 8 sync 0

2 Mg < M5||m
3 Cs <—05HC
4 return c to A

9 E(—[CRHC,Cs]%CR
10 stg < stg
11 (stg,m) < Recv(str, c)
12 (str,m) < Recv(stg,c)
INT-PST 13 m < m%[m,m]
If A queries Ogee(c): 14 if m’ ¢ £ then win + 1

1 (str,m) ¢s Recv(str,c) 15 return m to A

2 Mg <+ MRHm

3 if MR 74 MS and

Mg % [MR,Ms} ¢ E* then
4 win+1
5 return m to A

Fig. 3. Security experiment for integrity (INT — atk) of stream-based channels. An
PST-attacker is provided with access to the middle Ogecy oracle (INT — PST), whereas a
CST-attacker is instead granted access to the oracle on the right-hand side (INT — CST).

We formalize integrity of plaintext and ciphertext streams through the secu-
rity experiment Expt'c'\:lftk depicted in Fig.3. The experiment provides the
adversary with oracles Osenq and ORgecy, where the former grants A access to algo-
rithm Send under arbitrarily chosen message fragments and the latter gives A an
interface with algorithm Recv. We highlight that, while the sending oracle Oseng
is common for both experiments INT — PST and INT — CST, the receiving ora-
cle Ogecv follows different procedures in the two cases, as we further explain
below.

In the execution of the INT — PST experiment, Oseng maintains in string Mg

the stream of all sent message fragments and, analogously, Orecy maintains in Mg
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the stream of all received message fragments (and/or error symbols). The adver-
sary wins the game if it causes Mg and Mp to deviate in such a way that
their difference contains more than error symbols. Formally, we demand that
the string Mg output by the receiver is not a prefix of the sender’s string Mg,
but such that this prefix-freeness is not only due to error symbols from &.

In the INT — CST experiment oracles Oseng and Oreey, maintain strings Cg
and Cp to record the streams of sent ciphertexts resp. received ciphertext frag-
ments. Furthermore, Orec, decides when the adversary wins by inspecting sent
and received ciphertext streams, an inherently more complex task than looking
for deviations in the underlying sequences of sent/received message fragments.
Indeed, in a stream-based channel the algorithm Recv may need to buffer several
ciphertexts before being able to recover the underlying message stream or detect-
ing that an error occurred; such a behavior is reflected in our experiment. When
processing in-sync ciphertexts Oreey Simply appends each new fragment to Cg.
In the moment when an out-of-sync ciphertext arrives, the oracle compares the
outputs of algorithm Recv when processing (i) the current input ciphertext ¢
and (ii) its longest in-sync prefix ¢. The adversary wins if Ogee, oOutputs more in
case (i) than it would in case (ii) and if the difference between the two outputs
is a non-empty, valid message. It also wins if it is able to make Recv output a
non-empty, valid message with a subsequent out-of-sync ciphertext.

Definition 4 (INT — PST and INT — CST Security). Let Ch = (Init,Send,
Recv) be a stream-based channel and experiment Expt'c'\ﬂ;atk(l/\) for an adver-
sary A be defined as in Fig. 2, where atk is a placeholder for either PST or
CST. Within the experiment, the adversary A is given access to a sending ora-
cle Oseng and a receiving oracle Oreev. We say that Ch provides integrity of
plaintext streams (resp. ciphertext streams) (INT — PST resp. INT — CST) if
for all PPT adversaries A the following advantage function is negligible in the
security parameter:

AQVETT™ () = Pr [Exptdi (1) = 1]

Remark 3. Our definitions of integrity do not preclude from being secure those
channels in which message bits can be output as a result of the adversary deliv-
ering partial ciphertexts to the Recv oracle. This is because in the streaming
setting we care about the adversary’s ability to force the receiver to accept mes-
sage fragments corresponding to a part of the ciphertext stream that has gone
out-of-sync, without attaching importance to ciphertext boundaries. Hence, this
is quite distinct from the usual ‘atomic’ setting. In particular, applications that
use a streaming channel to transmit atomic messages must take extra care to
ensure no partially retrieved message fragment from the streaming channel is
processed as if it was a complete (atomic) message, as such misinterpretation
can lead—and in the past has led—to attacks [7,35].

We further note that stream-based integrity providing weaker guarantees
than atomic-message integrity seems to be an intrinsic consequence of the nature
of stream-based channels. In particular, apparent avenues of strengthening the
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given integrity definition lead to notions which are clearly inappropriate in the
streaming setting. On the one hand, requiring a channel to output an error imme-
diately after processing the first bit deviating from the sent ciphertext stream
is, for most constructions, an unattainable goal as it is in general impossible to
decide if an initial bit received is genuine or not. On the other hand, requiring
that a channel does not output any message bit until a full ciphertext output
by Send is received inappropriately enforces an atomic structure on the channel,
i.e., basically the one of [9] which, as already discussed, is too strong for channels
that, like TLS, might output ciphertexts which contain multiple, independent
parts.

4.3 Relations Amongst Notions and Generic Composition Theorem

Due to space restrictions we comprehensively discuss the relations among the intro-
duced security notions for the streaming setting only in the full version. In short,
we show that, for both confidentiality and integrity, the stronger notion implies
the weaker one, i.e., IND — CCFA = IND — CPFA and INT — CST = INT — PST,
as one might expect. Further, we extend the composition result from [6]—that
(stateful) IND — CPA and INT — CTXT together imply (stateful) IND — CCA—
to our streaming setting. Interestingly, the analogous prerequisites IND — CPFA
and INT — CST alone are not sufficient to establish the composition result in our
case: we additionally require the channel to be error predictable (ERR — PRE). The
latter notion, defined only in the full version due to space restrictions, formalizes
the ability to efficiently predict the error messages that should be obtained when
the receiving algorithm fails.

Error predictability assists the security proof for our composition theorem
in two ways. First, it allows us to deal with the problem of having multiple
decryption errors [10]. This problem also appears in the atomic setting and
has been surmounted there by considering only single error messages [6] or by
restricting the likelihood of different error messages to appear [10]. Our notion of
error predictability gives a more general approach which is also applicable in the
atomic setting. Secondly, error predictability directly supports the reduction to
the integrity property INT — CST in our proof. In our stream-based scenario we
basically must be able to tell if the receiver is still buffering ciphertext fragments,
or if it can already produce an error message. Error predictability gives us exactly
this.

We stress, and will expand in Sect. 5, that error predictability can be met
by natural constructions. The composition result for stream-based channels is
summarized in the theorem below. We provide a formal proof of this result in
the full version.

Theorem 1 (INT — CST A IND — CPFA A ERR — PRE = IND — CCFA). Let
Ch = (Init, Send, Recv) be a (correct) stream-based channel with associated error
space E. If Ch provides integrity of ciphertext streams, error predictability, and
indistinguishability under chosen plaintext-fragment attacks then it also pro-
vides indistinguishability under chosen ciphertext-fragment attacks. Formally, for
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every efficient IND — CCFA adversary A there exist efficient INT — CST adver-
sary B, ERR — PRE adversary C, and IND — CPFA adversary D such that

IND—CCFA INT—CST ERR—PRE IND—CPFA
AdVCh,A <2- AdVCh,B +2- AdVCh,c + Adeh7D .

5 Construction of Stream-Based Channels

In this section we demonstrate the feasibility of our security notions by providing
a generic construction of stream-based channels which directly bases on the
well-established primitive of authenticated encryption with associated data and
provides strong security in terms of confidentiality as well as integrity. Although
it is rather illustrative than definitive, we remark that our construction is quite
close to the TLS Record Protocol.

We define the generic construction of a stream-based channel Chagap =
(Init, Send, Recv) based on an authenticated encryption with associated data
(AEAD) scheme AEAD = (Enc, Dec) with key space K and distinguished error
symbol L as introduced by Rogaway [32].> The encryption algorithm Enc: K x
{0,1}* x {0,1}* — {0,1}* on input a key, an associated data string, and a mes-
sage, outputs a ciphertext. The decryption algorithm Dec: Kx{0,1}*x{0,1}* —
({0,1}* U{L}) on input a key, an associated data string, and a ciphertext, out-
puts either a message or the distinguished error symbol. We assume that the
AEAD scheme allows the encryption of variable-length messages of up to il bits
and that the ciphertext output for such messages has length at most 2°' — 1 bits.
This enables us to encode the length of ciphertexts with a fixed-size string of ol
bits.

Our channel construction Chagap is displayed in Fig. 4 and has sending state
space Sg = K x N x {0, 1}*, receiving state space Sp = K x N x {0,1}* x {0,1},
and error space & = {L}. The channel works as follows.

— The Init algorithm first draws uniformly at random a key K for the AEAD
scheme. It then initializes the sending and receiving state respectively as tuples
containing key K, a sequence number set to 0, and a message-fragment resp.
ciphertext-fragment buffer initially empty; the receiving state also contains a
failure flag, initially set to 0.

— The Send algorithm keeps on buffering input message strings until it has
collected at least il bits. If sufficiently many bits have been collected, then
Send encrypts message chunks m’ of length il bits using the AEAD scheme on
input message m’ and associated data a running sequence number seqno.* The
ciphertext generated is then prepended with the binary encoding of its size

w

Although our construction does not incorporate nonces it can easily be extended to
the nonce-based setting as originally defined by Rogaway [32].
A more natural construction in the nonce-based setting would use seqno as the
encryption nonce and have empty associated data input. We have chosen the current
construction because of its closeness to TLS, which treats its sequence number as
associated data.
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(with the fixed number of ol bits) and the result appended to the ciphertext
string ¢ to be output. Note that the size encoding is not authenticated. In
case the Send algorithm was called with the flush flag set to 1, in a final step
it also encrypts any remaining buffered message in the same way, in order to
empty the message buffer (this message will potentially be of length smaller
than il).

— The Recv algorithm outputs an error (without any further state modifica-
tion) once a first error has emerged from the AEAD decryption algorithm
in some previous call; otherwise, it appends the incoming ciphertext frag-
ment to its buffer. In case enough bits to parse the length field of ol bits
were received it does so. Next, it checks whether the buffer contains the com-
plete AEAD ciphertext of the indicated length and, if so, strips it from the
buffer, decrypts it (incrementing the sequence number used in the associated
data), and appends the result to the message to be output. This process is
repeated until there is no completely parsable ciphertext left. However, in case
the AEAD decryption algorithms outputs an error, after appending this error
symbol to the output message, the Recv algorithm sets the failure flag fail to 1
and stops parsing further input.

Correctness of Chagap follows from the correctness of the AEAD scheme.

Security Analysis. Our generic stream-based channel construction Chagap from
Fig.4 provides indistinguishability under chosen plaintext-fragment attacks
(IND — CPFA), integrity of ciphertext streams (INT — CST), and error predictabil-
ity (ERR — PRE), given that the underlying authenticated encryption with asso-
ciated data scheme AEAD provides indistinguishability under chosen plaintext
attacks (IND — CPA) and authenticity (AUTH) as defined by Rogaway [32].% Using
Theorem 1 we can moreover infer that it also provides indistinguishability under
chosen ciphertext-fragment attacks (IND — CCFA). We provide the detailed secu-
rity analysis in the full version of this paper.

5.1 A Note on the TLS Record Protocol

As discussed earlier, the Transport Layer Security (TLS) Record Protocol imple-
ments a stream-based channel whose complete analysis as such lies outside of
the scope of this work. However we do pause to note that our construction of a
stream-based channel based on authenticated encryption with associated data is
actually very close to the TLS Record Protocol when using an AEAD scheme as
specified for TLS version 1.2 [15, Section 6.2.3.3] and in the current draft for TLS
version 1.3 [16, Section 6.2.2]: the Record Protocol also incorporates a sequence
number which is authenticated but not sent on the wire and a length field which
is sent and authenticated in TLS 1.2 (and which is sent but not authenticated

® Note that Rogaway [32] actually defines the stronger IND$- CPA notion which implies
IND — CPA security based on a standard left-or-right encryption oracle. We only
require IND — CPA though as it is sufficient for our security proof.
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Init(1%): Recv(str, c):
1 K+ K 1 parse str as (K, seqno, buf, fail)
2 stso = (K,0,¢) 2 if fail = 1 then
3 stro = (K,0,¢,0) 3 return (stg,l)
4 return (sts,o,Str,0) 4 buf < buf||c
5 m<«¢
Send(sts,m, f): 6 while |buf| > ol do
1 parse sts as (K, seqno, buf) 7  parse buf[l,...,ol] as integer £
2 buf « buf||m 8 if |buf| > ol + ¢ then
3 e e 9 len + buf[1,...,o0l|
4 while |buf| > il do 10 ¢+ buffol + 1, .. . ol + ¢
5 m' < buf[l,...,il] 11 buf < buf % len||c
6  buf < buf %m’ 12 m’ + Deck (seqno, ¢’)
7 ¢ + Enck(seqno,m’) 13 seqno <— seqno + 1
8  seqno + seqno + 1 14 m <_/ m|im/
9 c«cll|d]] ¢ for|c] € {0,1} 15 if m" = L then
10 if f =1 and buf # & then 16 fail <1
11 ¢ « Enck(seqno, buf) 17 break
12 seqno < seqno + 1 18 else
13 cc||d]]| ¢ for || € {0,1} 19 break
14  buf — e 20 str <+ (K, seqno, buf, fail)
15 sts + (K, seqno, buf) 21 return (str,m)
16 return (sts,c)

Fig. 4. A generic construction of a stream-based channel Chagap = (Init, Send, Recv)
from any authenticated encryption with associated data (AEAD) scheme AEAD =
(Enc, Dec) with key space K and distinguished error symbol L which allows to encrypt
variable-length messages of up to il bits and for which the ciphertext output has length
at most 2° — 1 bits.

in TLS 1.3).% However, the TLS Record Protocol additionally includes a 2-byte
version number and a 1-byte content type; these are both sent and authenticated
in the associated data. Moreover, the AEAD schemes used are considered to be
nonce-based, though the exact nonce generation is left to be specified by the
particular cipher suite in use.

The content type field in particular allows TLS to multiplex data streams
for different purposes within a single connection stream, as TLS does for the
Handshake Protocol, the Alert Protocol, the ChangeCipherSpec protocol, and
the Application protocol. While our model does not capture multiplexing several
message streams into one ciphertext stream, it can be augmented to do so. This
brings additional complexity and is an avenue for future work.

5 That is, our approach of using a length field which is sent on the wire but not part of
the authenticated associated data conforms with the approach adopted in TLS 1.3.
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6 Conclusion

In this work we approached the security of channels designed to (securely) con-
vey a stream of data from one party to another, narrowing the gap between
real-world transport layer security protocols (like TLS or SSH) and our theoret-
ical understanding of them. For this purpose, we formalized the syntax of such
stream-based channels, explored strong security notions, and demonstrated their
feasibility by providing a natural and secure construction which closely mimics
the operation of the TLS Record Protocol.

Our approach sheds a formal light on recent attacks, in particular concern-
ing the use of HTTP over TLS, confirming a disjunction between applications’
expectations on the one hand and the guarantees that secure streaming channels
provide on the other. This highlights that there is a need for detailed specifica-
tions of APIs and security guarantees for such protocols.

Our work also raises new research questions. Naturally, exploring the exact
relation between stream-based and atomic-message channels is an avenue that
should be pursued, with the development of detailed relations between security
notions in our work and those in [9] as a specific task. Considering established
techniques, the open question remains whether the well-accepted concept of
length-hiding encryption can be incorporated in the stream-based setting despite
being intrinsically connected to atomic messages. It also seems worthwhile to
extend our stream-based model to encompass channel protocol designs (such as
TLS and QUIC) that allow multiplexing of several data streams within a single
channel.
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