
A Quasipolynomial Reduction for Generalized
Selective Decryption on Trees

Georg Fuchsbauer1(B), Zahra Jafargholi2, and Krzysztof Pietrzak1

1 Institute of Science and Technology Austria, Vienna, Austria
{gfuchsbauer,pietrzak}@ist.ac.at

2 Northeastern University, Boston, USA
z.jafargholi@gmail.com

Abstract. Generalized Selective Decryption (GSD), introduced by
Panjwani [TCC’07], is a game for a symmetric encryption scheme Enc
that captures the difficulty of proving adaptive security of certain proto-
cols, most notably the Logical Key Hierarchy (LKH) multicast encryp-
tion protocol. In the GSD game there are n keys k1, . . . , kn, which the
adversary may adaptively corrupt (learn); moreover, it can ask for encryp-
tions Encki(kj) of keys under other keys. The adversary’s task is to dis-
tinguish keys (which it cannot trivially compute) from random. Proving
the hardness of GSD assuming only IND-CPA security of Enc is surpris-
ingly hard. Using “complexity leveraging” loses a factor exponential in
n, which makes the proof practically meaningless.

We can think of the GSD game as building a graph on n vertices,
where we add an edge i → j when the adversary asks for an encryption of
kj under ki. If restricted to graphs of depth �, Panjwani gave a reduction
that loses only a factor exponential in � (not n). To date, this is the only
non-trivial result known for GSD.

In this paper we give almost-polynomial reductions for large classes
of graphs. Most importantly, we prove the security of the GSD game
restricted to trees losing only a quasi-polynomial factor n3 logn+5. Trees
are an important special case capturing real-world protocols like the LKH
protocol. Our new bound improves upon Panjwani’s on some LKH vari-
ants proposed in the literature where the underlying tree is not balanced.
Our proof builds on ideas from the “nested hybrids” technique recently
introduced by Fuchsbauer et al. [Asiacrypt’14] for proving the adaptive
security of constrained PRFs.

1 Introduction

Proving security of protocols where an adversary can make queries and/or cor-
rupt players adaptively is a notoriously hard problem. Selective security, where
the adversary must commit to its queries before the protocol starts, often allows
for an easy proof, but in general does not imply (the practically relevant) adap-
tive security notion [CFGN96].

G. Fuchsbauer and K. Pietrzak—Supported by the European Research Council, ERC
Starting Grant (259668-PSPC).

c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part I, LNCS 9215, pp. 601–620, 2015.
DOI: 10.1007/978-3-662-47989-6 29

602 G. Fuchsbauer et al.

Panjwani [Pan07] argues that the two common approaches to achieving adap-
tive security, namely requiring that all parties erase past data [BH93], or using
non-committing encryption [CFGN96] are not satisfactory. He introduces the
generalized selective decryption (GSD) problem and uses it as an abstraction of
security requirements of multicast encryption protocols [WGL00,MP06]. GSD is
defined by a very simple game that captures the difficulty of proving adaptive
security of some interesting protocols.

The Generalized Selective Decryption (GSD) Game. In the GSD game
we consider a symmetric encryption scheme Enc and a parameter n ∈ N. Initially,
we sample n random keys k1, . . . , kn and a bit b ∈ {0, 1}. During the game the
adversary A can make two types of queries. Encryption query: on input (i, j) she
receives c = Encki

(kj); corruption query: on input i, she receives ki. At some
point, A chooses some i to be challenged on. If b = 0, she gets the key ki; if b = 1,
she gets a uniformly random ri.1 Finally, A outputs a guess bit b′. The goal is
prove that for any efficient A, |Pr[b = b′]− 1/2| is negligible (or, equivalently, ki is
pseudorandom) assuming only that Enc is a secure encryption scheme. We only
allow one challenge query, but this notion is equivalent to allowing any number
of challenge queries by a standard hybrid argument (losing a factor that is only
the number of challenge queries).

It is convenient to think of the GSD game as dynamically building a graph,
which we call key graph. We start with a graph with n vertices labeled 1, . . . , n,
where we associate vertex i with key ki. On an encryption query Encki

(kj) we
add a directed edge i → j. On a corruption query i we label the vertex i as
corrupted. Note that if i is corrupted then A also learns all keys kj for which
there is a path from i to j in the key graph by simply decrypting the keys along
that path. To make the game non-trivial, challenge queries are thus only allowed
for keys that are not reachable from any corrupted key. Another restriction we
must make is to disallow encryption cycles, i.e., loops in the graph. Otherwise
we cannot hope to prove security assuming only standard security (in our case
IND-CPA) of the underlying encryption scheme, as this would require circular
(or key-dependent-message) security [BRS03], which is stronger than IND-CPA
[ABBC10]. Finally, we require that the challenge query is a leaf in the graph;
this restriction too is necessary unless we make additional assumptions on the
underlying encryption scheme (cf. Footnote 9).

Selective security of GSD. In order to prove security of the GSD game,
one must turn an adversary A that breaks the GSD game with some advantage
ε = |Pr[b = b′] − 1/2| into an adversary B that breaks the security of Enc with
some advantage ε′ = ε′(ε). The security notion we consider is the standard
1 Below, we will consider a (seemingly) different experiment and output ki in both

cases (b = 0 and b = 1), but if b = 1, then on any query (j, i), we will encrypt
Enckj (ri) and not Enckj (ki). This is just a semantic change assuming the following:
during the experiment we always answer encryption queries of the form (a, b) with
Encka(kb) (note that we don’t know if we’re encrypting the challenge at this point),
and once the adversary chooses a challenge i, if b = 1, we simply switch the values
of ri and ki (this trick is already used in [Pan07]).

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 603

notion of indistinguishability under chosen plaintext attacks (IND-CPA). Recall
that in the IND-CPA game an adversary B is given access to an encryption
oracle Enck(·). At some point B chooses a pair of messages (m0,m1), then gets
a challenge ciphertext c = Enck(mb) for a random bit b, and must output a
guess b′. The advantage of B is |Pr[b = b′] − 1/2|.

It is not at all clear how to construct an adversary B that breaks IND-CPA
from an A that breaks GSD. This problem becomes much easier if we assume that
A breaks the selective security of GSD, where A must choose all its encryption,
corruption and challenge queries before the experiment starts.

In fact, it is sufficient to know the topology of the connected component in
the key graph that contains the challenge node. Let α denote the number of
edges in this component. One can now define a sequence of 2α hybrid games
H0, . . . , H2α−1, where the first game is the real game (i.e., the GSD game with
b = 0 where the adversary gets the key), the last hybrid is the random game
(b = 1), and moreover, from any adversary that distinguishes Hi from Hi+1 with
some advantage ε′, we get an adversary against the IND-CPA security of Enc
with the same advantage. Thus, given an A breaking GSD with advantage ε, we
can break the IND-CPA security with advantage ε′ ≥ ε/(2α − 1) ≥ ε/n2 (as an
n vertex graph has ≤ n2 edges). We illustrate this reduction in Fig. 1.

Fig. 1. Hybrids for the selective security proof. Green nodes correspond to keys, dark
nodes are random values. The adversary A commits to encryption queries (1, 3), (2, 3),
(3, 5) and challenge 5 (Encryption query (4, 6) is outside the connected component
containing the challenge and thus not relevant for the hybrids. A could also corrupt keys
4 and 6, which are also outside.) Hybrid H0 is the real game, hybrid H5 is the random
game, where instead of an encryption of the challenge key Enck3(k5), the adversary
gets an encryption of the random value Enck3(r5). If an adversary A can distinguish
any two consecutive hybrids Hi and Hi+1 with some advantage δ, we can use A to
construct B which breaks the IND-CPA security of Enc with the same advantage δ:
E.g., assume B is given an IND-CPA challenge C = Enck(z) where z is one of two
messages (which we call k5 and r5). Now B can simulate game H2 for A, but when A
makes the encryption query (3, 5), B answers with C. If z = k5 then B simulates game
H2; but if z = r5, it simulates game H3. Note that B can simulate the games because
k3, which in the simulation is B’s challenger’s key, is not used anywhere else. Thus, B
has the same advantage in the IND-CPA game as A has in distinguishing H3 from H4

(Color figure online).

604 G. Fuchsbauer et al.

Adaptive security of GSD. In the selective security proof for GSD we cru-
cially relied on the fact that we knew the topology of the underlying key graph.
Proving adaptive security, where the adversary decides what queries to ask adap-
tively during the experiment, is much more difficult. A generic trick to prove
adaptive security is “complexity leveraging”, where one simply turns an adap-
tive adversary into a selective one by initially guessing the adaptive adversary’s
choices and committing to those (as required by the selective security game). If
during the security game the adaptive choices by the adversary disagree with the
guessed ones, we simply abort. The problem with this approach is that assum-
ing the adaptive adversary has advantage ε, the constructed selective adversary
only has advantage ε/P where 1/P is the probability of that our guess is correct,
which is typically exponentially small. Concretely, in the GSD game we need to
guess the nodes in the connected component containing the challenge, and as the
number of such choices is exponential in the number of keys n, this probability
is 2−Θ(n).

No proofs for the adaptive security of GSD with a subexponential (in n) secu-
rity loss are known in general. But remember that the GSD problem abstracts
problems we encounter in proving adaptive security of many real-world applica-
tions where the underlying key graph is typically not completely arbitrary, but
often has some special structure. Motivated by this, Panjwani [Pan07] investi-
gated better reductions assuming some special structure of the key graph. He
gives a proof where the security degradation is only exponential in the depth of
the key graph, as opposed to its size. Concretely, he proves that if the encryption
scheme is ε-IND-CPA secure then the adaptive GSD game with n keys where
the adversary is restricted to key graphs of depth � is ε′-secure where

ε′ = ε · O(n · (2n)�).

Until today, Panjawain’s bound is the only non-trivial improvement over the
2Θ(n) loss for GSD.

Our Result. The main result of this paper is Theorem 2, which states that
GSD restricted to trees can be proven secure with only a quasi-polynomial loss

ε′ = ε · n3 log(n)+5.

Our bound is actually even stronger as the entire key graph need not be a tree; it
is sufficient that the subgraph containing only the nodes from which the challenge
node can be reached is a tree (when ignoring edge directions).

The bound above is derived from a more fine-grained bound: assuming that
the longest path in the key graph is of length �, the in-degree of every node is
at most d and the challenge node can be reached from at most s sources (i.e.,
nodes with in-degree 0) we get

ε′ = ε · dn((2d + 1)n)�log s� (3n)�log ��.

Note that �, d and s are at most n and the previous bound was derived from
this by setting � = d = s = n. Panjwani [Pan07] uses his bound to give a quasi-
polynomial reduction of the Logical Key Hierarchy (LKH) protocol [WGL00].

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 605

Panjwani first fixes a flaw in LKH, and calls the new protocol rLKH with “r”
for repaired. rLKH is basically the GSD game restricted to a binary tree.2

The users correspond to the leaves of this tree, and their keys consists of
all the nodes from the root to their leaf. Thus, if the tree is almost full and
balanced, then it has only depth � ≈ log n and Panjwani’s bound loses only a
quasi-polynomial factor nlog(n)+2 (if � = log n). As here d = 2, � = log n, s = n,
our bound gives a slightly worse bound nlog(n)+log log(n)+4 for this particular
problem, but this is only the case if a large fraction of the keys are actually used,
and the adversary gets to see almost all of them. If � is significantly larger than
log n (e.g., because only few of the keys are active, or the tree is constructed
in an unbalanced way like e.g. proposed in [SS00]), our bounds decrease only
marginally, as opposed to exponentially fast in � in [Pan07].

Graphs with Small Cut-Width. The reason our result is restricted to trees
is that in the process of generating the hybrids, we have to guess nodes such
that removing this node splits the tree in a “nice” way (this has to be done log n
times, losing a factor n in the distinguishing advantage every time).

One can generalize this technique (but we do not work out the details in
this paper) to graphs with small “cut-width”, where we say that a graph has
cut-width w if for any two vertices u, v that are not connected by an edge, there
exists a set of at most w vertices such that removing those disconnects u from v
(a tree has cut-width w = 1). For graphs with cut-width w we get

ε′ = ε · n(2w+1) log(n)+4,

which is subexponential in n, and thus beats the existing exponential bound
whenever w = o(n/ log2(n)). Whether there exists a subexponential reduction
which works for any graph is an intriguing open problem.

Shorter Keys from Better Reduction. An exponential security loss (as via
complexity leveraging) means that, even when assuming exponential hardness
of Enc (which is a typical assumption for symmetric encryption schemes like
AES), one needs to use keys for Enc whose length is at least linear in n to get
any security guarantee for the hardness of GSD at all. Whereas our bound for
trees means that a key of length polylog(n) is sufficient to get asymptotically
overwhelming security (again assuming Enc is exponentially hard).

Nested Hybrids. In a classical paper [GGM86] Goldreich, Goldwasser and
Micali constructed a pseudorandom function (PRF) from a pseudorandom gener-
ator (PRG). More recently, three papers independently [BW13,KPTZ13,BGI14]
observed that this construction is also a so-called constrained PRF, where for
every string x one can compute a constrained key kx that allows evaluation of
the PRF on all inputs with prefix x. Informally, the security requirement is that
2 Let us stress that the graph obtained when just adding an edge for every encryption

query in rLKH is not a tree after a rekeying operation. But for every node v, the
subgraph we get when only keeping the nodes from which v can be reached is a tree,
and as explained above, this is sufficient.

606 G. Fuchsbauer et al.

an adversary that can ask for constrained keys cannot distinguish the output of
the PRF on some challenge input from random.

All three papers [BW13,KPTZ13,BGI14] only prove selective security of this
constrained PRF, where before any queries the adversary must commit to the
input on which it wants to be challenged. This proof is a hybrid argument losing a
factor 2m in the distinguishing advantage, where m is the PRF input length. One
can then get adaptive security losing a huge exponential factor 2m via complexity
leveraging. Subsequently, Fuchsbauer et al. [FKPR14] gave a reduction that only
loses a quasi-polynomial factor (3q)log m, where q denotes the number of queries
made by the adversary. Our proofs borrows ideas from their work.

Very informally, the idea behind their proof is the following. In the standard
proof for adaptive security using leveraging one first guesses the challenge query
(losing a huge factor 2m), which basically turns the adaptive attacker into a
selective one, followed by a simple hybrid argument (losing a small factor 2m)
to prove selective security. The proof from [FKPR14] also first makes a guess-
ing step, but a much simpler one, namely which of the q queries made by the
adversary is the first to coincide with the challenge query on the first m/2 bits.
This is followed by a hybrid argument losing a factor 3, so both steps together
lose a factor 3q. At this point the reduction is not finished yet, but intuitively
the problem was reduced to itself but on inputs of only half the size m/2. These
two steps can be iterated log m times (losing a total factor of (3q)log m) to get a
reduction to the security of the underlying PRG.

Proof Outline for Paths. Our proof for GSD uses an approach similar to the
one just explained, iterating fairly simple guessing steps with hybrid arguments,
but the analogy ends here, as the actual steps are very different.

We first outline the proof for the adaptive security of the GSD game for a
special case where the adversary is restricted in the sense that the connected
component in the key graph containing the challenge must be a path. Even for
this very special case, currently the best reduction [Pan07] loses an exponential
factor 2Θ(n). We will now outline a reduction losing only a quasi-polynomial
nlog n factor.3 Recall that the standard way to prove adaptive security is to first
guess the entire connected component containing the challenge, and then prove
selective security as illustrated in Fig. 1.

Our approach is not to guess the entire path, but in a first step only the
node in the middle of the path (as we make a uniform guess, it will be correct
with probability 1/n). This reduces the adaptive security game to a “slightly

3 Let us mention that it is trivial to prove security of GSD restricted to paths if we
additionally assume that for random keys k, k′ the ciphertext Enck(k

′) is uniform
given k′ (this is e.g. the case for one-time pad encryption Enck(k

′) = k ⊕ k′): then
the real and random challenge have the same distribution (they’re uniform) and thus
even a computationally unbounded adversary has zero advantage. (This is because
in the path case, every key is used only once to encrypt.) The proof we outline
here does not require this special property of Enc, and this will be crucial to later
generalize it to more interesting graphs.

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 607

Fig. 2. Illustration of our adaptive security proof for paths.

selective” game where the adversary must commit initially to this middle node,
at the price of losing a factor n in the distinguishing advantage.4

Let H0 and H3 denote these “slightly selective” real and random GSD games
(we also assume that the adversary initially commits to the challenge query,
which costs another factor of n). We illustrate this with a small example featuring
a path of length 4 in Fig. 2. The correct guess for the middle node for the
particular run of the experiment illustrated in the figure is i = 5. As now we
know the middle vertex is i = 5, we can define new games H1 and H2 which
are derived from H0 and H3, respectively, by replacing the ciphertext Enckj

(ki)
with an encryption Enckj

(ri) of a random value (in the figure this is illustrated
by replacing the edge kj → ki with kj → ri).

So, what have we gained? If our adaptive adversary has advantage ε in dis-
tinguishing the real and random games then she has advantage at least ε/n to
distinguish the “slightly selective” real and random games H0 and H3, and thus
for some i ∈ {0, 1, 2} she can distinguish the games Hi and Hi+1 with advantage
ε/3n. Looking at two consecutive games Hi and Hi+1, we see that they only
differ in one edge (e.g., in H2 we answer the query (3, 5) with Enck3(r5), in H3

with Enck3(k5)), and moreover this edge will be at the end of a path that now
has only length 2, that is, half the length of the path in our original real and
random games.

We can now continue this process, constructing new games where the path
length is halved, paying a factor 3n in distinguishing advantage. For example,
as illustrated in Fig. 2, we can guess the node that halves the path leading to
4 We never actually construct this “slightly selective” adversary, but (as in complexity

leveraging) we simply commit to a random guess, then run the adaptive adversary,
and if its queries are not consistent with our guess, we abort outputting a random
value. (We could also output a constant value; the point is that the advantage of the
adversary, conditioned on our guess being wrong, is zero; whereas, conditioned on
the guess being correct, it is the same as the advantage of the adaptive adversary).
However, instead of this experiment it is easier to follow our proof outline by thinking
of the adversary actually committing to its choices initially, but the reduction paying
a factor (in the distinguishing advantage of the adversary that is allowed to make
this choice adaptively) that corresponds to the size of the sample space of this guess.

608 G. Fuchsbauer et al.

the differing query in games H2 and H3 (for the illustrated path this would be
i = 3), then define new games where we assume the adversary commits to this
node (paying a factor n), and then define two new games H ′

2 and H ′
3, which are

derived from games H2 and H3 (which now are augmented by our new guess),
respectively, by answering the query (j, i) that asks for an encryption of this node
(in the figure (j, i) = (1, 3)) with an encryption Enck1(r3) instead of Enck1(k3).

If we start with a path of length � ≤ n then after log � ≤ log n iterations
of this process we proved the existence of two consecutive games (call them G0

and G1) that differ only in a single edge j → i and the vertex j has in-degree 0.
That is, both games are identical, except that in one game the encryption query
(j, i) is answered with Enckj

(ki) and in the other with Enckj
(ri). Moreover, the

key kj is not used anywhere else in the experiment and we know exactly when
this query is made during the experiment (as the adversary committed to i).

Given a distinguisher A for G0 and G1, we can now construct an attacker
B that breaks the IND-CPA security of the underlying encryption scheme with
the same advantage: in the IND-CPA game B chooses two random messages
m0,m1 and asks to be challenged on them.5 The game samples a random bit b
and returns the challenge C = Enck(mb) to B, which must then output a guess
b′ for b. At this point, B invokes A and simulates the game G0 for it, choosing
all keys at random, except that it uses C to answer the encryption query (j, i).6

Finally, B forwards A’s guess b′. Identifying (k,m0,m1) with (kj , ki, ri), we see
that depending on whether b = 0 or b = 1, B simulates either G0 or G1. Thus,
whatever advantage A has in distinguishing G0 from G1, B will break the IND-
CPA security of Enc with the same advantage.

Proof Outline for Trees. We will now outline our reduction of the adaptive
security of GSD to the IND-CPA security of Enc for a more general case. Namely,
the adversary is only restricted in that the key graph resulting from its queries
is such that the connected component containing the challenge is a tree. (Recall
that we already disallowed cycles in the key graph as this would require circular
security. Being a tree means that we also have no cycles in the key graph when
ignoring edge directions). Note that paths as discussed in the previous section
are very special trees. The GSD problem on trees is particularly interesting, as
it captures some multicast encryption protocols like the Logical Key Hierarchy
(LKH) protocol [WGL00]. We refer the reader to [Pan07] for details.

Trees with in-degrees ≤ 1. Let us first consider the case where the connected
component containing the challenge is a tree, and moreover all its vertices have
in-degree 0 or 1. It turns out that the proof outlined for paths goes through
with only minor changes for such trees. Note that such a tree has exactly one
vertex with in-degree 0, which we call the root, and there is a unique path from
the root to the challenge node. We can basically ignore all the edges not on this
5 Note that B makes no encryption queries at all (which are allowed by the IND-CPA

experiment).
6 Note that since node j has in-degree 0, we can identify kj with the key k used by

the IND-CPA experiment, as we never have to encrypt kj .

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 609

Fig. 3. Illustration of our adaptive security proof for general trees.

path and do a reduction as the one outlined above. The only difference is that
now, when simulating the game Gb (where b is 0 or 1 depending on the whether
the challenge C with which we answer the encryption query (j, i) is Enckj

(ki) or
Enckj

(ri)), the adversary can also ask for encryption queries (j, x) for any x. This
might seem like a problem as we do not know kj (we identified kj with the key
used by the IND-CPA challenger). But recall that in the IND-CPA game there
is an encryption oracle Enckj

(·), which we can query for the answer Enckj
(kx)

to such encryption queries.

General Trees. For general trees, where nodes can have in-degree greater
than 1, we need to work more. The proof for paths does not directly generalize,
as now nodes (in particular, the challenge) can be reached from more than one
node with in-degree 0. We call these the sources of this node; for example in the
tree H0 in Fig. 3, the (challenge) node k7 has 4 sources k1, k2, k3 and k12.

On a high level, our proof strategy will be to start with a tree where the
challenge node c has s sources (more precisely, we have two games that differ in
one edge that points to ki in one game, and to ri in the other, like games H0

and H7 in Fig. 3). We then guess a node v that “splits” the tree in a nice way,
by which we mean the following: Assume v has in-degree d and we divert every
edge going into v to a freshly generated node; let’s call them v1, . . . , vd. Then this
splits the tree into a forest consisting of d + 1 trees (the component containing

610 G. Fuchsbauer et al.

the challenge and one component for every vi). The node v “well-divides” the
tree if after the split the node c and all of v1, . . . , vd have at most �s/2� sources.

As an example, consider again the tree H0 in Fig. 3, where the challenge
node k7 has 4 sources. The node k9 would be a good guess, as it well-divides the
tree: consider the forest after splitting at this node as described above (creating
new nodes v1, v2, v3 and diverting the edges going into k9 to them, i.e., replacing
k5 → k9 by k5 → v1, k6 → k9 by k6 → v2, and k12 → k9 by k12 → v3). Then we
obtain 4 trees, where now c = k7 has only one source (k9) and the new nodes
v1, v2, v3 have 2, 1 and 1 sources, respectively.

Once we have guessed a well-dividing node v (or equivalently, the adversary
has committed to such a node), we define 2d hybrid games (where d is the degree
of the well-dividing node) between the two initial games, which we call H0 and
H2d+1, as follows. H1 is derived from H0 by diverting the first encryption query
that asks for an encryption of v (i.e., that is of the form (j, v) for some j) from
real to random; that is, we answer with Enckj

(rv) instead of Enckj
(kv). For i ≤ d,

Hi is derived from H0 by diverting the first i encryption queries. Hd+1 is derived
from Hd by diverting the encryption query that asks for an encryption of the
challenge c from real to random. The final d−1 hybrids games are used to switch
the encryption of v back from random to real, one edge at a time. This process
is illustrated in the games H0 to H7 in Fig. 3.

Because v was well-dividing (and we show in the full version that such a
node always exists), we can prove the following property for any two consecutive
games Hi and Hi+1: they differ in exactly one edge, which for some j, v in one
game is kj → kv and kj → rv in the other, and moreover, kj has at most �s/2�
sources.

If an adversary can distinguish H0 and H2d+1 with advantage ε then it must
distinguish two hybrids Hi and Hi+1 with advantage ε/((2d + 1)n) (where n
accounts for guessing the well-dividing node). But any such two hybrids now
only have at most �s/2� sources. If we repeat this guessing/hybrid steps log s
times, we end up with two games G0 and G1 which differ in one edge that has
only one source. At this point we can then use our reduction for trees with only
one source outlined above.

Analyzing the Security Loss. To halve the number of sources, we guess a
well-dividing vertex (which costs a factor n in the reduction), and then must add
up to 2d intermediate hybrids (where d is the maximum in-degree of any node),
costing another factor 2d + 1. Assuming that the number of sources is bounded
by s, we have to iterate the process at most log s times. Finally, we lose another
factor d (but only once) because our final node can have more than one ingoing
edge. Overall, assuming the adversary breaks the GSD game with advantage ε
on trees with at most s sources and in-degree at most d, our reduction yields an
attacker against the IND-CPA security of Enc with advantage

ε/ dn((2d + 1)n)�log s� (3n)�log �� .

For general trees, since s, d ≤ n, we have ε/ n3 log n+5.

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 611

2 Preliminaries

For a ∈ N, we let [a] = {1, 2, . . . , a} and [a]0 = [a] ∪ {0}. We say adversary (or
distinguisher) D is t-bounded if D runs in time t.

Definition 1 (Indistinguishability). Two distributions X and Y are (ε, t)-
indistinguishable, denoted Y ∼(ε,t) X or Δt(Y,X) ≤ ε, if no t-bounded distin-
guisher D can distinguish them with advantage greater than ε, i.e.,

Δt(Y,X) ≤ ε ⇐⇒ ∀Dt :
∣
∣Pr [Dt(X) = 1] − Pr [Dt(Y) = 1]

∣
∣ ≤ ε.

Symmetric Encryption. A pair of algorithms (Enc,Dec) with input k ∈
{0, 1}λ, where λ is the security parameter, and a message m (or a cipher-
text) from {0, 1}∗ is a symmetric-key encryption scheme if for all k,m we have
Deck(Enck(m)) = m. Consider the game Expind-cpa−b

Enc,D between a challenger C

and a distinguisher D: C chooses a uniformly random key k ∈ {0, 1}λ and a bit
b ∈ {0, 1}; D can make encryption queries for messages m and receives Enck(m);
finally, D outputs a pair (m0,m1), is given Enck(mb) and outputs a bit b′ ∈ {0, 1},
which is also the output of Expind-cpa−b

Enc,D .7

Definition 2. Let t ∈ N
+ and 0 < ε < 1. An encryption scheme (Enc,Dec) is

(t, ε)-IND-CPA secure if for any t-bounded distinguisher D, we have
∣
∣Pr

[

Expind-cpa−1
Enc,D = 1

] − Pr
[

Expind-cpa−0
Enc,D = 1

]∣
∣ ≤ ε.

3 The GSD Game

In this section we describe the generalized selective decryption game as defined in
[Pan07] and give our main theorem. Consider the following game, Expgsd−(n,b)

Enc,A

called the generalized selective decryption (GSD) game, parameterized by an
encryption scheme Enc,8 an integer n and a bit b. It is played by the adversary A
and the challenger B. First B samples n keys k1, k2, . . . , kn uniformly at random
from {0, 1}λ. A can make three types of queries during the game:

– encrypt: A query of the form encrypt(i, j) is answered with c ← Encki
(kj).

– corrupt: A query of the form corrupt(i) is answered with ki.
– challenge: The response to challenge(i) depends on the bit b: if b = 0, the

answer is ki; if b = 1, the answer is a random value ri ∈ {0, 1}λ.

7 For this notion to be satisfied, Enc must be probabilistic. In this paper one may
also consider deterministic encryption, in which case the security definition must
explicitly require that the challenge messages are fresh in the sense that D has not
asked for encryptions of them already.

8 We will never actually use the decryption algorithm Dec in the game, and thus will
not mention it explicitly.

612 G. Fuchsbauer et al.

A can make multiple queries of each type, adaptively and in any order. It can
also make several challenge queries at any point in the in the game. Allowing
multiple challenge queries models the fact that the respective keys are jointly
pseudorandom (as opposed to individual keys being pseudorandom by them-
selves). Allowing to interleave challenges with other queries models that they
remain pseudorandom even after corrupting more keys or seeing further cipher-
texts.

We can think of the n keys that B creates as n vertices, labeled 1, 2, . . . , n, in a
graph. In the beginning of the game there are no edges, but every time A queries
encrypt(i, j), we add the edge i → j to the graph. When A queries corrupt(i) for
some i ∈ [n], we mark i as a corrupt vertex; when A queries challenge(i), we mark
it as a challenge vertex. For an adversary A we call this graph the key graph,
denoted G(A) and we write V corr(A) and V chal(A) for the sets of corrupt and
challenge nodes, respectively. (Note that G(A) is a random variable depending
on the randomness used by A and its challenger.)

Legitimate Adversaries. Consider an adversary that corrupts a node i in
G(A) and queries challenge(j) for some j which is reachable from i. Then A
can successively decrypt the keys on the path from i to j, in particular kj , and
thus deduce the bit b. We only consider non-trivial breaks and require that no
challenge node is reachable from a corrupt node in G(A).

Two more restrictions must be imposed on G(A) if we only want to assume
that Enc satisfies IND-CPA. First, we do not allow key cycles, that is, queries
yielding

Encki1
(ki2),Encki2

(ki3), . . . ,Enckis−1
(kis),Encks

(ki1),

as this would require the scheme to satisfy key-dependent-message (a.k.a. circu-
lar) security [BRS03,CL01].

Second, IND-CPA security does not imply that keys under which one has seen
encryptions of random messages remain pseudorandom.9 Pseudorandomness of
keys (assuming only IND-CPA security of the underlying scheme) can thus only
hold if their corresponding node does not have any outgoing edges. We thus
require that all challenge nodes in the key graph are sinks (i.e., their out-degree
is 0). The requirements (as formalized also in [Pan07]) are summarized in the
following.

Definition 3. An adversary A is legitimate if in any execution of A in the GSD
game the values of G(A), V corr(A) and V chal(A) are such that:

– For all i ∈ V corr(A) and j ∈ V chal(A): j is unreachable from i in G(A).
– G(A) is a directed acyclic graph (DAG) and every node in V chal(A) is a sink.

9 Consider any IND-CPA-secure scheme (Enc,Dec) and define a new scheme as follows:
keys are doubled in length and encryption under k = k1||k2 is defined as Enck(m) =
Enck1(m)||k2. This scheme is still IND-CPA, but given a ciphertext C = Enck(m)
one can easily distinguish k from a random value even if m is random and unknown.

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 613

Let n ∈ N
+ and G be a class of DAGs with n vertices. We say that a legitimate

adversary A is a G-adversary if in any execution the key graph belongs to G, i.e.,
G(A) ∈ G.
Definition 4. Let t ∈ N

+, 0 < ε < 1. An encryption scheme Enc is called
(n, t, ε,G)-GSD secure if for every G-adversary A running in time t, we have

∣
∣Pr

[

Expgsd−(n,1)
Enc,A = 1

] − Pr
[

Expgsd−(n,0)
Enc,A = 1

]∣
∣ ≤ ε.

Assuming One Challenge Query is Enough. Although the definition of
GSD allows the adversary to make any number of corruption queries, Panjwani
[Pan07] observes that by a standard hybrid argument one can turn any adver-
sary with advantage ε (which makes at most q ≤ n challenge queries) into an
adversary that makes only one challenge query, but still has advantage at least
ε/q. From now on we therefore only consider adversaries that make exactly one
challenge query (keeping in mind that we have to pay an extra factor n in the
final distinguishing advantage for statements about general adversaries).

4 Single Source

In this section we will analyze the GSD game for key graphs in which the chal-
lenge node is only reachable from one source node. That is, for some q ≤ n there
is a path p1 → p2 → . . . → pq where p1 has in-degree 0, all nodes pi, 2 ≤ i ≤ q
have in-degree 1 (but arbitrary out-degree) and the (single) challenge query is
challenge(pq) (recall that the challenge has out-degree 0). Let G1 be the set of all
such graphs, and G�

1 ⊆ G1 be the subset where this path has length at most �.

Theorem 1 (GSD on Trees with One Path to Challenge). Let t ∈ N,
0 < ε < 1 and G1 be the class of key graphs just defined. If an encryption scheme
is (t, ε)-IND-CPA secure then it is also (n, t′, ε′,G1)-GSD secure for

ε′ = ε · n (3n)�log n� and t′ = t − QAdvTEnc − Õ(QAdv),

where TEnc denotes the time required to encrypt a key, and QAdv denotes an upper
bound on the number of queries made by the adversary.10 More generally, if we
replace G1 with G�

1, we get

ε′ = ε · n (3n)�log �� and t′ = t − QAdvTEnc − Õ(QAdv).

GSD on Single-Source Graphs. For b ∈ {0, 1}, we consider the GSD game
Expgsd−(n,b)

Enc on G1 between B and an adversary A. Challenger B first samples

10 If Enc is deterministic then w.l.o.g. we can assume QAdv ≤ n2 as there are at most
n(n − 1)/2 possible encryption queries (plus ≤ n corruption and challenge queries).
If Enc is probabilistic then A is allowed any number of encryption queries.

614 G. Fuchsbauer et al.

n random keys k1, k2, . . . , kn and we assume that already at this point B sam-
ples fake keys r1, . . . , rn. On all encrypt(i, j) queries B returns real responses
Encki

(kj). If b = 0, the response to challenge(z) is kz; if b = 1, the response is rz.
We require that the key graph is in G1, that is the connected component

of the key graph which contains the challenge z has a path p1 → p2 → . . . →
pq = z with p1 having in-degree 0, all other pi having in-degree 1 and pq = z
having out-degree 0 (this means A made queries encrypt(pi−1, pi), but no queries
encrypt(x, pi) for x �= pi−1).

Eventually, A outputs a bit b′ ∈ {0, 1}, which is also the output of the game.
If the encryption scheme Enc is not (t′, ε′,G1)-GSD secure then there exists a
G1-adversary A running in time t′ such that

∣
∣Pr

[

Expgsd−(n,0)
Enc,A = 1

] − Pr
[

Expgsd−(n,1)
Enc,A = 1

]∣
∣ > ε′. (1)

Our Goal. Suppose we knew that our GSD adversary A wants to be challenged
on a fixed node z∗ and that it will make a query encrypt(y, z∗) for some y which
it will not use in any other query. Then we could use A directly to construct a
distinguisher D as in Definition 2: D sets up all keys kx, x ∈ [n], samples a value
rz∗ and runs A, answering A’s queries using its keys; except when encrypt(y, z∗)
is queried for any y ∈ [q], D queries its own challenger on (kz∗ , rz∗) and forwards
the answer to A. Moreover, challenge(z∗) is answered with kz∗ . If D’s challenger
C chose b = 0, this perfectly simulates the real game for A. If b = 1 then A gets
an encryption of rz∗ and the challenge query is answered with kz∗ , although in
the random GSD game A expects an encryption of kz∗ and challenge(z∗) to be
answered with rz∗ . However, these two games are distributed identically, since
both kz∗ and rz∗ are uniformly random values that do not occur anywhere else
in the game. Thus D simulates the real game when b = 0 and the random game
when b = 1. Note that D implicitly set ky to the key that C chose, but that’s
fine, since we assumed that ky is not used anywhere else in the game and thus
not needed by D for the simulation.

Finally, suppose that, in addition to the challenge z∗, we knew y∗ for which
A will query encrypt(y∗, z∗). Then we could also allow A to issue queries of the
form encrypt(y∗, x), for x other than z∗. D could easily simulate any such query
by querying kx to its encryption oracle.

Unfortunately, general GSD adversaries can decide adaptively on which node
they want to be challenged, and worse, they can make queries encrypt(x, y),
where y is a key that encrypts the challenge.

We will construct a series of hybrids where any two consecutive games Game
and Game′ are such that from a distinguisher A for them, we can construct an
adversary D against the encryption scheme with the same advantage. For this,
the two games should only differ in the response of one encryption query on
the path to the challenge, say encrypt(y, z), which is responded to with a real
ciphertext Encky

(kz) in Game and with a fake ciphertext Encky
(rz) in Game′.

Moreover, the key ky must not be encrypted anywhere else in the game, as our
distinguisher D will implicitly set ky to be the key of its IND-CPA challenger C.

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 615

Thus, in Game and Game′ all queries encrypt(x, y), for any x, are responded to
with a fake ciphertext Enckx

(ry). Summing up, we need the two games to have
the following properties for some y:

– Property 1. Game and Game′ are identical except for the response to one
query encrypt(y, z), which is replied to with a real ciphertext in Game and a
fake one in Game′.

– Property 2. Queries encrypt(x, y) are replied to with a fake response in both
games.

If we knew the entire key graph G(A) before answering A’s queries then we could
define a series of 2q − 1 games as in Fig. 1 where we consecutively replace edges
from the source to the challenge by fake nodes and then go back replacing fake
edges with real ones starting with pq−2 → pq−1. Any two consecutive games in
such a sequence would satisfy the two properties, so we could use them to break
IND-CPA.

The problem is that in general the probability of guessing the connected
component containing the challenge is exponentially small in n and consequently
from a GSD adversary’s advantage ε′ we will obtain a distinguisher D with advan-
tage ε = ε′/O(n!). To avoid an exponential loss, we thus must avoid guessing the
entire component at once.

The First Step. Our first step is to define two new games Game{q}
∅ and Game{q}

{q} ,
which are modifications of Expgsd−0 and Expgsd−1, respectively. Both new
games have an extra step at the beginning of the game: B guesses which key
is going to be the challenge key and at the end of the game only if its guess was
correct, the output of the game is A’s output and otherwise it is 0. Clearly B’s
guess is correct with probability 1/n. Aside from this guessing step, Game{q}

∅ is
identical to Expgsd−0; all responses are real. We therefore have Pr[Game{q}

∅ =
1] = 1/n · Pr[Expgsd−0 = 1].

Analogously, we define an auxiliary game, Game{q}
1 , which is identical to

Expgsd−1, except for the guessing step. Again we have Pr[Game{q}
1 = 1] =

1/n · Pr[Expgsd−1 = 1]. We then define Game{q}
{q} exactly as Game{q}

1 , except for a
syntactical change: Let z be the guessed value for the challenge node. Then any
query encrypt(x, z) is replied to with Enckx

(rz), that is, an encryption of the fake
key rz. (Note that this game can be simulated, since we “know” z when guessing
correctly.) On the other hand, the query challenge(z) is answered with kz (rather
than rz in Expgsd−1). Since the difference between Game{q}

1 and Game{q}
{q} is that

we have replaced all occurrences of kz by rz and all occurrences of rz by kz,
which are distributed identically (thus we’ve merely swapped the names of kz

and rz), we have Pr[Game{q}
{q} = 1] = Pr[Game{q}

1 = 1] = 1/n · Pr[Expgsd−1 = 1].
Together with Eq. (1), we have thus

∣
∣Pr

[

Game
{q}
∅ = 1

] − Pr
[

Game
{q}
{q} = 1

]∣
∣

= 1/n · ∣
∣Pr

[

Expgsd−0 = 1
] − Pr

[

Expgsd−1 = 1
]∣
∣ > 1/n · ε′.

616 G. Fuchsbauer et al.

We continue to use the notational convention that for sets I ⊆ P ⊆ [n], the
game GameP

I is derived from the real game by additionally guessing the nodes
corresponding to P and answering encryptions of the nodes in I with fake keys.
This is made formal in Fig. 4 below.

The Second Step. Assume q is a power of 2 and consider Game{q/2, q}
∅ , which

is identical to Game{q}
∅ , except that in addition to the challenge node, B also

guesses which node x ∈ [n] is going to be the node in the middle of the path to
the challenge, i.e. pq/2 = x. T he output of Game{q/2, q}

∅ is A’s output if the guess
was correct and 0 otherwise. Since B guesses correctly with probability 1/n, we
have

Pr
[

Game
{q/2, q}
∅ = 1

]

= 1/n · Pr
[

Game
{q/2}
∅ = 1

]

.

By guessing the middle node, we can assume the middle node is known and this
will enable us to define a hybrid game, Game{q/2, q}

{q/2} , in which the query for the
encryption of kpq/2 is responded to with a fake answer. In addition, we consider
games Game{q/2, q}

{q} and Game{q/2, q}
{q/2, q} which are similarly defined by making the

same changes to game Game{q}
{q} , i.e. guessing the middle node and replying to

the encryption query of the guessed key with a fake and a real ciphertext respec-
tively. Again, we have Pr[Game{q/2, q}

{q} = 1] = 1/n · Pr[Game{q}
{q} = 1]. Therefore

(t′, ε′/n)-distinguishability of Game{q}
∅ and Game{q}

{q} implies that Game{q/2, q}
∅ and

Game{q/2, q}
{q} are (t′, ε′/n2)-distinguishable, i.e. Δt

(

Game{q/2, q}
∅ ,Game{q/2, q}

{q}
)

>

ε′/n2, and therefore by the triangle inequality

Δt

(

Game
{q/2, q}
∅ ,Game

{q/2, q}
{q/2}

)

+ Δt

(

Game
{q/2, q}
{q/2} ,Game

{q/2, q}
{q/2, q}

)

+ Δt

(

Game
{q/2, q}
{q/2, q},Game

{q/2, q}
{q}

)

≥ Δt

(

Game
{q/2, q}
∅ ,Game

{q/2, q}
{q}

)

> 1/n2 · ε′. (2)

By Eq. (2), at least one of the pairs of games on the left-hand side must be
(t′, ε′/3n2)-distinguishable. The two games of every pair differ in exactly one
point, as determined by the subscript of each game. For instance, the difference
between the last pair Game{q/2, q}

{q/2, q} and Game{q/2, q}
{q} is the encryption of node q/2.

Recall that our goal is to construct a pair of hybrids where the differing query
encrypt(y, z) is such that all queries encrypt(x, y) are replied to with Enckx

(ry),
as formalized as Property 2. Games Game{q}

∅ and Game{q}
{q} differed in the last

query on the path and the only key above it that is not encrypted anywhere
is the start of the path. What we have achieved with our games above is to
halve that distance: the first pair, (Game{q/2, q}

∅ ,Game{q/2, n}
{q/2}), and the last pair,

(Game{q/2, q}
{q/2, q} ,Game{q/2, q}

{q}), differ in a node that is only half way down the path;
and the middle pair, (Game{q/2, q}

{q/2} ,Game{q/2, q}
{q/2, q}), differ in the last node, but half

way up the path there is a key, namely kq/2, which is not encrypted anywhere,
as all queries encrypt(x, q/2) are answered with Enckx

(rq/2).

The Remaining Steps. For any of the three pairs that is (t′, ε′/3n2)-distin-
guishable (and by Eq. (2) there must exist one), we can repeat the same process

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 617

Fig. 4. Definition of GamePI for the single-source case.

on the half of the path which ends with the query that is different in the two
games. For example, assume this holds for the last pair, that is

Δt

(

Game
{q/2, q}
{q/2, q},Game

{q/2, q}
{q}

)

>
ε′

3n2
. (3)

We repeat the process of guessing the middle node between the differing node
and the random node above (in this case the root of the path), which is thus
node q/4, and obtain a new pair which satisfies

Δt

(

Game
{q/4, q/2, q}
{q/2, q} ,Game

{q/4, q/2, q}
{q}

)

>
ε′

3n3
, (4)

by Eq. (3) and the fact that the guess is correctly with probability 1/n. We can
now define two intermediate games

Game
{q/4, q/2, q}
{q/4, q/2, q} and Game

{q/4, q/2, q}
{q/4, q} (5)

where we replaced the encryption of kpq/4 by one of rpq/4 . As in Eq. (2), we
can again define a sequence of games by putting the games in Eq. (5) between
the ones in Eq. (4) and argue that by Eq. (4), two consecutive hybrids must
be (t′, ε′/(32n3))-distinguishable. What we have gained is that any pair in this
sequence differs by exactly one edge and the closest fake answer above is only a
fourth of the path length away.

Repeating these two steps a maximum number of �log q� times, we arrive at
two consecutive games, where the distance from the differing node to the closest
“fake” node above is 1. We have thus found two games that satisfy Properties 1
and 2, meaning we can use a distinguisher A to construct an adversary D against
the encryption scheme.

Since a path has at most n nodes, after at most log n steps we end up with
two games that are (t′, ε′/n(3n)�log n�)-distinguishable and which can be used to
break the encryption scheme. If the adversary is restricted to paths of length �
(i.e., graphs in G�

1), this improves to (t′, ε′/n(3n)�log ��).

618 G. Fuchsbauer et al.

Proof of Theorem 1. We formalize our method to give a proof of the theorem.
In Fig. 4 we describe game GameP

I , which is defined by the nodes on the path
that are guessed (represented by the set P) and the nodes where an encryption
of a key is replaced with an encryption of a value r (represented by I ⊆ P).

Lemma 1. Let I ⊆ P ⊆ [n] and z ∈ P \ I. Also let y be the largest number in I
such that y < z, and y = 0 if z is smaller than all elements in I. If GameP

I and
GameP

I∪{z} are (t, ε)-distinguishable then the following holds.

– If z = y + 1 then Enc is not (t + QAdvTEnc + Õ(QAdv)), ε)-IND-CPA-secure.
– If z > y + 1, define z′ = y + �(z − y)/2�, P ′ = P ∪ {z′} and

I1 = I, I2 = I ∪ {z′}, I3 = I ∪ {z′, z}, I4 = I ∪ {z}.

Then for some i ∈ {1, 2, 3}, games GameP ′
Ii and GameP ′

Ii+1
are (t, ε/3n)-

distinguishable.

The proof of this lemma can be found in the full version. Applying Lemma 1
repeatedly �log n� times (or �log �� if we know an upper bound on the path
length �), we obtain the proof of Theorem 1.

5 General Trees

For a node v in a directed graph G let Tv denote the subgraph of G we get when
only keeping the edges on paths that lead to v. In this section we prove bounds
for GSD if the underlying key graph is a tree. Concretely, let Gτ be the class of
key graphs that contain one designated “challenge node” z and where the graph
Tz is a tree (when ignoring edge directions).

To give more fine-grained bounds we define a subset Gs,d,�
τ ⊆ Gτ as follows.

For G ∈ Gτ , let z be the challenge node and Tz as above. Then G ∈ Gs,d,�
τ

if the challenge node has at most s sources (i.e., there are at most s nodes u
of in-degree 0 s.t. there is a directed path from u to z), every node in Tz has
in-degree at most d and the longest path in Tz has length at most �. Note that
as d < n, s < n and � ≤ n any G ∈ Gτ with n nodes is trivially in Gn−1,n−1,n

τ .

Theorem 2 (Security of GSD on Trees). Let n, t ∈ N, 0 < ε < 1 and Gτ

be the class of key graphs just defined. If an encryption scheme is (t, ε)-IND-
CPA secure then it is also (n, t′, ε′,Gτ)-GSD secure for

ε′ = ε · n2(6n3)�log n� ≤ ε · n3�log n�+5 and t′ = t − QAdvTEnc − Õ(QAdv)

(with QAdv, TEnc as in Theorem 1). If we replace Gτ with Gs,d,�
τ then

ε′ = ε · dn((2d + 1)n)�log s� (3n)�log �� and t′ = t − QAdvTEnc − Õ(QAdv).

For space reasons, the proof of this theorem is moved to the full version.

A Quasipolynomial Reduction for Generalized Selective Decryption on Trees 619

6 Conclusions and Open Problems

We showed a quasipolynomial reduction of the GSD game on trees to the security
of the underlying symmetric encryption scheme. As already discussed in the
introduction, it is an interesting open problem to extend our reduction to general
(directed, acyclic) graphs or to understand why this is not possible. This is the
second result using the “nested hybrids” technique (after its introduction in
[FKPR14] to prove the security of constrained PRFs), and given that it found
applications for two seemingly unrelated problems, we believe that there will be
further applications in the future.

One candidate is the problem of proving security under selective opening
attacks [DNRS99,FHKW10,BHY09], where one wants to prove security when
correlated messages are encrypted under different keys. Here, the adversary may
adaptively chose to corrupt some keys after seeing all ciphertexts, and one
requires that the messages in the unopened ciphertexts are indistinguishable
from random messages (sampled so they are consistent with the already opened
ciphertexts). This problem is notoriously hard, and no reduction avoiding com-
plexity leveraging to IND-CPA security of the underlying scheme is known.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments.

References

[ABBC10] Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its
relation to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010)

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014)

[BH93] Beaver, D., Haber, S.: Cryptographic protocols provably secure against
dynamic adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 307–323. Springer, Heidelberg (1993)

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A.
(ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg
(2009)

[BRS03] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the
presence of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.)
SAC 2002. LNCS, vol. 2595. Springer, Heidelberg (2003)

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[CFGN96] Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-
party computation. In: 28th ACM STOC, pp. 639–648. ACM Press, May
1996

620 G. Fuchsbauer et al.

[CL01] Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 93. Springer, Heidelberg
(2001)

[DNRS99] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In:
40th FOCS, pp. 523–534. IEEE Computer Society Press, October 1999

[FHKW10] Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure
against chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg
(2010)

[FKPR14] Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security
of constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014,
Part II. LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[KPTZ13] Kiayia, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 13, pp. 669–684. ACM Press, New York
(2013)

[MP06] Micciancio, D., Panjwani, S.: Corrupting one vs. Corrupting many: the
case of broadcast and multicast encryption. In: Bugliesi, M., Preneel, B.,
Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 70–82.
Springer, Heidelberg (2006)

[Pan07] Panjwani, S.: Tackling adaptive corruptions in multicast encryption pro-
tocols. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40.
Springer, Heidelberg (2007)

[SS00] Selçuk, A.A., Sidhu, D.P.: Probabilistic methods in multicast key man-
agement. In: Information Security, Third International Workshop, ISW
2000, 20–21 December 2000, Wollongong, NSW, Australia, pp. 179–193.
Proceedings (2000)

[WGL00] Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using
key graphs. IEEE/ACM Trans. Netw. 8(1), 16–30 (2000)

	A Quasipolynomial Reduction for Generalized Selective Decryption on Trees
	1 Introduction
	2 Preliminaries
	3 The GSD Game
	4 Single Source
	5 General Trees
	6 Conclusions and Open Problems
	References

