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Abstract. In this paper we consider the problem of extracting secret
key from an eavesdropped source pXY Z at a rate given by the conditional
mutual information. We investigate this question under three different
scenarios: (i) Alice (X) and Bob (Y ) are unable to communicate but
share common randomness with the eavesdropper Eve (Z), (ii) Alice
and Bob are allowed one-way public communication, and (iii) Alice and
Bob are allowed two-way public communication. Distributions having
a key rate of the conditional mutual information are precisely those in
which a “helping” Eve offers Alice and Bob no greater advantage for
obtaining secret key than a fully adversarial one. For each of the above
scenarios, strong necessary conditions are derived on the structure of
distributions attaining a secret key rate of I(X : Y |Z). In obtaining
our results, we completely solve the problem of secret key distillation
under scenario (i) and identify H(S|Z) to be the optimal key rate using
shared randomness, where S is the Gács-Körner Common Information.
We thus provide an operational interpretation of the conditional Gács-
Körner Common Information. Additionally, we introduce simple example
distributions in which the rate I(X : Y |Z) is achievable if and only if
two-way communication is allowed.

Keywords: Information-theoretic security · Public key agreement ·
Gács-Körner Common Information

1 Introduction

A basic information-processing task involves the exchange of secret information
between Alice (X) and Bob (Y ) in the presence of an eavesdropper, Eve (E). If
Alice and Bob have some pre-established key that is secret from Eve, then any
future message M can be transmitted using the key as a one-time pad. Thus,
the problem of private communication can be reduced to the problem of secret
key distillation, which studies the extraction of secret key ΦXY · qZ from some
initial tripartite correlation pXY Z . Here, ΦXY is a perfectly correlated bit and
qZ is an arbitrary distribution. Often, the correlations pXY Z are presented as a
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many-copy source pn
XY Z , and Alice and Bob wish to know the optimal rate of

secret bits per copy that they can distill from this source.
It turns out that Alice and Bob can often enhance their distillation capa-

bilities by openly disclosing some information about X and Y through public
communication [1,8]. In general, Alice and Bob’s communication schemes can
be interactive with one round of communication depending on what particular
messages were broadcasted in previous rounds. Such interactive protocols are
known to generate higher key rates than non-interactive protocols, at least in
the absence of “noisy” local processing by Alice and Bob [8]. Thus, for a given dis-
tribution pXY Z , one obtains a hierarchy of key rates pertaining to the respective
scenarios of no communication, one-way communication, and two-way (interac-
tive) communication. It is also possible to consider no-communication scenarios
in which Alice and Bob have access to some publically shared randomness that is
uncorrelated with their primary source pXY Z . Clearly publically shared random-
ness is a weaker resource than public communication since the latter is able to
generate the former. However, below we will prove even stronger that publically
shared randomness offers no advantage whatsoever for secret key distillation.

For the one-way communication scenario, a single-letter characterization of
the key rate has been proven by Ahlswede and Csiszár [1]. When the unidirectional
communication is from Alice to Bob, we denote the key rate by

−→
K(X : Y |Z),

while
←−
K(X : Y |Z) denotes the rate when communication is from Bob to Alice

only. No formula is known for the two-way key rate of a given distribution, which
we denote by K(X : Y |Z), and the complexity of protocols utilizing interactive
communication makes computing this a highly challenging open problem.

In the special case of an uncorrelated Eve in pXY Z , the key rate is given
by the mutual information I(X : Y ), and this can be achieved using one-way
communication. For more general distributions in which Eve possesses some side
information of XY , the conditional mutual information I(X : Y |Z) is a known
upper bound for the key rate under two-way communication [1,8]. In general
this bound is not tight [9]. Rather, the conditional mutual information quantifies
the key rate when Eve helps Alice and Bob by broadcasting her variable Z. Key
obtained by a helping Eve is also known as private key [4], and private key is still
secret from Eve even though she helps Alice and Bob obtain it. The relevance
of private key naturally arises in situations where Eve functions as a central
server who helps establish secret correlations between Alice and Bob. Thus,
distributions with a secret key rate equaling the private key rate of I(X : Y |Z)
are precisely those in which nothing is gained by a helping Eve.

The objective of this paper is to investigate the types of distributions for
which I(X : Y |Z) is indeed an achievable secret key rate. This will be considered
under the scenarios of (i) publically shared randomness but no communication,
(ii) one-way communication, and (iii) two-way communication. A full solution
to the problem would involve a structural characterization of the distributions
pXY Z whose key rates are I(X : Y |Z). We are able to fully achieve this only
for the no-communication setting, but we nevertheless derive strong necessary
conditions for both the one-way and the two-way scenarios. In the case of one-
way communication, our condition makes use of the key-rate formula derived
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by Ahlswede and Csiszár. For the statement of this formula, recall that three
variables A, B, and C satisfy the Markov chain A − B − C if C is conditionally
independent of A given B; i.e. p(c|b, a) = p(c|b) for letters in the range of A, B,
and C. Then,

Lemma 1 ([1]). For distribution pXY Z ,

−→
K(X : Y |Z) = max

KU |X
I(K : Y |U) − I(K : Z|U), (1)

where the maximization is taken over all auxiliary variables K and U satisfying
the Markov chain KU − X − Y Z, with K and U ranging over sets of size no
greater than |X | + 1. In particular,

−→
K(X : Y |Z) � I(X : Y ) − I(X : Z). (2)

In this paper, we consider when variables KU can be found that satisfy both
KU −X−Y Z and I(K;Y |U)−I(K;Z|U) = I(X : Y |Z). Theorem 2 below offers
a necessary condition on the structure of distributions for which this is possible.
Turning to the scenario of two-way communication, we utilize the well-known
intrinsic information upper bound on K(X : Y |Z). For distribution pXY Z , its
intrinsic information is given by

I(X : Y ↓ Z) := min
Z|Z

I(X : Y |Z) (3)

where the minimization is taken over over all auxiliary variables Z satisfying
XY −Z −Z, with Z having the same range as Z [3]. Thus, the intrinsic informa-
tion is the smallest conditional mutual information achievable after Eve processes
her variable Z. The intrinsic information satisfies K(X : Y |Z) � I(X : Y ↓ Z).
In Theorem 3 below, we identify a large class of distributions for which a channel
Z|Z can be found satisfying I(X : Y |Z) < I(X : Y |Z). This allows us to derive
a necessary condition on distributions having K(X : Y |Z) = I(X : Y |Z).

A brief summary of our results is the following:

– For publically shared randomness with no communication, we identify
H(JXY |Z) as the secret key rate, where JXY is the Gács-Körner Common
Information of Alice and Bob’s marginal distribution pXY . Moreover, this
rate is achievable without using shared randomness. Using this result, the
structure of distributions attaining I(X : Y |Z) can easily be characterized.

– When one-way communication is permitted between Alice and Bob, we show
that the distribution pXY Z must satisfy a certain “block-like” structure in
order to obtain the key rate I(X : Y |Z). Specifically, given some outcome z of
Eve, if there exists collections of events X0 and Y0 for Alice and Bob respec-
tively that satisfy p(Y0|X0, z) = p(X0|Y0, z) = 1, then p(Y0|X0) = p(X0|Y0) =
1; i.e. conclusive determination of whether an event belongs to X0 × Y0 can
be done by each party, regardless of Eve’s outcome.
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– For key distillation with two-way communication, we show that distributions
attaining a key rate of I(X : Y |Z) must also satisfy a certain type of uni-
formity similar to the one-way case. One special class of distributions our
necessary condition applies to are those obtained by mixing a perfectly cor-
related distribution pXY with an uncorrelated one such that the marginals
have the same range and such that Eve’s variable Z specifies which one of the
distributions Alice and Bob hold. We show that unless either Alice or Bob
can likewise identify the distribution from his or her variable, a key rate of
I(X : Y |Z) is unattainable.

– We construct distributions in which a distillation rate of I(X : Y |Z) is
unachievable when the communication is restricted from Alice to Bob, and
yet it becomes achievable if the communication direction is from Bob to Alice.
We further provide an example when I(X : Y |Z) is achievable only if two-way
communication is used.

Before presenting these results in greater detail, we begin in Sect. 2 with a
more precise overview of the key rates studied in this paper. In Sect. 3, we then
present the Gács-Körner Common Information and prove some basic proper-
ties. Section 4 contains our main results, with longer proofs postponed to the
appendix. Finally, Sect. 5 offers some concluding remarks.

2 Definitions

Let us review the relevant definitions of secret key rate under various communi-
cation scenarios. We consider random variables X, Y and Z ranging over finite
alphabets X , Y, and Z respectively. For a general distribution q, we say its
support (denoted by supp[q]) is the collection of x such that q(x) > 0. In all dis-
tillation tasks, we assume that Alice and Bob each have access to one part of an
i.i.d. (identical and independently distributed) source XY Z whose distribution
is pXY Z . Hence, after n realizations of the source, Xn, Y n and Zn belong to
Alice, Bob, and Eve respectively. In addition, Alice and Bob each possess a local
random variable, QA and QB respectively, which are mutually independent from
each other and from XnY nZn. This allows them to introduce local randomness
into their processing of XnY n.

We first turn to the most restrictive scenario, which is key distillation using
publicly shared randomness. The common randomness (c.r.) key rate of X, Y ,
and Z, denoted by Kc.r.(X : Y |Z), is defined to be the largest R such that for
every ε > 0, there is an integer N such that n � N implies the existence of (a)
a random variable W independent of XnY nZn and ranging over some set W,
(b) a random variable K ranging over some set K, and (c) a pair of mappings
f(Xn, QA,W ) and g(Y n, QB ,W ) for which

(i) Pr[f = g = K] > 1 − ε;
(ii) log |K| − H(K|ZnW ) < ε;
(iii) 1

n log |K| � R.
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We next move to the more general scenario of when Alice and Bob are allowed
to engage in public communication. A local operations and public communica-
tion (LOPC) protocol consists of a sequence of public communication exchanges
between Alice and Bob. The ith message exchanged between them is described
by the variable Mi. If Alice (resp. Bob) is the broadcasting party in round i,
then Mi is a function of Xn and QA (resp. Y n and QB) as well as the previous
messages (M1,M2, · · · ,Mi−1). The protocol is one-way if there is only one round
of a message exchange.

For distribution pXY Z , the Alice-to-Bob secret key rate
−→
K(X : Y |Z) is the

largest R that satisfies the above three conditions except with W being replaced
by some message M that is generated by Alice and therefore a function of (Xn,
QA). We can likewise define the Bob-to-Alice key rate

←−
K(X : Y |Z). The (two-

way) secret key rate of X and Y given Z, denoted by K(X : Y |Z), is defined
analogously except with M = (M1,M2, · · · ,Mr) being any random variable gen-
erated by an LOPC protocol [1,8]. The key rates satisfy the obvious relationship:

Kc.r.(X : Y |Z) �
{−→

K(X : Y |Z)←−
K(X : Y |Z)

� K(X : Y |Z). (4)

3 The Gács-Körner Common Information

In this section, we introduce the Gács-Körner Common Information. For every
pair of random variables XY , there exists a maximal common variable JXY in
the sense that JXY is a function of both X and Y , and any other such common
function of both X and Y is itself a function of JXY . Hence, up to relabeling,
the variable JXY is unique for each distribution pXY . In terms of its structure,
a distribution pXY can always be decomposed as

p(x, y) =
∑

JXY =j

p(x, y|j)p(j), (5)

where for any x, x′ ∈ X and y, y′ ∈ Y, the conditional distributions satisfy
p(x, y|j)p(x, y′|j′) = 0 and p(x, y|j)p(x′, y|j′) = 0 if j �= j′. Gács and Körner
identify H(JXY ) as the common information of XY [6].

It is instructive to rigorously prove the statements of the preceding para-
graph. A common partitioning of length t for XY are pairs of subsets (Xi,Yi)t

i=1

such that

(i) Xi ∩ Xj = Yi ∩ Yj = Ø for i �= j,
(ii) p(Xi|Yj) = p(Yi|Xj) = δij , and
(iii) if (x, y) ∈ Xi × Yi for some i, then pX(x)pY (y) > 0.

For a given common partitioning, we refer to the subsets Xi ×Yi as the “blocks”
of the partitioning. The subscript i merely serves to label the different blocks,
and for any fixed labeling, we associate a random variable C(X,Y ) such that
C(x, y) = i if (x, y) ∈ Xi × Yi. Note that each party can determine the value of
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J from their local information, and it is therefore called a common function of
X and Y . A maximal common partitioning is a common partitioning of greatest
length. The following proposition is proven in the appendix.

Proposition 1
(a) Every pair of finite random variables XY has a unique maximal common

partitioning, which we denote by JXY .
(b) Variable JXY satisfies

H(JXY ) = max
K

{H(K) : 0 = H(K|X) = H(K|Y )}

iff JXY is a common function for the maximal common partitioning of XY .
(c) If f(X) = g(Y ) = C is any other common function of X and Y , then

C(JXY ).

With property (a), we can speak unambiguously of the maximal common par-
titioning of a distribution pXY . Consequently the variable JXY is unique up to
a relabeling of its range. The following proposition from [6] provides a useful
characterization of values x and x′ that belong to the same block in a maximal
common partitioning.

Proposition 2 ([6]). If JXY (x) = JXY (x′) for x, x′ ∈ JXY , then there exists
a sequence of values

xy1x1y2x2 · · · ynx′

such that p(x, y1)p(y1, x1)p(x1, y2) · · · p(yn, x′) > 0.

4 Results

4.1 Key Distillation Using Auxiliary Public Randomness

The Gács and Körner Common Information plays a central role in the problem
of key distillation with no communication. To see a preliminary connection, we
recall an operational interpretation of H(JXY ) that Gács and Körner prove
in Ref. [6]. The task involves Alice and Bob constructing faithful encodings of
their respective sources X and Y , and H(JXY ) quantifies the asymptotic average
sequence-length of codewords per copy such that both Alice and Bob’s encodings
output matching codewords with high probability over this sequence [6].

For the task of key distillation, Alice and Bob are likewise trying to con-
vert their sources into matching sequences of optimal length. However, the key
distillation problem is different in two ways. On the one hand there is the addi-
tional constraint that the common sequence should be nearly uncorrelated from
Eve. On the other hand, unlike the Gács-Körner problem, it is not required that
these sequences belong to faithful encodings of the sources X and Y . Neverthe-
less, we find that H(JXY |Z) quantifies the distillable key when Alice and Bob
are unable to communicate with one another. This is also the rate even if Alice
and Bob have access to auxillary public randomness which is uncorrelated with
their primary distribution.
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Theorem 1. Kc.r.(X : Y |Z) = H(JXY |Z). Moreover, H(JXY |Z) is achievable
with no additional common randomness.

Proof. See the appendix. Many parts of the converse proof follow analogously
to the converse proof of Theorem 2.6 in Ref. [4] (see also [5]).

One can also consider a related quantity known as the maximal conditional
common function JXY |Z , which is the collection of variables {JXY |Z=z : z ∈ Z}
with JXY |Z=z being a maximal common function of the conditional distribution
pXY |Z=z. The variable JXY |Z is again unique for every distribution pXY Z up to
relabeling. Since JXY |Z=z is computed from both X and Y with the additional
information that Z = z, maximality of JXY |Z=z ensures that JXY is a function
of JXY |Z=z for each z ∈ Z. In other words, a labeling of JXY and JXY |Z can
be chosen so that JXY is a coarse-graining of JXY |Z . Therefore, H(JXY |Z) �
H(JXY |Z |Z) with equality iff H(JXY |Z |ZJXY ) = 0. When the equality condition
holds, it means that for each z ∈ Z, the value of JXY |Z=z can be determined
from JXY alone. Hence, the variables JXY and JXY |Z must be equivalent up to
relabeling. From this it follows that a distribution satisfies H(JXY |Z |ZJXY ) = 0
iff it admits a decomposition of

p(x, y, z) =
∑

JXY =j

p(x, y|z, j)p(j|z)p(z), (6)

where for any x, x′ ∈ X , y, y′ ∈ Y and z, z′ ∈ Z the conditional distributions
satisfy

p(x, y|z, j)p(x, y′|z′, j′) = 0, p(x, y|j)p(x′, y|z′, j′) = 0 if j �= j′.

The class of distributions of this form we shall call uniform block (UB)
(see Fig. 1).

The quantity H(JXY |Z |Z) is the private key rate when Eve is helping yet
Alice and Bob are still prohibited from communicating with one another. Thus,
the difference H(JXY |Z |Z)−H(JXY |Z) quantifies how much Eve can assist Alice
and Bob in distilling key when no communication is exchanged between the two.
From the previous paragraph, it follows that Eve offers no assistance (i.e. the
private key rate equals the secret key rate) in the no-communication scenario iff
the distribution is UB.

Returning to Theorem 1, we can now answer the underlying question of this
paper for no-communication distillation. By using the chain rule of conditional
mutual information and the fact that JXY is both a function of X and Y , we
readily compute

I(X : Y |Z) = I(JXY X : Y |Z) = I(JXY : Y |Z) − I(X : Y |ZJXY )
= H(JXY |Z) − I(X : Y |ZJXY ). (7)

The conditional mutual information is thus an achievable rate whenever I(X :
Y |ZJXY ) = 0. Distributions satisfying this equality are uniform block with
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Fig. 1. Example of a distribution that is not uniform block (a) and one that is (b).
Each entry corresponds to a conditional probability value p(x, y|z). UB distribution (b)
is not uniform block independent (UBI) since the block in the Z = 1 plane contains
correlations between Alice and Bob.

the extra condition that p(x, y|z, j) = p(x|z, j)p(y|z, j) in Eq. (6). We shall
call distributions having this form uniform block independent (UBI). Putting
everything together, we find that

Corollary 1. A distribution pXY Z satisfies Kc.r.(X : Y |Z) = I(X : Y |Z) if
and only if it is uniformly block independent.

Remark 1. The no-communication results discussed above and proven in the
appendix are already implicit in the work of Csiszár and Narayan. In Ref. [4],
they study various key distillation scenarios with Eve functioning as a helper
and limited communication between Alice and Bob. Included in this is the no-
communication scenario with and without helper. However, being very general in
nature, Csiszár and Narayan’s results involve optimizations over auxiliary ran-
dom variables, and it is therefore still a non-trivial matter to discern Theorem 1
and Corollary 1 directly from their work. Additionally, they do not consider the
scenario of just shared public randomness.

4.2 Obtaining I(X : Y |Z) with One-Way Communication

In this section we want to identify the type of tripartite distributions from which
secret key can be distilled at the rate I(X : Y |Z) using one-way communication.
Since K(X : Y |Z) � I(X : Y |Z), our analysis deals with distributions for which
one-way communication suffices to optimally distill secret key. Manipulating
Eq. (1) of Lemma 1 allows us to determine when

−→
K(X : Y |Z) = I(X : Y |Z).

We have that

I(K : Y |U) − I(K : Z|U) = I(K : Y |ZU) − I(K : Z|Y U)
= I(KU : Y |Z) − I(U : Y |Z) − I(K : Z|Y U)
= I(X : Y |Z) − I(X : Y |KUZ) − I(U : Y |Z) − I(K : Z|Y U),
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where K and U satisfy KU − X − Y Z. From this and Lemma 1, we conclude
the following.

Lemma 2. Distribution pXY Z has
−→
K(X : Y |Z) = I(X : Y |Z) iff there exists

variables KUXY Z with K and U ranging over sets of size no greater than |X |+1
such that

(1) KU − X − Y Z, (2) X − KUZ − Y,

(3) U − Z − Y, (4) K − Y U − Z. (8)

The conditions of Lemma 2 allow for the follow rough interpretation. (1) says
that Alice is able to generate variables K and U from knowledge of her variable
X. We think of K as containing the key that Alice and Bob will share and U as
the public message sent from Alice to Bob. (2) says that from Eve’s perspective,
Alice and Bob share no more correlations given U and K. Likewise, (3) says that
from Eve’s perspective, the public message is uncorrelated with Bob. Finally,
(4) says that after learning U , Bob can generate the key K that is independent
from Eve.

Unfortunately, Lemma 2 does not provide a transparent characterization
of the distributions for which

−→
K(X : Y |Z) = I(X : Y |Z). We next proceed

to obtain a better picture of these distributions by exploring additional con-
sequences of the Markov chains in Eq. (8). The following places a necessary
condition on the distributions. We will see in Sect. 4.4, however, that it fails to
be sufficient.

Theorem 2. If distribution pXY Z has either
−→
K(X : Y |Z) = I(X : Y |Z) or←−

K(X : Y |Z) = I(X : Y |Z), then pXY Z must have the following property: For
any z ∈ Z, if Xi×Yi and Xj ×Yj are two distinct blocks in the maximal common
partitioning of pXY |Z=z, then

pXY (Xi,Yj) = 0.

Proof. Without loss of generality, assume that
−→
K(X : Y |Z) = I(X : Y |Z).

For distribution pXY |Z=z with maximal common partition (Xλ,Yλ)t
λ=1, consider

arbitrary (xi, yi) ∈ Xi ×Yi and (xj , yj) ∈ Xj ×Yj . Note that from the definition
of a maximal common partitioning, we have that p(xi, z)p(yi, z) > 0, but we
need not have that p(xi, yi, z) > 0.

We will prove that p(xi, yj , z
′) = 0 for all z′ ∈ Z (clearly this already holds

when z′ = z). Suppose on the contrary that p(xi, yj , z
′) > 0. Since p(xi, z) >

0, there will exist some y′
i ∈ Yi such that p(xi, y

′
i, z) > 0. Then the Markov

chain condition KU − X − Y Z implies that for some (k, u) ∈ K × U such that
p(k, u|xi) > 0, we have

p(k, u|xi) = p(k, u|xi, y
′
i, z) = p(k, u|xi, yj , z

′) > 0. (9)

Equation (9) implies that both p(k, u|y′
i, z) > 0 and p(k, u|yj , z

′) > 0. From
p(u|y′

i, z) > 0 and the Markov chain U − Z − Y , we have that p(u|yj , z) > 0.



452 E. Chitambar et al.

Fig. 2. (a) The conditions of Theorem 2 are violated for this distribution. To see this,
note that the events (X = 1, Y = 2) and (X = 2, Y = 1) are both possible when Z = 1.
Hence, Theorem 2 necessitates p(1, 1) = 0, which is not the case because of the plane
Z = 0. Distribution (b) lacks this characteristic and therefore it satisfies the conditions
of Theorem 2.

Then we can further derive

0 < p(k, u|yj , z
′) = p(u|yj , z

′)p(k|u, yj , z
′) = p(u|yj , z

′)p(k|u, yj , z)
⇒ p(k|u, yj , z) > 0,

⇒ p(k, u|yj , z) = p(k|u, yj , z)p(u|yj , z) > 0,

where we have used the Markov chain K −Y U −Z. From the last line, we must
be able to find some x′

j ∈ Xj such that p(x′
j , yj , z) > 0 and p(k, u|x′

j , yj , z) > 0.
Inverting probabilities gives that both p(x′

j , yj |k, u, z) > 0 and p(xi, y
′
i|k, u, z) >

0. Hence,

I(X : Y |KUZ) = I(JXY |ZX : Y |KUZ)

= I(X : Y |JXY |ZKUZ) +
∑
k,u,z

H(JXY |Z=z|k, u, z)p(k, u, z) > 0,

since H(JXY |Z=z|k, u, z) > 0 because (xi, y
′
i) ∈ Xi × Yi and (x′

j , yj) ∈ Xj ×
Yj . However, this strict inequality contradicts the Markov chain condition X −
KUZ − Y . �

Figure 2 (a) provides an example distribution which does not satisfy the neces-
sary conditions of Theorem 2 for I(X : Y |Z) to be an achievable one-way key
rate. On the other hand, Fig. 2 (b) depicts an distribution for which the condi-
tions of the theorem are met. However, Theorem 3 in the next section will show
that both distributions (a) and (b) have K(X : Y |Z) < I(X : Y |Z).

4.3 Obtaining I(X : Y |Z) with Two-Way Communication

We now turn to the general scenario of interactive two-way communication. Our
main result is the necessary structural condition of Theorem 3. Its statement
requires some new terminology.
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For two distributions pXY and qXY over X×Y, we say that qXY � pXY if, up to
a permutation between X and Y , the distributions satisfy supp[qX ] ⊂ supp[pX ]
and one of the three additional conditions: (i) qXY is uncorrelated, (ii) supp[qY ] ⊂
supp[pY ], or (iii) y ∈ supp[qY ] \ supp[pY ] implies that H(X|Y = y) = 0.

Theorem 3. Let pXY Z be a distribution over X ×Y ×Z such that pXY |Z=z1 �
pXY |Z=z0 for some z0, z1 ∈ Z. If there exists some pair (x, y) ∈ supp[pX|Z=0] ×
supp[pY |Z=0] for which p(x, y|z1) > 0 but p(x, y|z0) = 0, then K(X : Y |Z) <
I(X : Y |Z).

Proof. The proof will involve showing that there exists a channel Z|Z such that
I(X : Y |Z) < I(X : Y |Z). The channel will involve mixing z0 and z1 but leaving
all other elements unchanged. Define the function

f(t) = I(X : Y )(1−t)pXY |Z=z0+tpXY |Z=z1
t ∈ [0, 1], (10)

which gives the mutual information of the mixed distribution (1− t)pXY |Z=z0 +
tpXY |Z=z1 . The function f is continuous and twice differentiable in the open
interval (0, 1). To prove the theorem, we will need a simple general fact about
functions of this sort.

Proposition 3. Suppose that f is a continuous function on the closed interval
[0, 1] and twice differentiable in the open interval (0, 1). Suppose there exists
some 0 < δ < 1 such that f is strictly convex in the interval I = (0, δ] and
f(1) − f(0) > f ′(t) for all t ∈ I. Then f(t) < (1 − t)f(0) + tf(1) for all t ∈ I.

Continuing with the proof of Theorem 3, it will suffice to show that the function
given by Eq. (10) satisfies the conditions of Proposition 3. For if this is true, then
we can argue as follows. Choose ε sufficiently small so that εp(z1)

p(z0)+εp(z1)
∈ (0, δ],

where δ is described by the proposition. Define the channel Z|Z by p(z0|z1) = ε,
p(z1|z1) = 1 − ε, and p(z|z) = 1 for all z �= z1 ∈ Z. This means that
p(z0) = p(z0) + εp(z1) and p(z1) = (1 − ε)p(z1), and inverting the probabili-
ties gives p(z1|z1) = 1, p(z1|z0) = εp(z1)

p(z0)+εp(z1)
, and p(z0|z0) = p(z0)

p(z0)+εp(z1)
. Since

p(x, y|Z = z) =
∑

z p(x, y|Z = z)p(Z = z|Z = z), the average conditional
mutual information is∑

z �=z0,z1∈Z
I(X : Y |Z = z)p(z) + f( εp(z1)

p(z0)+εp(z1)
)p(z0) + f(1)p(z1)

<
∑

z �=z0,z1∈Z
I(X : Y |Z = z)p(z)

+
(

p(z0)
p(z0)+εp(z1)

f(0) + εp(z1)
p(z0)+εp(z1)

f(1)
)

p(z0) + f(1)(1 − ε)p(z1)

= I(X : Y |Z), (11)

where Proposition 3 at x = εp(z1)
p(z0)+εp(z1)

has been invoked.
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Let us then show that the conditions of Proposition 3 hold true for the func-
tion given by Eq. (10) whenever pXY |Z=z1 � pXY |Z=z0 ; i.e. that there exists some
interval (0, δ] for which f is strictly convex and f(1) − f(0) > f ′(t). We have

f(t) = −
∑

x∈X
[(1 − t)p(x|z0) + tp(x|z1)] log[(1 − t)p(x|z0) + tp(x|z1)]

−
∑

y∈Y
[(1 − t)p(y|z0) + tp(y|z1)] log[(1 − t)p(y|z0) + tp(y|z1)]

+
∑

x∈X

∑

y∈Y
[(1 − t)p(x, y|z0) + tp(x, y|z1)] log[(1 − t)p(x, y|z0) + tp(x, y|z1)]. (12)

We are interested in limt→0 f ′(t) and limt→0 f ′′(t). To compute these, we use the
fact that the function g(t) = (r+st) log(r+st) satisfies g′(t) = s(1+ log(r+st))
and g′′(t) = s2

r+st . We separate the analysis into three cases. Without loss of
generality, we will assume supp[pX|Z=z1 ] ⊂ supp[pX|Z=z0 ].

Case (i): pXY |Z=z1
is Uncorrelated

Since supp[pX|Z=z1 ] ⊂ supp[pX|Z=z0 ], we can assume that p(x|z0) �= 0 for
all x; otherwise there is no term involving x in Eq. (12). Now suppose that
p(y|z0) = 0. Then for this fixed y, the summation over x in the third term of
Eq. (12) becomes∑

x∈X
[(1 − t)p(x, y|z0) + tp(x, y|z1)] log[(1 − t)p(x, y|z0) + tp(x, y|z1)]

= t
∑
x∈X

p(x|z1)p(y|z1) log[tp(x|z1)p(y|z1)]

= tp(y|z1) log[tp(y|z1)] + tp(y|z1)
∑
x∈X

p(x|z1) log[p(x|z1)]. (13)

Hence, by letting BI = {y : p(y|zI) > 0} for I ∈ {0, 1}, we can equivalently write
Eq. (12) as

f(t) = −
∑

x∈X
[(1 − t)p(x|z0) + tp(x|z1)] log[(1 − t)p(x|z0) + tp(x|z1)]

−
∑

y∈B0

[(1 − t)p(y|z0) + tp(y|z1)] log[(1 − t)p(y|z0) + tp(y|z1)]

+
∑

y∈B0

∑

x∈X
[(1 − t)p(x, y|z0) + tp(x, y|z1)] log[(1 − t)p(x, y|z0) + tp(x, y|z1)]

+ t
∑

y∈B1\B0

p(y|z1)
∑

x∈X
p(x|z1) log[p(x|z1)]. (14)

If p(x, y|z0) = 0 for some (x, y) ∈ X × B0, then the first derivative of (14) will
diverge to −∞ as t → 0 while its second derivative will diverge to +∞ whenever
p(x, y|z1) > 0. But by assumption, there is at least one pair of (x, y) for which
this latter case holds. Hence, an interval (0, δ] can always be found for which
Proposition 3 can be applied to f .
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Case (ii): B1 \ B0 = Ø
This is covered in case (iii).

Case (iii): y ∈ B1 \ B0 ⇒ p(y|z1) = p(xy, y|z1) for some particular
xy ∈ X

The condition p(y|z1) = p(xy, y|z1) implies that p(x, y|z1) = 0 for all x �= xy.
Then similar to the previous case, when y ∈ B1 \ B0, the summation over x in
the third term of Eq. (12) is∑

x∈X
tp(x, y|z1) log[tp(x, y|z1)] = tp(xy, y|z1) log[tp(xy, y|z1)]

= tp(y|z1) log[tp(y|z1)]. (15)

Hence each term with y ∈ B1 \ B0 becomes canceled in Eq. (12). Then Eq. (12)
reduces to

f(t) =−
∑

x∈X
[(1− t)p(x|z0) + tp(x|z1)] log[(1− t)p(x|z0) + tp(x|z1)]

−
∑

y∈B0

[(1− t)p(y|z0) + tp(y|z1)] log[(1− t)p(y|z0) + tp(y|z1)]

+
∑

x∈X

∑

y∈B0

[(1− t)p(x, y|z0) + tp(x, y|z1)] log[(1− t)p(x, y|z0) + tp(x, y|z1)]. (16)

As in the previous case, the first derivative of this function will diverge to −∞
while its second derivative will diverge to +∞ whenever p(x, y|z1) > 0 and
p(x, y|z0) = 0. By assumption, such a pair (x, y) exists, and so again, an interval
(0, δ] can always be found for which Proposition 3 can be applied to f . Note that
when B1 \ B0 = Ø, as in case (ii), Eq. (16) is equivalent to (12). The derivative
argument can thus be applied directly to (12). �

Theorem 3 is quite useful in that it allows us to quickly eliminate many
distributions from achieving the rate I(X : Y |Z). For example, consider when
pXY |Z=z is uncorrelated for some z ∈ Z, but pXY |Z=z′ is perfectly correlated for
some other z′ ∈ Z with either supp[pX|Z=z] ⊂ supp[pX|Z=z′ ] or supp[pY |Z=z] ⊂
supp[pY |Z=z′ ]. Here, perfectly correlated means that p(x, y|z′) = p(x|z′)δx,y

up to relabeling. Then from Theorem 3, it follows that I(X : Y |Z) is an achiev-
able rate only if

p(x, y|z) > 0 ⇒ p(x|z′)p(y|z′) = 0.

In other words, it is always possible for either Alice or Bob to identify when
Z �= z′.

Finally, we close this section by comparing Theorems 2 and 3. In short, nei-
ther one supersedes the other. As noted above, distribution (b) in Fig. 2 satisfies
the necessary condition of Theorem 2 for

−→
K(X : Y |Z) = I(X : Y |Z). However,

Theorem 3 can be used to show that K(X : Y |Z) < I(X : Y |Z). This is because
pXY |Z=1 � pXY |Z=2 yet p(1, 1|2) = 0 while p(1, 1|1) = 1/3. Therefore its key
rate is strictly less than I(X : Y |Z). Figure 3 depicts a distribution for which
Theorem 3 cannot be applied but Theorem 2 shows that

−→
K(X : Y |Z) < I(X :

Y |Z). The two-way key rate for this distribution is still unknown.
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Fig. 3. The event (x, y) = (0, 1) has conditional probabilities p(0, 1|Z = 0) > 0
and p(0, 1|Z = 1) = 0. However, we cannot use these facts in conjunction with
Theorem 3 to conclude that K(X : Y |Z) < I(X : Y |Z) since the distribution
does not satisfy pXY |Z=0 � pXY |Z=1 (neither supp[pX|Z=0] ⊂ supp[pX|Z=1] nor
supp[pY |Z=0] ⊂ supp[pY |Z=1]). On the other hand, since p(0, 1|Z = 0) > 0, Theorem 2
can be applied to conclude that the one-way rate is less than I(X : Y |Z).

Fig. 4. A distribution requiring communication from Bob to Alice to achieve a key rate
of I(X : Y |Z).

4.4 Communication Dependency in Optimal Distillation

We next consider some general features of the public communication when per-
forming optimal key distillation. Our main observations will be that (i) attaining
a key rate of I(X : Y |Z) by one-way communication may depend on the direc-
tion of the communication, and (ii) two-way communication may be necessary
in order to achieve the key rate I(X : Y |Z).

Example 1 (Optimal one-way distillation depends on communication direction).
Consider the distribution depicted in Fig. 4 with I(X : Y |Z) = 1/3. When Bob
is the communicating party, a protocol attaining this as a key rate is obvious: he
simply announces whether or not y ∈ {0, 1}. If it is, they share one bit, otherwise
they fail. Hence, I(X : Y |Z) = 1/3 is an achievable key rate.

However, the interesting question is whether or not the key rate I(X : Y |Z)
is achievable by one-way communication from Alice to Bob. We will now show
that this is not possible. By Lemma 2, in order to obtain the rate I(X : Y |Z),
there must exist random variables U and V satisfying Eq. (8). Assume that such
variables exist. If U − Z − Y , then p(u|X = 0)p(u|X = 1) > 0 for all U = u;
otherwise, U and Y couldn’t be independent. But then X − KUZ − Y applied
to Z = 0 means there must exist a pair (k, u) ∈ K × U such that

p(k, u|X = 0) = 0 & p(k, u|X = 1) > 0.

Hence, 0 = p(k|Y = 2, U = u,Z = 2) < p(k|Y = 2, U = u,Z = 1), which
contradicts K − Y U − Z. Thus

−→
K(X : Y |Z) < I(X : Y |Z) =

←−
K(X : Y |Z).
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Fig. 5. Additional outcomes augmented to the distribution of Fig. 4. The enlarged
distribution can no longer attain a key rate of I(X : Y |Z) unless both parties commu-
nicate.

In this example, notice that if we restricted Eve’s distribution to Z = {0, 1}
(i.e. p(Z = 2) = 0), then the rate I(X : Y |Z) would indeed be achievable
using one-way communication from Alice to Bob. This is because without the
z = 2 outcome, the Markov Chain X − Y − Z holds. Such a result is counter-
intuitive since Alice and Bob share no correlations when z ∈ {1, 2}. And yet the
distribution becomes one-way reversible from Alice to Bob when p(Z = 2) = 0,
but otherwise it is not.

Example 2 (Optimal distillation requires two-way communication). The previous
example can be generalized by adding two more outcomes for Eve so that |Z| = 5.
The additional outcomes are shown in Fig. 5 and this is combined with Fig. 4 to
give the full distribution. Notice that the distribution pXY |Z=3 is obtained from
pXY |Z=1 simply by swapping Alice and Bob’s variables, and likewise for pXY |Z=4

and pXY |Z=2. Hence by the argument of the previous example, if Eve were to
reveal whether or not z ∈ {0, 3, 4}, then the average Bob-to-Alice distillable key
c onditioned on this information would be less than I(X : Y |Z). Likewise, if Eve
were to reveal whether or not z ∈ {0, 1, 2}, then the Alice-to-Bob distillable key
conditioned on this information would be less than I(X : Y |Z). Thus since the
average conditional key rate cannot exceed the key rate with no side information,
we conclude that I(X : Y |Z) is unattainable using one one-way communication
in either direction. On the other hand, the distribution is easily seen to admit a
key rate of I(X : Y |Z) when the parties simply announce whether or not their
variable belongs to the set {0, 1}.

5 Conclusion

In this paper, we have considered when a secret key rate of I(X : Y |Z) can be
attained by Alice and Bob when working with a variety of auxiliary resources.
The conditional mutual information quantifies the private key rate of pXY Z ,
which is the rate of key private from Eve that is attainable when Eve helps
Alice and Bob by announcing her variable. Therefore, distributions for which
K(X : Y |Z) = I(X : Y |Z) are those for which nothing is gained when Eve
functions as a helper rather than a full adversary.

We have found that with no additional communication, the key rate is
I(X : Y |Z) if and only if the distribution is uniform block independent. Fur-
thermore, supplying Alice and Bob with additional public randomness does not
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increase the distillable key rate. While this may not be overly surprising since
the considered common randomness is uncorrelated with the source, it is never-
theless a nontrivial result because in general, randomness can serve a resource
in distillation tasks [1,10].

Turning to the one and two-way communication scenarios, we have presented
in Theorems 2 and 3 necessary conditions for a distribution to attain the key rate
I(X : Y |Z). The conditions we have derived are all single-letter structural char-
acterizations, and they are thus computationally easy to apply. We leave open
the question of whether Theorem 3 is also sufficient for attaining I(X : Y |Z),
although we have no strong reason to believe this is true. Further improvements
to the results of this paper can possibly be obtained by studying tighter bounds
on K(X : Y |Z) than the intrinsic information such as those presented in Refs.
[11] and [7]. Nevertheless, we hope this paper has shed new light on the problem
of secret key distillation under various communication settings.

6 Appendix

6.1 Proof of Propositions 1

Proof. (a) Trivially X × Y gives a common partitioning of length one, and any
common partitioning cannot have length exceeding min{|X |, |Y|}; hence a max-
imal common partitioning exists. To prove uniqueness, suppose that (Xi,Yi)t

i=1

and (X ′
i ,Y ′

i)
t
i=1 are two maximal common partitionings. If they are not equiv-

alent, then there must exist some subset, say Xi0 such that Xi0 ⊂ ∪K
λ=1X ′

λ in
which Xi0 ∩ X ′

λ �= Ø for λ = 1, · · · ,K � 2. Choose any such X ′
λ0

from this
collection and define the new sets Ri0 = Xi0 ∩ X ′

λ0
and R̃i0 = Xi0 \ X ′

λ0
, which

are both nonempty since k � 2 and the Xλ are disjoint. However, we also have
the properties

x ∈ Xi0 ⇒ p(Yi0 |x) = 1; x ∈ X ′
λ0

⇒ p(Y ′
λ0

|x) = 1;
x �∈ Xi0 ⇒ p(Yi0 |x) = 0; x �∈ X ′

λ0
⇒ p(Y ′

λ0
|x) = 0.

(Here we are implicitly using condition (iii) in the above definition by assum-
ing that p(x) > 0 thereby defining conditional distributions). Therefore,
p(Si0 |Ri0) = p(S̃i0 |R̃i0) = 1 and p(Si0 |R̃i0) = p(S̃i0 |Ri0) = 0, where
Si0 = Yi0 ∩ Y ′

λ0
and S̃i0 = Yi0 \ Y ′

λ0
. A similar argument shows that

p(Ri0 |Si0) = p(R̃i0 |S̃i0) = 1 and p(Ri0 |S̃i0) = p(R̃i0 |Si0) = 0. Hence,
(Xi,Yi)t

i�=i0

⋃
(Si0 , Ri0)

⋃
(S̃i0 , R̃i0) is a common partitioning of length t+1. But

this is a contradiction since (Xi,Yi)t
i=1 is a maximal common decomposition.

(b) Suppose that K satisfies 0 = H(K|X) = H(K|Y ) so that K = f(X) =
g(Y ) for some functions f and g. It is clear that f and g must be constant-valued
for any pair of values taken from same block Xi × Yi in the maximal common
partitioning of XY . Hence the maximum possible entropy of K is then attained
iff f and g take on a different value for each block in this partitioning.

(c) Suppose that C is not a function of JXY . Then H(CJXY ) > H(JXY ),
which contradicts the maximality of JXY. �
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6.2 Proof of Theorem 1

Proof. Achievability: We will prove that H(JXY |Z) is an achievable rate with-
out any auxiliary shared public randomness (i.e. W is constant). For n copies of
pXY Z , Alice and Bob extract their common information from each copy of pXY Z .
This will generate a sequence of Jn

XY , with Alice and Bob having identical copies
of this sequence. It is now a matter of performing privacy amplification on this
sequence to remove Eve’s information [2]. The main construction is guaranteed
to exist by the following lemma.

Lemma 3 (See Corollary 17.5 in [5]). For an i.i.d. source of two random
variables JXY and Z with JXY ranging over set J , for any δ > 0 and k <
2n[H(JXY |Z)−δ], there exists an ε > 0 and a mapping κ : J n → K = {1, 2, · · · , k}
such that

log |K| − H(κ(Jn
XY )|Zn) < 2−nε.

From this lemma, it follows that H(JXY |Z) is an achievable key rate.

Converse: The converse proof follows analogously to the converse proof of
Theorem 2.6 in Ref. [4] (see also [5]). We will first prove the converse under
the assumption of no local randomness (i.e. QA and QB are constant). We
will then show that adding local randomness does not change the result. Sup-
pose that Kc.r.(X : Y |Z) = R. We consider a slightly weaker security con-
dition than the one presented in Sect. 2. This is done by replacing (ii) with
(ii’): 1

n (log |K| − H(K|ZnW )) < ε. Under this weaker assumption, we can
assume without loss of generality that K is a function of (Xn, QA,W ); i.e.
K = f(Xn, QA,W ) [5]. Then, for every δ, ε > 0 and n sufficiently large,
there exists a random variable W independent of XnY nZn along with func-
tions f(Xn,W ) and g(Y n,W ) satisfying (i) Pr[f = g = K] > 1 − ε, (ii’)
1
n (log |K| − H(K|ZnW )) < ε and (iii) 1

n log |K| � R.
Note that from (i) in the security condition, Fano’s Inequality together with

data processing gives

H(K|Y nW ) < h(ε) + ε(log |K| − 1). (17)

Combining this with (ii’) gives

1
n

(1 − ε) log |K| <
1
n

[H(K|ZnW ) − H(K|Y nW ) + h(ε) − ε],

and so

R � 1

n
log |K| + δ <

1

1 − ε
· 1

n
[H(K|ZnW ) − H(K|Y nW )] +

h(ε) − ε

1 − ε
· 1

n
+ δ. (18)

To analyze the quantity H(K|ZnW )−H(K|Y nW ), we will use a standard trick.

Lemma 4. Let J be uniformly distributed over the set {1, · · · , n} and let A(i)

denote the ith instance of A in An. Likewise, let A(<i) = A(1) · · · A(i−1) and
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A(>i) = A(i+1) · · · A(n) with A(<1) := Ø and A(n+1) := Ø. Then for random
variables P and Q and sequences of random variables An, Bn

H(P |AnQ) − H(P |BnQ) = n[I(P : B(J)|TQ) − I(P : A(J)|TQ)], (19)

where T = JA(>J)B(<J)

Proof. See, e.g., proof of Lemma 17.12 in [5].

Then we can use Lemma 4 to obtain

H(K|ZnW ) − H(K|Y nW ) = n[I(K : Y (J)|UW ) − I(K : Z(J)|UW )], (20)

where U := JY (<J)Z(>J). Notice that for any i ∈ {1, · · · , n} we have

X(<i)X(>i)Y (<i)Z(>i) − X(i) − Y (i)Z(i), (21)

since the sampling is i.i.d.. Therefore, because K is a function of (Xn,W ), we
have KU−X(J)W−Y (J)Z(J). Removing the superscript “J” and taking ε, δ → 0,
we have the bound

R � I(K : Y |UW ) − I(K : Z|UW ) (22)

such that KU − XW − Y Z.
Next, Eq. (17) gives

h(ε) + ε(log |K| − 1) > H(K|Y nW ) − H(K|XnW )

= n[I(K : X(J)|JY (<J)X(>J)W ) − I(K : Y (J)|JY (<J)X(>J)W )],

where the first inequality follows because H(K|XnW ) is nonnegative and the
equality follows from Lemma 4. We want to put this in terms of U . To do this,
note that

I(K : X(J)|JY (<J)X(>J)W )

= I(KY (<J)X(>J) : X(J)|JW )

= I(KY (<J)X(>J)Z(>J) : X(J)|JW ) − I(Z(>J) : X(J)|JKY (<J)X(>J)W )

= I(KUX(>J) : X(J)|JW ) = I(KU : X(J)|JW ) + I(X(>J) : X(J)|KUW ),

where the first equality follows from the chain rule and I(Y (<J)X(>J) : X(J)

JW ) = 0, and in the second equality

I(Z(>J) : X(J)|JKY (<J)X(>J)W ) � I(Z(>J) : KX(J)|JY (<J)X(>J)W )

= I(Z(>J) : X(J)|JY (<J)X(>J)W ) = 0.

Here we use I(Z(>J) : K|JY (<J)X(�J)W ) = 0 since K − JY (<J)X(�J)W −
Z(>J) is a Markov chain. Again this follows from the basic Markov condition
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K − WXn − Y nZn and the sampling is i.i.d.. The second equality follows from
i.i.d. sampling and W independence of Xn, Y n, Zn.

A similar analysis likewise gives

I(K : Y (J)|JY (<J)X(>J)W ) = I(KU : Y (J)|JW ) + I(X(>J) : Y (J)|KUW )

� I(KU : Y (J)|JW ) + I(X(>J) : X(J)|KUW ),

where the inequality follows from the Markov condition

X(>J) − KUX(J)W − Y (J),

a consequence of the more obvious condition KUXn −JX(J)W −Y (J). Putting
everything together yields

h(ε) + ε(log |K| − 1)

> I(KU : X(J)|JW ) − I(KU : Y (J)|JW )

= I(KU : X(J)Y (J)|JW ) − I(KU : Y (J)|JX(J)W ) − I(KU : Y (J)|JW ) (23)

= I(KU : X(J)|JY (J)W ) + I(KU : Z(J)|JY (J)X(J)W ) (24)

= I(KU : X(J)Z(J)|JY (J)W ),

where the second term in Eq. (23) is zero from the already proven Markov
chain KU − XW − Y Z, and in Eq. (24) we use the fact that I(KU :
Z(J)|JY (J)X(J)W ) = 0. Removing the superscript “J” and taking ε → 0 neces-
sitates the Markov chain KU − Y W − XZ.

It is easy to verify that the double Markov chain K−XW−Y and K−Y W−X
implies that I(K : XY |JXY W ) = 0 (see Exercise 16.25 in [5]). Since K is a
function of (X,W ), we have that H(K|JXY W ) = 0. Thus, K must also be a
function of (Y,W ). Continuing Eq. (22) gives the bound

R � I(K : Y |UW ) − I(K : Z|UW ) = H(K|UW ) − I(K : Z|UW )
= H(K|ZUW ) � H(K|ZW ). (25)

We have therefore obtained the following:

R � max H(K|ZW ), (26)

where the maximization is taken over all variables K such that H(K|XW ) =
H(K|Y W ) = 0.

This can be further bounded by using the following proposition.

Proposition 4. If W is independent of XY and H(K|XW ) = H(K|Y W ) = 0,
then K is a function of (JXY ,W ).

Proof. The fact that H(K|XW ) = H(K|Y W ) = 0 implies the existence of two
functions f(X,W ) and g(Y,W ) such that Pr[f(X,W ) = g(Y,W )] = 1. Con-
sequently, if p(x1, y1)p(x1, y2) > 0, then f(x1, w) = g(y1, w) = g(y2, w) for all
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w ∈ W with p(w) > 0. Indeed, if, say, f(x1, w) �= g(y1, w), then Pr[f(X,W ) �=
g(Y,W )] � p(x1, y1, w) = p(x1, y2)p(w) > 0, where we have used the inde-
pendence between XY and W . By the same reasoning, p(x1, y1)p(y1, x2) > 0
implies that f(x1, w) = f(x2, w) = g(y1, w) for all w ∈ W. Turning to
Proposition 2, if JXY (x) = JXY (x′), then there exists a sequence xy1x1y2x2 · · ·
ynx′ such that p(xy1)p(y1x1)p(x1y2) · · · p(ynx′) > 0. Therefore, as just argued,
we must have that f(x,w) = f(x′, w) for all w ∈ W. Hence K must be a function
of (JXY ,W ).

We now apply Proposition 4 to Eq. (26). Suppose that K obtains the maximiza-
tion in Eq. (26). Then, since K is a function of (JXY ,W ), we have that

H(K|ZW ) � H(JXY W |ZW ) = H(JXY |ZW ) � H(JXY |Z). (27)

This proves the desired upper bound under no local randomness.
To consider the case when Alice and Bob have local randomness QA and QB ,

respectively, define X̂ := (X,QA) and Ŷ := (Y,QB). Then repeating the above
argument shows that R � H(JX̂Ŷ |Z). It is straightforward to show that with QA

and QB pairwise independent and independent of XY , we have JX,Y = JXY . �

References

1. Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryp-
tography. i. secret sharing. IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993)

2. Bennett, C., Brassard, G., Crepeau, C., Maurer, U.: Generalized privacy amplifi-
cation. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)

3. Christandl, M., Renner, R., Wolf, S.: A property of the intrinsic mutual informa-
tion. In: Proceedings of the IEEE International Symposium on Information Theory
2003, pp. 258–258, June 2003

4. Csiszár, I., Narayan, P.: Common randomness and secret key generation with a
helper. IEEE Trans. Inf. Theory 46(2), 344–366 (2000)

5. Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memo-
ryless Systems. Cambridge University Press, Cambridge (2011)
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