
Generic Hardness of the Multiple Discrete
Logarithm Problem

Aaram Yun(B)

Ulsan National Institute of Science and Technology (UNIST),
Ulsan, Republic of Korea
aaramyun@unist.ac.kr

Abstract. We study generic hardness of the multiple discrete logarithm
problem, where the solver has to solve n instances of the discrete loga-
rithm problem simultaneously. There are known generic algorithms which
perform O(

√
np) group operations, where p is the group order, but no

generic lower bound was known other than the trivial bound. In this
paper we prove the tight generic lower bound, showing that the pre-
viously known algorithms are asymptotically optimal. We establish the
lower bound by studying hardness of a related computational problem
which we call the search-by-hyperplane-queries problem, which may be
of independent interest.

Keywords: Multiple discrete logarithm · Search-by-hyperplane-queries ·
Generic group model

1 Introduction

Multiple Discrete Logarithm Problem. Let G be a cyclic group of order p,
where p is prime, and let g be a generator of G. Then the Discrete Logarithm
(DL) problem is defined as follows: given (G, p, g, gα) for a uniform random
α

$← Zp, find out α.
Similarly, the Multiple Discrete Logarithm (MDL) problem is defined as

follows: given (G, p, g, gα1 , . . . , gαn), for independently chosen uniform random
elements α1, . . . , αn

$← Zp, find out �α = (α1, . . . , αn).
The discrete logarithm problem (and related variants like the Diffie-Hellman

problem) is used for many cryptographic constructions and its hardness was
studied widely. On the other hand, as far as we know, there are no cryptographic
constructions whose security is based on the multiple discrete logarithm problem.

Still, the multiple discrete logarithm problem is relevant in the context of
standard curves in the elliptic curve cryptography. Since generating good elliptic
curves is rather computationally expensive, some standards like NIST’s FIPS
186 [1] recommend using a few standard curves to instantiate cryptographic
schemes. Hence, in such a setting, we naturally have to consider the multiple
discrete logarithm problem. Hitchcock et al. [7] analyzed efficiency of algorithms
c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 817–836, 2015.
DOI: 10.1007/978-3-662-46803-6 27

818 A. Yun

solving the multiple discrete logarithm problem to see how using such a standard
curve affects security.

Moreover, some cryptographic constructions require a user to solve ‘small’
discrete logarithm problems: either the group order p is small, or the exponent α
is chosen from a small subset I ⊆ Zp. One such example is the Boneh-Goh-Nissim
homomorphic encryption [5], where in order to decrypt a ciphertext, a user has to
first compute gm from the given ciphertext and then solve the discrete logarithm
to recover the message m. Another example is the Maurer-Yacobi identity-based
encryption [10]. Their construction uses a trapdoor discrete logarithm group,
where the discrete logarithm problem is feasible to a user who has the trapdoor
information, while hard for those who do not. They achieve this by using a
composite-order group, and then the trapdoor information is the factorization
of the group order. A user who has the factorization can solve DL on small groups
so the discrete logarithm problem is feasible, but an adversary has to solve the
DL problem in a large group. For these cases, efficient algorithms for solving
DL is crucial, and for example, Lee, Cheon, and Hong [9] and Bernstein and
Lange [2] showed how to speed up the solution of the discrete logarithm problem
via precomputation. When considered as a whole, these become algorithms for
solving the multiple discrete logarithm problem.

Generic Group Model. In general, hardness of a cryptographic problem based
on a group does not depend solely on the isomorphism class of the underlying
group. For example, while we believe that, if we carefully choose an elliptic curve
and a subgroup G of prime order p on it, then the discrete logarithm problem
on G would be difficult, we also know that the same problem is trivial on the
additive group Zp which is nonetheless isomorphic to G. What is important
is how the same isomorphism class is encoded to a concrete ‘representation’.
When ξ : Zp → {0, 1}t is an injective function, we say that ξ is an encoding
of the group Zp. In such a case, we may define G := ξ(Zp), and make G into
a group by giving G the unique group structure induced from the bijection
ξ : Zp

∼→ G. Conversely, we can see that any concrete cyclic group with prime
order p should come from such an encoding ξ : Zp → {0, 1}t together with
functions μ : {0, 1}t × {0, 1}t → {0, 1}t, ι : {0, 1}t → {0, 1}t such that μ|G×G

and ι|G give multiplication and inversion on G, respectively.
Also, a sophisticated algorithm may analyze and exploit structures of such

an encoding to solve group-based computational problems. Naturally, such an
algorithm is specific to that particular encoding. On the other hand, there are
many ‘generic’ algorithms which are agnostic to the particular encoding used.
One such example is the Baby-Step-Giant-Step algorithm for solving the discrete
logarithm problem: BSGS algorithm does not assume anything about the group
encoding, except that it is indeed a group encoding, therefore it works for any
cyclic group, even though better algorithms exist for some specific groups.

‘Generic hardness’ of a cryptographic problem, that is, hardness against such
generic algorithms, was studied for many group-based cryptographic problems.
While a proof of generic hardness cannot really replace serious cryptanalysis

Generic Hardness of the Multiple Discrete Logarithm Problem 819

for such a problem, at least it serves as a sanity check, in the sense that if
a problem can be solved efficiently even by a generic algorithm, certainly one
cannot base cryptographic constructions on such an easy problem. Also, for
example on elliptic curves, so far no better non-generic algorithms are known.

To analyze such generic algorithms, the generic group model was proposed
by Nechaev and Shoup [11,12]. In the generic group model, to ensure that a
generic algorithm cannot exploit the encoding of a group, a random encoding,
an encoding ξ : Zp → {0, 1}t which is uniform randomly chosen from the set
of all injections Zp ↪→ {0, 1}t, is used. Since in such a case we cannot expect
any efficient algorithms for group laws, the group laws are given by oracles:
the algorithm makes oracle queries by giving encodings of group elements like
ξ(α), ξ(β), and the oracle returns the result of multiplication or division of these
elements in encoded form. In the generic group model, we consider the query
complexity of an algorithm to measure its efficiency.

Generic Algorithms for DL and MDL Problems. Shoup [12] analyzed
generic hardness of the discrete logarithm problem. He showed that any generic
DL solver which makes at most q queries to the group law oracles has the success
probability at most O(q2/p). In other words, any generic DL solver with some
constant success probability should make at least Ω(

√
p) queries.

As explained before, there are generic algorithms for DL with asymptotically
tight matching upper bounds. The Baby-Step-Giant-Step algorithm is an exam-
ple, and Pollard’s rho algorithm is another. Both algorithms perform O(

√
p)

group operations. And this gives us a trivial generic algorithm for solving MDL:
simply repeat such an asymptotically optimal generic algorithm n times, where
n is the total number of DL instances. The total complexity would be O(n

√
p).

In fact, there is a better generic algorithm for MDL. Kuhn and Struik [8]
extended Pollard’s rho to a generic algorithm solving MDL. Their algorithm
performs O(

√
np) group operations.

On the other hand, as far as we know, precise generic hardness of MDL is not
known. Clearly, solving n DL instances would be at least as hard as solving one
single DL instance, therefore Shoup’s lower bound Ω(

√
p) applies here. Kuhn and

Struik [8] conjectured that the tight lower bound would be Ω(
√

np), but this has
never been proved yet. This means that even the highly improbable possibility
of a generic algorithm solving n DL instances within O(

√
p), independent of n,

is not yet eliminated!
Perhaps one reason for this situation might be that, most of the previous

results on generic hardness of cryptographic problems were based solely on the
standard technique also originated from Shoup [12]: instead of choosing the hid-
den exponents (for example, α1, . . . , αn in the MDL) at the beginning, the game
is modified so that the exponents are chosen at the end of the game, and all
responses to the group law queries are made with respect to polynomials of
those exponents, where the undetermined exponents are considered as unknown
variables. In this modified game, usually it is straightforward to show that the
solver has only small probability of winning. The proof also has to analyze the

820 A. Yun

difference between the two games, but when the number of queries is not too
large, it is possible to show that the difference is again small, by using the
Schwartz-Zippel lemma. In other words, this technique formalizes the following
intuition: as long as the number of queries is not too large, interesting things
rarely happen, not much useful information is revealed to the solver, and the
solver cannot perform well. Despite the simplicity and genericity, this technique
was highly effective, being able to establish asymptotically tight lower bounds
for problems like the discrete logarithm problem [12], the Diffie-Hellman prob-
lem [12], the strong Diffie-Hellman problem [3], the decision linear problem [4],
and many others.

On the other hand, for the situation of MDL, we do consider cases where
the solver makes queries more than the Shoup bound

√
p. Therefore, a solver

does obtain some nontrivial information, and Shoup’s technique breaks down.
In order to establish a nontrivial lower bound for MDL, a more careful analysis
of the problem is needed.

In this paper, we show that the conjecture of Kuhn and Struik is indeed
correct: any generic algorithm solving MDL with constant success probability
should make at least Ω(

√
np) queries to the group law oracles.

Search-by-Hyperplane-Queries Problem. To circumvent the limitation of
Shoup’s technique, we establish the generic lower bound of MDL by analyzing
a closely related problem, which we call Search-by-Hyperplane-Queries (SHQ)
problem. In the SHQ problem, a uniform random point �α = (α1, . . . , αn) of
the n-dimensional affine space Z

n
p is hidden, and the goal of the solver is to

find the point �α. Of course, the success probability of any unaided solver is at
most 1/pn. Therefore, we allow any solver to make adaptive hyperplane queries.
Recall that an affine hyperplane H ⊆ Z

n
p can be described by an equation of

form a1X1 + · · · + anXn = b, where a1, . . . , an, b ∈ Zp. A hyperplane query is
asked by specifying a hyperplane H via the coefficients a1, . . . , an, b, and the
intended meaning of the query is ‘is �α ∈ H?’ A SHQ solver may make a series
of adaptive hyperplane queries, and use the information gained by such queries
to find the hidden point �α.

We are going to show that any SHQ solver which makes at most q hyperplane
queries has success probability at most O((eq/np)n), where e is the base of
the natural logarithm. Therefore, any SHQ solver with some constant success
probability should make Ω(np) queries. Then, we are going to show that this
lower bound for the SHQ problem implies the Ω(

√
np) lower bound for the MDL

problem.
Since the SHQ problem looks interesting by itself, we also analyze the worst-

case version of the SHQ problem, and show that any worst-case SHQ solver
has to make at least n(p − 1) queries. This is a tight lower bound; there is
a corresponding solver realizing the bound. Moreover, we also analyze another
variant of the worst-case version where a solver is allowed to output a list L
which contains the correct answer �α, instead of uniquely identifying the correct
solution. We again establish a tight lower bound for this version.

Generic Hardness of the Multiple Discrete Logarithm Problem 821

2 Multiple Discrete Logarithm Problem in the Generic
Group Model

2.1 Generic Group Model

Let p be a prime number, and let ξ : Zp → {0, 1}t be a random encoding of
Zp, that is, a uniform randomly chosen function among all injective functions
of form Zp → {0, 1}t for some t satisfying t ≥ log2 p. We define the group law
oracle μ as the oracle satisfying the following:

μ(b, ξ(α), ξ(β)) = ξ(α + (−1)bβ mod p),

where b ∈ {0, 1} is a bit indicating whether multiplication or division is intended.
In the generic group model, we consider the generic algorithm, which is a

probabilistic algorithm A to which is initially given a list of group elements
ξ(β1), . . . , ξ(βk), encoded by the random encoding ξ. Also, while running, the
algorithm A can make group law queries to the oracle μ. Finally A halts with
an output. Note that ξ is never explicitly given to A, but only implicitly via the
initial input and the group law oracles.

2.2 Multiple Discrete Logarithm Problem

Let G be a cyclic group of order p, where p is prime, and let g be a generator of
G. Also, let n be an integer. We require that n = o(p): formally, we consider a
family of such numbers, so that there is a main parameter λ, and both n and p
are functions of λ, and n(λ)/p(λ) → 0, as λ → ∞.

Then we may define the Multiple Discrete Logarithm (MDL) problem as:

Given (G, p, g, gα1 , . . . , gαn), findout (α1, . . . , αn),whereα1, . . . , αn
$← Zp

are independently chosen uniform random elements.

We consider the MDL problem in the generic group model. Hence, for a
generic algorithm A, we define Advmdl

p,n(A), the advantage of A in solving the
MDL problem as

Advmdl
p,n(A) = Pr[Aμ(p, ξ(1), ξ(α1), . . . , ξ(αn)) = (α1, . . . , αn)],

where the probability is over the random choice of ξ, α1, . . . , αn, and the internal
randomness of A.

For any generic MDL solver A, let us say that A solves MDL with constant
advantage if there exists some constant c > 0 such that

Advmdl
p,n(A) ≥ c,

for any value of the parameter λ.

822 A. Yun

Remark 1. We remark that the condition n = o(p) we impose here is rather
natural. It is reasonable to assume that n, the number of DL instances in con-
sideration, is polynomially bounded, so n = o(p) holds if p is exponentially large.
But the condition is much less demanding than that. It may hold even when p
is not exponentially large in comparision with n, for example, when n = Θ(λ)
and p = Θ(λ2), or when n = Θ(1) and p = Θ(λ).

Remark 2. While we may extend our examination of MDL solvers to include
those with non-negligible success probability, that would complicate the rela-
tionship between n, p, and the number of queries, since a solver may make
trade-offs between the number of queries and the success probability. In fact, we
may amplify any such non-negligible probability to a constant probability with
slowdown by at most a polynomial factor. So, ‘standardizing’ this trade-off by
insisting some constant success probability is reasonable, and this approach is
adopted by many authors, including Shoup [12].

3 Search-by-Hyperplane-Queries Problem

In this section, we describe the Search-by-Hyperplane-Queries (SHQ) problem.
Let p be a prime number and Z

n
p be the n-dimensional affine space over the finite

field Zp. As in the MDL problem, we assume that n = o(p).1

Let X1, . . . , Xn be the canonical coordinate functions of Zn
p . Then, an affine

hyperplane H in Z
n
p can be written by a formula of form a1X1 + · · · + anXn = b

for some a1, . . . , an, b ∈ Zp, with ai 	= 0 for some i. Sometimes we represent such
a hyperplane H by the linear expression a1X1 + · · · + anXn − b, or even simply
by the tuple (a1, . . . , an, b).

Let �α ∈ Z
n
p be a point in the affine space. We define

H(�α,H) :=

{
1 if �α ∈ H,
0 otherwise.

The SHQ problem is as follows: pick a uniform random point �α of Zn
p . The

goal of the problem is to correctly guess the hidden point �α. Without anything
else, the probability of correct guess is p−n. Therefore, up to some q adaptive
hyperplane queries are allowed: a solver for this problem is allowed to submit
up to q hyperplane queries H1, . . . , Hq adaptively, and for each such query, the
result H(�α,Hi) is given. In other words, the solver is given the hyperplane query
oracle H(�α, ·).

For a SHQ solver A, we define Advshq
p,n(A), the advantage of A in solving

SHQ, as
Advshq

p,n(A) = Pr[AH(�α,·)(p, n) = �α],

where the probability is over the random choice of �α and the internal randomness
of A.
1 In fact, for SHQ we only require p−n = o(1), which is implied by the given condition.

Generic Hardness of the Multiple Discrete Logarithm Problem 823

For any SHQ solver A, let us say that A solves SHQ with constant advantage
if there exists some constant c > 0 such that

Advshq
p,n(A) ≥ c,

for any value of the parameter λ.

Worst-Case SHQ. We may also consider the worst-case version of the SHQ
problem: instead of searching for the uniform randomly chosen �α with constant
advantage, the worst-case SHQ problem is to find any instance �α ∈ Z

n
p . Formally,

we say that a generic algorithm A solves SHQ in the worst case within q queries,
if for any �α ∈ Z

n
p , AH(�α,·)(p, n) always outputs �α after at most q queries.

Example 1 (Brute-force solver). Here we exhibit a very simple, ‘brute-force’
SHQ solver. We identify Zp with {0, 1, . . . , p − 1}, and consider hyperplanes of
form Xi = j, where i = 1, . . . , n, and j = 1, . . . , p − 1. There are total n(p − 1)
such hyperplanes, and we see that non-adaptive hyperplane queries for these
q := n(p−1) hyperplanes are enough to correctly find any �α: let �α = (α1, . . . , αn).
For any i, if H(�α,Xi = j) = 1 for some j = 1, . . . , p − 1, then αi = j. On the
other hand, if H(�α,Xi = j) = 0 for all j = 1, . . . , p − 1, then clearly αi = 0. So
in this way the brute-force solver completely determines all coordinates of �α.

While the above brute-force solver looks very trivial, it turns out that it is
actually optimal, by Theorem 2 at Section 5.

4 Relationship Between the Two Problems

In this section, we show that MDL and SHQ are closely related, and any hardness
result for SHQ immediately produces a hardness result for MDL.

Theorem 1. Let A be any generic MDL solver which makes at most q queries.
Then, using A, it is possible to construct a SHQ solver B which makes at most
(q + n)(q + n + 1)/2 queries, and satisfying

Advshq
p,n(B) ≥ Advmdl

p,n(A).

Proof. We describe how B works. First B receives (p, n) as the input, and
B also has access to the oracle H(�α, ·), for a uniform randomly chosen �α =
(α1, . . . , αn) $← Z

n
p . For convenience, let us define α0 := 1. The solver B has to

simulate a random encoding ξ : Zp → {0, 1}t for A. To do this, B maintains two
sequences, {si}i and {Li}i, where si ∈ {0, 1}t are random bitstrings generated by
B and given to A as simulated output of the encoding function ξ, and Li are lin-
ear functions of form Li(X1, . . . , Xn) = a1X1 + · · ·+anXn +b ∈ Zp[X1, . . . , Xn].
The idea is to simulate the random encoding ξ, by pretending si = ξ(Li(�α)) for
(si, Li) ∈ T .

824 A. Yun

− Initialization: Here B prepares the simulation of the initial input to A: B

chooses s0
$← {0, 1}t, and defines L0 := 1. Next, B chooses s1, . . . , sn recur-

sively as follows: when choosing si, if there is some j < i with H(�α,Xi =
Xj) = 1 then B picks smallest such j and defines si := sj . Otherwise, B

chooses si
$← {0, 1}t \ {s0, . . . , si−1}. And, Li is defined as Xi. Let ctr be n.

Finally, B runs A(p, s0, s1, s2, . . . , sn).
− Queries: when A makes a query2 μ(b, si, sj) for some 0 ≤ i, j ≤ ctr and b ∈

{0, 1}, B increments ctr ← ctr+1, then defines sctr and Lctr as follows: Lctr

is simply defined as Li + (−1)bLj . Now, if there is k < ctr with H(�α, Lctr =
Lk) = 1, then B picks the smallest such k and defines sctr := sk. Otherwise,
B randomly picks sctr

$← {0, 1}t \ {s0, . . . , sctr−1}. Finally, B returns sctr as
the answer to the query.

− Output: eventually, A halts with output �β = (β1, . . . , βn) ∈ Z
n
p . B then also

outputs �β and halts.

Now, let us analyze the SHQ solver B. At the initialization phase, B can
choose si after making i hyperplane queries; so B makes 1+ · · ·+n = n(n+1)/2
hyperplane queries up to this point. Similarly, to determine sctr , B has to make
ctr hyperplane queries. In total, the number of hyperplane queries B makes is
bounded by

n(n + 1)
2

+
n+q∑

ctr=n+1

ctr =
n(n + 1)

2
+ nq +

q(q + 1)
2

=
n2 + n + q2 + q + 2nq

2

=
(q + n)(q + n + 1)

2
.

Next we have to show that

Advshq
p,n(B) ≥ Advmdl

p,n(A).

In fact, we will show that Advshq
p,n(B) = Advmdl

p,n(A). For this, we need only to
show that the simulated input (p, s0, s1, . . . , sn) given to A has the same distri-
bution as in the original generic MDL problem, and also the simulated group
law oracle has the same distribution as in the original generic MDL problem. Let
ξ : Zp → {0, 1}t be a random encoding, and let s′

i := ξ(αi) for i = 0, 1, . . . , n,
and let s′

n+1, s
′
n+2, . . . be the sequence of bitstrings which would be given as the

answers to the oracle queries made by A, when A is engaged in the real MDL
game with ξ. Finally, let αi := ξ−1(s′

i) for i = n + 1, n + 2, Then, we need
only to show the following: the random variables sctr and s′

ctr are identically
distributed for any ctr ∈ {1, . . . , q + n}, conditioned on the event that

si = s′
i and αi = Li(�α), for all i = 0, 1, 2, . . . , ctr − 1.

2 Here we may assume that μ never makes group law queries using bitstrings outside
of si, because B may ensure that A can guess bitstrings in ξ(Zp) only with negligible
probability, by sufficiently enlarging the bit length t.

Generic Hardness of the Multiple Discrete Logarithm Problem 825

Let us prove this only for ctr > n: the case for s0, . . . , sn can be done similarly.
Suppose that the group law query of A is μ(b, si, sj) when determining the
bitstring sctr . Then, s′

ctr is easy to compute: s′
i = ξ(αi), s′

j = ξ(αj), so s′
ctr =

ξ(αi +(−1)bαj). Also, αctr = ξ−1(s′
ctr) = αi +(−1)bαj = Li(�α)+ (−1)bLj(�α) =

(Li + (−1)bLj)(�α) = Lctr (�α). We need to compare this s′
ctr with sctr computed

by the algorithm B.

− When there is no k < ctr with H(�α, Lctr = Lk) = 1: in this case, we have
sctr

$← {0, 1}t \ {s0, . . . , sctr−1}. But, this means that Lctr (�α) 	= Lk(�α), that
is, αctr 	= αk for k = 0, . . . , ctr − 1. So s′

i = ξ(αctr) is uniformly distributed
on {0, 1}t \ {ξ(α0), . . . , ξ(αctr−1)}. Since si = s′

i = ξ(αi) by assumption, we
see that sctr and s′

ctr are identically distributed in this case.
− Otherwise: let k be the smallest index such that H(�α, Lctr = Lk) = 1. Then

sctr is defined to be sk. On the other hand, this means that Lctr (�α) = Lk(�α),
in other words αctr = αk, so s′

ctr = ξ(αctr) = ξ(αk) = s′
k. Since we have

sk = s′
k by assumption, we see that sctr and sk are in fact the same in this

case.

Hence, in both cases, we see that sctr and s′
ctr are identically distributed.

Therefore the theorem follows. ��

5 Query Complexity of the SHQ Problem

In this section, we analyze the complexity of the SHQ problem. In fact, we are
going to analyze both the worst-case version and the average-case version.

5.1 Useless Queries

One crucial notion that we are going to use is that of useless queries. Let us
define a hyperplane query H useless, if it is possible to know that the return
value H(�α,H) should be 1 before making the query, based on the return values
for the previous hyperplane queries made: for example, if the solver A previously
made a query H and received the answer H(�α,H) = 1, then making the same
query H again will definitely give the same answer 1. Another example is that,
if A previously made p − 1 queries X1 = j for j = 1, . . . , p − 1 and received
answer H(�α,X1 = j) = 0 for all j = 1, . . . , p − 1, then A can deduce that
H(�α,X1 = 0) = 1, so the hyperplane query X1 = 0 is useless. In general, suppose
so far A made q = r + s hyperplane queries H1, . . . , Hr, H ′

1, . . . , H
′
s, and assume

that H(�α,Hi) = 1 for i = 1, . . . , r, and H(�α,H ′
j) = 0 for j = 1, . . . , s. Then the

information given by the answers to the queries is exactly

�α ∈
r⋂

i=1

Hi \
s⋃

j=1

H ′
j .

Hence, we may formally define a hyperplane query H made at this point as
useless if

826 A. Yun

r⋂
i=1

Hi \
s⋃

j=1

H ′
j ⊆ H.

If a query H is not useless, we call it useful.
Note that it is possible to determine if H is useless or not algorithmically.

Since we only consider the query complexity of solvers, this does not even have
to be efficient.

Remark 3. While it is possible to extend the definition of useless queries to
include all queries which are destined to return 0 as the answer, we choose not
to. This is because later we want to force a solver to make exactly q useful
queries. So if a solver does not make enough queries, then we modify it to make
additional useful queries. In fact, we modify a solver to make additional queries
which are destined to return 0, which would all be useful according to our current
definition.

5.2 Worst-Case SHQ

Theorem 2. Any worst-case SHQ solver should make at least n(p − 1) queries.

Proof. Let A be a worst-case SHQ solver. We show that, without loss of gen-
erality, we may assume that A never asks useless queries. Suppose that A is a
solver which may ask useless queries. Then, we construct a solver B as follows:
B runs A internally, and eventually outputs A’s output. When A asks a hyper-
plane query H, B first determines if it is useless or not. If it is useless, then B
replies with 1. If it is useful, then B makes the same oracle query, receives the
answer bit b, and returns the same bit b to the solver A. So, B is a worst-case
SHQ solver which makes no more queries than A, and B also does not make any
useless queries. If we show this theorem for B, then the result for A immediately
follows.

Now, let A be a worst-case SHQ solver which never makes useless queries.
Suppose that A makes at most q queries, and q < n(p − 1). Let H1,H2, . . . , Hq

be the affine hyperplanes queried by A, represented by linear equations: let

Hi(X1, . . . , Xn) = ai1X1 + · · · + ainXn − bi.

Then we show that |∪q
i=1Hi| ≤ pn−2. First, we cannot have that |∪q

i=1Hi| =
pn; in this case, we have ∪q

i=1Hi = Z
n
p , so

Z
n
p \

q−1⋃
i=1

Hi ⊆ Hq,

which shows that the last query Hq is useless.
Next, suppose that |∪q

i=1 Hi| = pn −1. Let Zn
p \∪q

i=1Hi, which is a singleton,
be {�β = (β1, . . . , βn)}.

Generic Hardness of the Multiple Discrete Logarithm Problem 827

Then, we define F ∈ Zp[X1, . . . , Xn] as

F (X1, . . . , Xn) :=
q∏

i=1

(ai1(X1 + β1) + · · · + ain(Xn + βn) − bi) .

We can easily see that deg(F) = q < n(p − 1), F (�0) 	= 0, and F (�x) = 0
for any �x 	= �0, which contradicts Theorem 1.8 of Bruen [6], which we quote as
Theorem 3 below.

Therefore, whenever q < n(p − 1), there should be at least two points �β 	=
�γ ∈ Z

n
p which are not on ∪q

i=1Hi. This allows us to use the standard adversary
argument against A: for any such SHQ solver A, whenever A asks a hyperplane
query H, answer with 0. In the end, if A outputs �β, pretend that �α = �γ, and if
A outputs any point other than �β, pretend that �α = �β. This shows that A in
general does not solve the worst-case SHQ problem. Therefore, q should be at
least n(p − 1) if A is any worst-case SHQ solver. ��
Theorem 3 (Theorem 1.8 of [6]). Let F in Zp[X1, . . . , Xn] satisfy the fol-
lowing conditions.

1. F (�0) 	= 0
2. F (�x) = 0 if �x 	= �0

Then deg(F) ≥ n(p − 1).

For the proof of Theorem 3, we refer to [6].

5.3 Worst-Case SHQ with Uncertainty

Theorem 2 shows that the brute-force SHQ solver given in Example 1 is actually
optimal in that, if any algorithm A makes at most q < n(p − 1) queries, then
A is not a worst-case SHQ solver: there are instances where A cannot find the
correct answer.

Therefore, if an algorithm A makes at most q < n(p − 1) queries, then the
best A could do might be to output a list L which contains the correct solution
�α, instead of uniquely identifying the correct solution. For such an algorithm,
let us call |L| the uncertainty. We call an algorithm A as the worst-case SHQ
solver with uncertainty level u, if A always outputs a list L containing the correct
solution �α, and |L| ≤ u.

The solver in Example 1 can easily be modified to output such a list, even
when q < n(p − 1): let q = r(p − 1) + s for some r, s ∈ Z with 0 ≤ s < p − 1. the
solver makes r(p − 1) hyperplane queries of form H(�α,Xi = j) for i = 1, . . . , r,
j = 1, . . . , p − 1, to completely determine α1, . . . , αr, and makes additional s
queries of form H(�α,Xr+1 = j) for j = 1, . . . , s. If H(�α,Xr+1 = j) = 1 for some
j, then the brute-force solver knows α1, . . . , αr, αr+1, and so it outputs the list
L consisting of points (α1, . . . , αr+1, βr+2, . . . , βn), for (βr+2, . . . , βn) ∈ Z

n−r−1
p .

On the other hand, if none of the s queries return 0, then it outputs the list L
consisting of points

(α1, . . . , αr, γ, βr+2, . . . , βn),

828 A. Yun

where γ 	∈ {1, . . . , s} and (βr+2, . . . , βn) ∈ Z
n−r−1
p . Therefore, |L| ≤ (p −

s)pn−r−1 in both cases. So, the brute-force SHQ solver can be considered as
a worst-case SHQ solver with uncertainty level u = (p − s)pn−r−1. The question
is, can we find a SHQ solver with the same q but smaller uncertainty level?

We show that the brute-force solver is still optimal even in this context:

Theorem 4. Let A be a worst-case SHQ solver with uncertainty level u. Suppose
A makes at most q hyperplane queries, and let q = r(p−1)+s with 0 ≤ s < p−1.
Then, u should be at least (p − s)pn−r−1.

Proof. Again we may assume that A never makes useless queries. Let H1,H2, . . . ,
Hq be the affine hyperplanes queried by A, represented by linear equations: let

Hi(X1, . . . , Xn) = ai1X1 + · · · + ainXn − bi.

Then, we simply define F ∈ Zp[X1, . . . , Xn] as

F (X1, . . . , Xn) :=
q∏

i=1

Hi(X1, . . . , Xn).

Let Z(F) ⊆ Z
n
p be the set of �β ∈ Z

n
p such that F (�β) = 0. Clearly, Z(F) =

∪q
i=1Hi. Since A never makes useless queries, ∪q

i=1Hi 	= Z
n
p , as in Theorem 2.

Then, by Theorem 3.6 of Sorensen [13] which we quote as Theorem 5 below, we
have ∣∣∣∣∣

q⋃
i=1

Hi

∣∣∣∣∣ ≤ pn − (p − s)pn−r−1.

Now, suppose that A is a solver with uncertainty level u < (p − s)pn−r−1.
Then, we can use the standard adversary argument as follows: for any query Hi of
A, reply with 0. Let L be the final output of A. Since |∪Hi| ≤ pn −(p−s)pn−r−1

and |L| < (p − s)pn−r−1, we have∣∣∣∣∣L ∪
q⋃

i=1

Hi

∣∣∣∣∣ < pn,

hence there exists some �α ∈ Z
n
p such that �α 	∈ L ∪ (∪iHi). This shows that with

respect to this particular �α, the answer 0 to all the queries was consistent, and
despite this �α 	∈ L, contradicting that A is a worst-case solver with uncertainty
level u. Therefore, for any such solver A, u should be at least (p − s)pn−r−1. ��

The proof of Theorem 4 relies on the following Theorem 5, which estimates
the number of rational points on codimension-1 algebraic sets.

Theorem 5 (Theorem 3.6 of [13]). Let F ∈ Zp[X1, . . . , Xn] be a polynomial
of degree q, with q ≤ n(p−1). Let q = r(p−1)+ s, 0 ≤ s < p−1, and let |Z(F)|
denote the number of zeros of F in Z

n
p . Then,

|Z(F)| = pn

or
|Z(F)| ≤ pn − (p − s)pn−r−1.

For the proof of Theorem 5, we refer to [13].

Generic Hardness of the Multiple Discrete Logarithm Problem 829

5.4 Average-Case SHQ

Now let us return to the average-case SHQ, which is related to MDL.

Theorem 6. Let A be any SHQ solver which makes at most q hyperplane queries.
Then,

Advshq
p,n(A) ≤ 1

pn

n∑
i=0

(
q

i

)
.

Proof. Let A be a SHQ solver which makes at most q hyperplane queries. We
are going to argue that we may safely assume that A satisfies certain properties.

First, using essentially the same argument as in Theorem 2, WLOG we may
assume that A never makes useless queries.

Second, we may also assume that A makes exactly q (useful) queries: if A is a
SHQ solver never making useless queries, then we define a SHQ solver B as follows:
B initializes a counter ctr ← 0, runs A internally, and whenever A makes a query
H, then B makes the same query, receives the answer bit b, then returns the bit b
to the solver A, and increments the counter: ctr ← ctr +1. Eventually, A will halt
with an output �α′. Since ctr counts the number of hyperplane queries made by A,
we have ctr ≤ q. Then B makes q − ctr additional hyperplane queries which are
not useless as follows: in case there was at least one hyperplane query H made by
A with 0 as the answer, all of the q − ctr remaining queries made by B will be H:
surely this query is not useless, for the answer should be 0. On the other hand, in
case there was at least one hyperplane query H made by A with 1 as the answer,
let us write H as H(X1, . . . , Xn) = a1X1 + · · · + anXn − b. Then, let H0 be the
corresponding linear hyperplane defined by H0(X1, . . . , Xn) = a1X1+· · ·+anXn.
Clearly, H0 	= Z

n
p , so there exists a vector�v ∈ Z

n
p satisfying�v 	∈ H0. In fact, we may

easily find such a �v: since (a1, . . . , an) 	= �0, WLOG we may assume a1 	= 0. Then,
�v := (a1, 0, 0, . . . , 0) is such an example. Now, let H ′ be the hyperplane H + �v,
which is a parallel translation of H by �v. We may show that H(�α,H ′) = 0: suppose
not, then �α ∈ H ′ = H + �v, and �α ∈ H by assumption. Then, from these two
we may conclude that �v ∈ H0, which contradicts the construction of �v. Therefore,
in this case B makes q − ctr queries, all of them H ′. Again these queries are not
useless. Finally, B halts with the answer �α′, which was the output of A.

By the construction, B makes exactly q useful queries, but since the output
of B is identical to that of A, we have Advshq

p,n(B) = Advshq
p,n(A). So, if we prove

this theorem for B, the theorem for A clearly follows.
Therefore, now assume that our SHQ solver A makes exactly q useful queries.

In general, A may be probabilistic, consuming finite but unbounded number of
random bits. Therefore, let us write AH(�α,·)(p, n;�r) as the output of the algo-
rithm A with input p, n, while having access to the oracle H(�α, ·) and when the
randomness used is �r = (r1, r2, r3, . . .) ∈ {0, 1}∞.

Then we observe that, once �α, �r, and the algorithm A are fixed, the queries
made by A and the corresponding answers are also fixed. More precisely, let
H1, . . . ,Hq be the hyperplane queries made by A with some fixed �α, �r, and let
b1, . . . , bq be the answer bits: bi = H(�α,Hi). Let us define �H := (H1, . . . , Hq) and

830 A. Yun

�b := (b1, . . . , bq). Then, in fact, we can see that A, �r, and �b completely determine
�H, and A, �r, and �α completely determine �b. So we use the following notation:
�H = H(A)

�r (�b), �b = B(A)
�r (�α). Sometimes we just write H(�b), B(�α) to simplify

notation, when the context is clear.
Moreover, we see that the output AH(�α,·)(p, n;�r) of the algorithm A is com-

pletely determined by A, �r, and the vector �b. So we may write AH(�α,·)(p, n;�r)
as A�r(�b). Again, sometimes we just write A(�b), suppressing �r. For a randomly
chosen �α, since the output A�r(�b) is determined by �b = B(�α), which is in turn
determined by �α, we may write AH(�α,·)(p, n;�r) = A(B(�α)).

Now, let us fix the randomness �r, and let us compute the advantage of A,
which is Pr[AH(�α,·)(p, n;�r) = �α], where the probability is only over the random
choice of �α. Here, to emphasize that it is a random variable, we used the bold
typeface to write �α. We then have

Pr[AH(�α,·)(p, n;�r) = �α] = Pr[A(B(�α)) = �α]

=
∑

�α

Pr[�α = �α] · Pr[A(B(�α)) = �α | �α = �α]

=
1
pn

∑
�α

Pr[A(B(�α)) = �α],

where �α is a random variable with uniform distribution on Z
n
p , and �α is used for

possible concrete values of �α. Note that Pr[A(B(�α)) = �α] should be either 0 or
1, for any �α, because all randomness is fixed: we have Pr[A(B(�α)) = �α] = 1 iff
A(B(�α)) = �α. Continuing,

Pr[AH(�α,·)(p, n;�r) = �α] =
1
pn

∑
�α

Pr[A(B(�α)) = �α],

=
1
pn

∑
�b

∑
�α:B(�α)=�b

Pr[A(B(�α)) = �α],

=
1
pn

∑
�b

∑
�α:B(�α)=�b

Pr[A(�b) = �α],

We can see that, in the above, for any �b,∑
�α:B(�α)=�b

Pr[A(�b) = �α] ≤ 1,

where the sum is over all �α satisfying B(�α) = �b. Indeed, the only �α which can
possibly make Pr[A(�b) = �α] = 1 is �α = A(�b), so if B(A(�b)) = �b, then the above
value is 1, and if B(A(�b)) 	= �b then the above value is 0.

Generic Hardness of the Multiple Discrete Logarithm Problem 831

Therefore, we see that

Pr[AH(�α,·)(p, n;�r) = �α] ≤ 1
pn

∑
�b

1

=
the number of all possible �b’s

pn
.

Any �b = B(α) is a bitstring of length q, and moreover, in any such �b, 1 cannot
occur more than n times. This is because we assumed that the algorithm A never
makes useless queries; suppose H1, . . . , Hm are hyperplane queries made by A
with 1 as the answer. Then, all of these hyperplanes intersect (�α is on all of
them). Moreover, due to the fact that all these queries were useful, we have

H1 ∩ · · · ∩ Hi 	⊆ Hi+1,

for all i = 1, 2, . . . ,m − 1. But then each additional hyperplane should decre-
ment the dimension of the intersection by 1, so there can be at most n such
hyperplanes, and there can be at most n 1s in any �b. Hence we have,

Pr[AH(�α,·)(p, n;�r) = �α] ≤ 1
pn

n∑
i=0

(
q

i

)
.

Finally, the theorem is satisfied for general A, because when conditioned on
any randomness �r, the success probability is bounded by the same upper bound
p−n

∑n
i=0

(
q
i

)
. ��

Corollary 1. Let A be any SHQ solver which makes at most q hyperplane
queries. Then,

Advshq
p,n(A) ≤ 1

pn
+

1
2

(
eq

np

)n

.

Proof. The proof follows from Theorem 6 and the following Theorem 7. ��
Remark 4. If we write q as q = npδ for some δ, then Corollary 1 says that the
advantage of the solver A is bounded by p−n + (eδ)n/2. Since we assume that
n = o(p), certainly p−n ≤ n/p = o(1). Now we want to show that δ = Ω(1).
Suppose not. Then we may find an increasing sequence {λi} of values of the
parameter λ such that δ(λi) → 0 as i → 0. Then, eδ(λi) < 1 eventually, and
then (eδ(λi))n/2 ≤ eδ(λi)/2 → 0 as i → 0. Therefore, this contradicts that
A solves SHQ with constant advantage. This shows that if A solves SHQ with
constant advantage, then δ = q/np = Ω(1). In short, a SHQ solver with constant
advantage should make Ω(np) queries.

Theorem 7. We have
n∑

i=1

(
q

i

)
≤ 1

2

(eq

n

)n

for any positive integers q, n satisfying 1 ≤ n ≤ q.

The proof of Theorem 7 is in Appendix A.

832 A. Yun

6 Conclusion

6.1 Generic Hardness of MDL

By combining the results so far, we obtain the following corollary:

Corollary 2. Let A be any generic MDL solver which makes at most q queries.
Then,

Advmdl
p,n(A) ≤ 1

pn
+

1
2

(
e(q + n + 1)2

2np

)n

.

Proof. This follows directly from Theorem 1 and Corollary 1. ��
Let us write q =

√
npδ for some δ. Then, the upper bound of Advmdl

p,n(A) in
Corollary 2 can be expanded as

1
pn

+
1
2

(
e(

√
npδ + n + 1)2

2np

)n

=
1
pn

+
1
2

(
eδ2

2
+ eδ

√
n

p
+

eδ√
np

+
en

2p
+

e

p
+

e

2np

)n

.

Suppose that A solves MDL with constant advantage. Then we can see that
δ = Ω(1): suppose not, thenwemayassume thatwe canfindan increasing sequence
{λi} of values of the parameter λ such that δ(λi) → 0 as i → 0. Then, δ(λi) is
eventually bounded by

√
1/e, and since we assume that n = o(p), we have

eδ(λi)2

2
+ eδ(λi)

√
n(λi)
p(λi)

+
eδ(λi)√

n(λi)p(λi)
+

en(λi)
2p(λi)

+
e

p(λi)
+

e

2n(λi)p(λi)
→ 0,

as i → 0. Therefore,

1
p(λi)n(λi)

+
1
2

(
e(

√
n(λi)p(λi)δ + n(λi) + 1)2

2n(λi)p(λi)

)n

→ 0,

as i → 0, contradicting that A has constant advantage. Hence, we conclude that
δ = q/

√
np = Ω(1). Therefore, if a generic MDL solver has constant advantage,

then it should make Ω(
√

np) queries. This affirmatively settles Kuhn and Struik’s
conjecture [8].

6.2 Interval-MDL

We may also consider Interval-MDL, where instead of the exponents α1, . . . , αn

are chosen from the whole group Zp, they are chosen from an interval {0, 1, . . . , l−
1} ⊆ Zp of size l. For example, Boneh-Goh-Nissim homomorphic encryption [5]
requires solving DL for exponents chosen from such an interval, and Bernstein
and Lange [2] suggested preprocessing methods to speed up such computations.

Generic Hardness of the Multiple Discrete Logarithm Problem 833

We remark that with trivial modifications, all of our results (except those
about the worst-case SHQ problems) also apply to Interval-MDL and the corre-
sponding Interval-SHQ: in the upper bounds for advantages, simply replace the
group order p with the interval size l. For example, the bound in Corollary 2
becomes

1
ln

+
1
2

(
e(q + n + 1)2

2nl

)n

,

and a generic Interval-MDL solver with constant advantage should make Ω(
√

nl)
queries, assuming n = o(l). This is because our proof techniques, especially that
of Theorem 6, work equally well for the interval version. For that matter, the
size-l subset does not even have to be an interval: any subset of size l would do.

Acknowledgments. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (No. 2011-0025127).

A Proof of Theorem 7

Before proving Theorem 7, we need a technical lemma:

Lemma 1. Suppose that q ≥ 5 and 2 ≤ n ≤ q − 3. Then,

q

n∑
i=1

(
q

i

)
≥ (n + 1)

n+1∑
i=1

(
q

i

)
. (1)

Proof. Letting S :=
∑n

i=1

(
q
i

)
, we may write the inequality (1) as

qS ≥ (n + 1)
(

S +
(

q

n + 1

))
. (2)

This can be simplified as

n + 1
q − n − 1

(
q

n + 1

)
≤ S. (3)

But,
n + 1

q − n − 1

(
q

n + 1

)
=

n + 1
q − n − 1

· q!
(n + 1)!(q − n − 1)!

=
q − n

q − n − 1
· q!
n!(q − n)!

=
q − n

q − n − 1

(
q

n

)
.

(4)

So, the inequality (1) is equivalent to(
1 +

1
q − n − 1

)(
q

n

)
≤

n∑
i=1

(
q

i

)
, (5)

which in turn is equivalent to

834 A. Yun

1
q − n − 1

(
q

n

)
≤

n−1∑
i=1

(
q

i

)
. (6)

So let us prove this inequality (6).
Consider the function f(n) := (n − 1)(q − 1 − n). As a function of n, this

is a quadratic concave function with f(1) = f(q − 1) = 0. Since we assume
2 ≤ n ≤ q − 3, we have f(n) ≥ min(f(2), f(q − 3)). Since f(2) = q − 3 ≥ 2 and
f(q − 3) = 2(q − 4) ≥ 2, we have

(n − 1)(q − 1 − n) ≥ 2, (7)

for any n = 2, . . . , q − 3. Simple calculation shows that this is equivalent to

1
(q − n − 1)n

≤ 1
q − n + 1

. (8)

Then,

1
q − n − 1

(
q

n

)
=

1
(q − n − 1)n

· n

(
q

n

)

≤ 1
q − n + 1

· n

(
q

n

)

≤ n

q − n + 1
· q!
n!(q − n)!

=
q!

(n − 1)!(q − n + 1)!

=
(

q

n − 1

)
≤

n−1∑
i=1

(
q

i

)
.

(9)

��
Now we are ready to prove Theorem 7:

Theorem 7. We have
n∑

i=1

(
q

i

)
≤ 1

2

(eq

n

)n

(10)

for any positive integers q, n satisfying 1 ≤ n ≤ q.

Proof. The proof is based on case analysis. First, we prove the inequality when
q ≥ 5 and 1 ≤ n ≤ q − 2.

From Lemma 1, we have

q

n∑
i=1

(
q

i

)
≥ (n + 1)

n+1∑
i=1

(
q

i

)
, (11)

for q ≥ 5 and 2 ≤ n ≤ q − 3.
Then, since e ≥ (1 + 1/n)n, we have

eq

n∑
i=1

(
q

i

)
≥

(
1 +

1
n

)n

(n + 1)
n+1∑
i=1

(
q

i

)
, (12)

Generic Hardness of the Multiple Discrete Logarithm Problem 835

which is equivalent to(
n

eq

)n n∑
i=1

(
q

i

)
≥

(
n + 1

eq

)n+1 n+1∑
i=1

(
q

i

)
. (13)

Also, when n = 1, the above inequality (13) is

1
eq

(
q

1

)
≥

(
2
eq

)2 2∑
i=1

(
q

i

)
, (14)

which is equivalent to
e

2
≥ 1 +

1
q
, (15)

which is certainly satisfied when q ≥ 5. So,(
n

eq

)n n∑
i=1

(
q

i

)
(16)

is a decreasing function for n ∈ {1, 2, . . . , q−2}. Then, for any n = 1, 2, . . . , q−2,
we have (

n

eq

)n n∑
i=1

(
q

i

)
≤

(
1
eq

)1 1∑
i=1

(
q

i

)
=

1
e

≤ 1
2
, (17)

proving the inequality (10) when q ≥ 5 and 1 ≤ n ≤ q − 2.
Therefore, we need to handle the remaining cases: when q ≤ 4, or when

n = q − 1, q.

− Case n = q: Then the inequality (10) is equivalent to

2q − 1 ≤ 1
2

(
eq

q

)q

=
eq

2
. (18)

This holds when 2q ≤ eq/2, which can be written as q/(q + 1) ≥ log 2 ≈
0.693 · · · . So this inequality holds when q ≥ 3; then q/(q +1) ≥ 0.75 > log 2.
We can also check that 2q − 1 ≤ eq/2 holds for q = 1, 2 separately.

− Case n = q − 1: Then the inequality (10) is equivalent to

2q − 2 ≤
(

q

q − 1

)q−1
eq−1

2
. (19)

Since the right-hand side is greater than eq−1/2, the inequality is satisfied if
2q −2 ≤ eq−1/2. First, we can check that 2q ≤ eq−1/2 holds if q ≥ 6. And we
can also separately check the inequality (19) for q = 2, . . . , 5. This finishes
this case.

− Case q ≤ 4: Here, we need only to show that the inequality (10) holds when
n = 1 or 2 (of course when n ≤ q). This is because, when q = 1, 2, then
n = 1, 2 cases cover all possibilities. Also, when q = 3, 4, then n = 1, 2, and
n = q − 1, q cases cover all possibilities. Hence,

836 A. Yun

− Case n = 1: Then the inequality (10) is equivalent to

q ≤ 1
2

(eq

1

)
, (20)

which holds trivially, since e ≥ 2.
− Case n = 2: Then the inequality (10) is equivalent to

q +
q(q − 1)

2
=

q(q + 1)
2

≤ 1
2

(eq

2

)2

. (21)

Simplifying, we get
1
q

≤ e2

4
− 1 ≈ 0.847 · · · , (22)

which holds for q ≥ 2. ��

References

1. Digital signature standard (DSS). NIST (National Institute of Standards and Tech-
nology) FIPS, 186–4 (2013)

2. Bernstein, D.J., Lange, T.: Computing small discrete logarithms faster. In: Gal-
braith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 317–338.
Springer, Heidelberg (2012)

3. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

6. Bruen, A.A.: Polynomial multiplicities over finite fields and intersection sets. Jour-
nal of Combinatorial Theory, Series A 60(1), 19–33 (1992)

7. Hitchcock, Y., Montague, P., Carter, G., Dawson, E.: The efficiency of solving
multiple discrete logarithm problems and the implications for the security of fixed
elliptic curves. International Journal of Information Security 3(2), 86–98 (2004)

8. Kuhn, F., Struik, R.: Random walks revisited: Extensions of Pollard’s Rho algo-
rithm for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, p. 212. Springer, Heidelberg (2001)

9. Lee, H.T., Cheon, J.H., Hong, J.: Accelerating ID-based encryption based on
trapdoor DL using pre-computation. Cryptology ePrint Archive, Report 2011/187
(2011). http://eprint.iacr.org/2011/187

10. Maurer, U.M., Yacobi, Y.: A non-interactive public-key distribution system.
Designs, Codes and Cryptography 9(3), 305–316 (1996)

11. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55(2), 165–172 (1994)

12. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

13. Sørensen, A.B.: On the number of rational points on codimension-1 algebraic sets
in Pn(Fq). Discrete Mathematics 135(1–3), 321–334 (1994)

http://eprint.iacr.org/2011/187

	Generic Hardness of the Multiple Discrete Logarithm Problem
	1 Introduction
	2 Multiple Discrete Logarithm Problem in the Generic Group Model
	2.1 Generic Group Model
	2.2 Multiple Discrete Logarithm Problem

	3 Search-by-Hyperplane-Queries Problem
	4 Relationship Between the Two Problems
	5 Query Complexity of the SHQ Problem
	5.1 Useless Queries
	5.2 Worst-Case SHQ
	5.3 Worst-Case SHQ with Uncertainty
	5.4 Average-Case SHQ

	6 Conclusion
	6.1 Generic Hardness of MDL
	6.2 Interval-MDL

	A Proof of Theorem 7
	References

