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Abstract. In this paper, we propose two variants of the Number Field
Sieve (NFS) to compute discrete logarithms inmediumcharacteristic finite
fields. We consider algorithms that combine two ideas, namely the Multi-
ple variant of the Number Field Sieve (MNFS) taking advantage of a large
number of number fields in the sieving phase, and two recent polynomial
selections for the classical Number Field Sieve. Combining MNFS with the
Conjugation Method, we design the best asymptotic algorithm to com-
pute discrete logarithms in the medium characteric case. The asymptotic
complexity of our improved algorithm is Lpn(1/3, (8(9 + 4

√
6)/15)1/3) ≈

Lpn(1/3, 2.156), where Fpn is the target finite field. This has to be com-
pared with the complexity of the previous state-of-the-art algorithm for
medium characteristic finite fields, NFS with Conjugation Method, that
has a complexity of approximately Lpn(1/3, 2.201). Similarly, combining
MNFS with the Generalized Joux-Lercier method leads to an improvement
on the asymptotic complexities in the boundary case between medium and
high characteristic finite fields.

1 Introduction

Public key cryptosystems are designed around computational hardness assump-
tions related to mathematical properties, making such protocols hard to break
in practice by any adversary. Algorithmic number theory provides most of those
assumptions, such as the presumed difficulty to factorize a large integer or to
compute discrete logarithms in some groups. Given an arbitrary element h of a
cyclic group, the discrete logarithm problem consists in recovering the exponent
x of a generator g such that gx = h. We focus here on the multiplicative group
of the invertible elements in a finite field.

Current discrete logarithms algorithms for finite fields vary with the relative
sizes of the characteristic p and the extension degree n. To be more precise,
finite fields split into three families and so do the related algorithms. When p
is small compared to n, the best choice is to apply the recent Quasi-Polynomial
algorithm [BGJT14]. Medium and high characteristics share some properties
since we use in both cases variants of the Number Field Sieve (NFS) that was
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first introduced for discrete logarithms computations in prime fields in 1993 by
Gordon [Gor93]. Then, NFS was extended to all medium and high characteristic
finite fields in 2006 by Joux, Lercier, Smart and Vercauteren [JLSV06]. For the
past few months, discrete logarithm in finite fields has been a vivid domain and
things change fast – not only for small characteristic.

In February 2014, Barbulescu and Pierrot [BP14] presented the Multiple
Number Field Sieve (MNFS) that applies in both medium and high characteristic
finite fields. As for NFS, the main idea came from factoring [Cop93] and was first
introduced for discrete logarithms computations in prime fields in 2003 thanks to
Matyukhin [Mat03]. In both medium and high characteristic cases, the idea is to
go from two number fields, as in the classical NFS, to a large number of number
fields, making the probability to obtain a good relation in the sieving phase
higher. Yet, the sieving phase differs between medium and high characteristics
since the parameters of the two first polynomials defining the number fields
are equal in the medium case but unbalanced in the high case. Let us recall the
notation Lq(α, c) = exp((c+o(1))(log q)α(log log q)1−α) to be more precise about
complexities, and focus on the high characteristic case. Due to unbalanced degree
of the first two polynomials, the variant proposed by Barbulescu and Pierrot is
dissymmetric. It means that in the sieving phase they select only elements that
are small in some sense in the first number field and in at least another number
field, giving to the first number field a specific role with regards to the others.
With this dissymmetric MNFS, the asymptotic complexity to compute discrete
logarithms in a finite field Fpn of characteristic p = Lpn(lp, c) when p is high,
i.e. when lp > 2/3, is the same as the complexity given for factoring an integer
of the same size [Cop93]. Namely, it is:

Lpn

⎛
⎝1

3
,

(
2 · (46 + 13

√
13)

27

)1/3
⎞
⎠ .

Note that MNFS as described in [BP14] is currently the state-of-the-art algo-
rithm for computing discrete logarithms in high characteristic finite fields.

In the medium characteristic case, i.e. when 1/3 � lp � 2/3, the polynomial
selection of the classical Number Field Sieve allows to construct two polynomials
with same degrees and same sizes of coefficients. Making linear combination,
MNFS creates then a lots of polynomials with equal parameters. Thanks to this
notion of symmetry, the sieving phase of the Multiple variant consists in keeping
elements that are small in any pairs of number fields, making the probability to
obtain a good relation growing further.

Yet, few months later, in August 2014, Barbulescu, Gaudry, Guillevic and
Morain detailed in a preprint [BGGM14] some practical improvements for the
classical Number Field Sieve. Besides, they gave a new polynomial selection
method that has the nice theoretical interest to lead to the best asymptotic
heuristic complexity known in the medium characteristic case, overpassing the
one given in [BP14]. This new polynomial selection also called Conjugation
Method permits to create one polynomial with a small degree and high
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coefficients and another one with a high degree and coefficients of constant size.
Finally, the authors of [BGGM14] obtain the asymptotic complexity:

Lpn

(
1
3
,

(
96
9

)1/3
)

.

In this article, we adapt for the first time the Multiple variant of NFS to
this very recent algorithm. At first sight, one could fear that the parameters
of the two polynomials given with the Conjugation Method could act as a bar-
rier, since their unbalanced features differ from the ones used in the medium
characteristic case of [BP14]. Moreover, following the high characteristic dis-
symmetric sieving phase of [BP14] and creating the remaining polynomials with
linear combination would mean spreading both high coefficients and high degrees
on the polynomials defining the various number fields. This clearly would not
be a good idea, as all NFS-based algorithms require to create elements with
small norms. However, we show that the Conjugation Method may be adapted
to overcome this difficulty. The idea is to try to keep the advantage of the kind
of balanced dissymetry brought by the two polynomials with small -degree-high-
coefficients/high-degree-small -coefficients. We show that the Multiple Number
Field Sieve with Conjugation Method (MNFS-CM) becomes the best current
algorithm to compute discrete logarithms in medium characteristic finite fields.
Indeed, in this case its asymptotic complexity is:

Lpn

⎛
⎝1

3
,

(
8 · (9 + 4

√
6)

15

)1/3
⎞
⎠ .

To ease the comparison, note that our second constant
(
8 (9 + 4

√
6)/15

)1/3 ≈
2.156 whereas the previous one is (96/9)1/3 ≈ 2.201. MNFS-CM in the boundary
case between medium and high characteristic leads also to an improvement of
NFS-CM. Interestingly enough, sieving on degree one polynomials with MNFS-
CM in this boundary case permits to obtain the best asymptotic complexity ever
of any medium, boundary and high characteristic discrete logarithms algorithms,
which is approximately Lpn(1/3, 1.659).

Besides the new Conjugation Method, the authors of [BGGM14] extend the
polynomial selection given by Joux and Lercier in [JL03] for prime fields. Thanks
to it, they get an improvement on the high cases of the boundary case. We
propose here a simple dissymetric Multiple Number Field Sieve based on this
Generalized Joux-Lercier method (MNFS-GJL) to get a further improvement on
the same boundary case. Note that the asymptotic complexity we obtain here,

Lpn

⎛
⎝1

3
,

(
2 · (46 + 13

√
13)

27

)1/3
⎞
⎠ ,

is exactly the one of MNFS for high characteristic finite fields, as given in [BP14].
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Outline. We first detail in Section 2 how to manage the selection of numerous
polynomials based on the Conjugation method to construct a dissymetric Multi-
ple Number Field Sieve. Section 3 explains then how to combine MNFS with the
Generalized Joux-Lercier method. The asymptotic complexity analyses of both
medium and boundary cases are given in Section 4.

2 Combining the Multiple Variant of the Number Field
Sieve with the Conjugation Method

Let Fpn denote the finite field we target, p its characteristic and n the extension
degree relatively to the base field. We propose an algorithm to compute discrete
logarithms in Fpn as soon as p can be written as p = Lpn(lp, cp) with 1/3 �
lp � 2/3 (and cp close to 1). In this case we say that the characteristic has
medium size. In Section 2.1 we explain how to represent the finite field and to
construct the polynomials that define the large number of number fields we need.
In Section 2.2 we give details about the variant of the Multiple Number Field
Sieve we propose to follow.

2.1 Polynomial Selection

Basic Idea: Large Numbers of Polynomials with a Common Root in
Fpn . To compute discrete logarithms in Fpn , all algorithms based on the Number
Field Sieve start by choosing two polynomials f1 and f2 with integers coefficients
such that the greatest common divisor of these polynomials has an irreducible
factor of degree n over the base field. If m denotes a common root of these two
polynomials in Fpn and Q(θi) denotes the number field Q[X]/(fi(X)) for each
i = 1, 2, i.e. θi is a root of fi in C, then we are able to draw the commutative
diagram of Figure 1.

Since MNFS requires to have a large number of number fields, let say V
number fields, then we have to construct V −2 extra polynomials that share the
same common root m in Fpn . The commutative diagram that is the cornerstone
of all Multiple variants of the Number Field Sieve is given in Figure 2.

Z [X]

Q [X] /(f1(X)) Q [X] /(f2(X))

Fpn

X �→θ1

X �→θ2

θ1 �→m

θ2 �→m

Fig. 1. Commutative diagram of NFS
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Z [X]

Q (θ1) Q (θ2) . . . Q (θi) . . . Q (θV −1) Q (θV )

Fpn

X �→θi

θi �→m

Fig. 2. Commutative diagram of MNFS

Settings: Construction of V Polynomials with the Conjugation
Method. We start with the Conjugation Method given in [BGGM14, Para-
graph6.3] to construct the first two polynomials. The idea is as follows.

We create two auxilliary polynomials ga and gb in Z[X] with small coefficients
such that deg ga = n and deg gb < n. We then search for an irreducible polyno-
mial X2 + uX + v over Z[X], where u and v are small integers1 of size O(log p),
such that its roots λ and λ′ are in Fp. Since we seek a degree n irreducible polyno-
mial over Fp[X] to construct the finite field, we keep the polynomial X2+uX +v
if one of the two degree n polynomials ga + λgb or ga + λ′gb is irreducible over
Fp[X]. In the sequel we assume that ga + λgb is irreducible over Fp[X]. When
we have found such parameters, we set our first polynomial f1 ∈ Z[X]:

f1 = g2a − ugagb + vg2b .

Equivalently, f1 is defined in [BGGM14] as equal to ResY (Y 2 +uY + v, ga(X)+
Y gb(X)). Since λ and λ′ are roots of X2 + uX + v in Fp, we have the equality
of polynomials f1 ≡ g2a + (λ + λ′)gagb + λλ′g2b mod p. In other words, f1 ≡
(ga + λgb)(ga + λ′gb) mod p. Thus we have a polynomial f1 of degree 2n with
coefficients of size O(log p) that is divisible by ga + λgb in Fp[X].

Let us construct the next two polynomials. Thanks to continued fractions we
can write:

λ ≡ a

b
≡ a′

b′ mod p

where a, b, a′ and b′ are of the size of
√

p. We underline that these two recon-
structions (a, b) and (a′, b′) of λ are linearly independent over Q. We then set:

f2 = bga + agb and f3 = b′ga + a′gb.

1 We correct here a mistake in [BGGM14, Paragraph6.3]. The authors propose to
search for an irreducible quadratic polynomial that has constant size coefficients.

However, if |u| and |v| are both lower than a constant C, then there exist 24C2
such

polynomials. Since each one has probability 1/2 to has its roots in Fp for one random

prime p, if we try to select such polynomials for approximately 24C2
primes, we will

find one finite field Fp for which this method fails. Looking for quadratic polynomials
with coefficients of size O(log p) bypasses this trap and does not interfere with final
asymptotic complexities.
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Note that the Conjugation Method ends with the selection of f1 and f2 and does
not use the second reconstruction. It is clear that both f2 and f3 have degree n
and coefficients of size

√
p. Furthermore, we notice that f2 ≡ b(ga +λgb) mod p

and similarly f3 ≡ b′(ga + λgb) mod p, so they share a common root with f1 in
Fpn .

We finally set for all i from 4 to V :

fi = αif2 + βif3

with αi and βi of the size of
√

V . We underline that V is negligible with regards
to p, as shown in Section 4. Thanks to linear combination, for all 2 � i � V ,
fi has degree n, coefficients of size

√
p and is divisible by ga + λgb in Fp[X].

2.2 A Dissymmetric Multiple Number Field Sieve

As any Index Calculus algorithm, the variant we propose follows three phases:
the sieving phase, in which we create lots of relations involving only a small set of
elements, the factor base ; the linear algebra, to recover the discrete logarithms of
the elements of the factor base ; and the individual logarithm phase, to compute
the discrete logarithm of an arbitrary element of the finite field.

We propose to sieve as usual on high degree polynomials φ(X) = a0 + · · · +
at−1X

t−1 with coefficients of size bounded by S. Let us recall that, given an
integer y, an integer x is called y-smooth if it can be written as a product
of prime factors less than y. We then collect all polynomials such that, first,
the norm of φ(θ1) is B-smooth and, second, there exists (at least) one number
field Q(θi) with i � 2 in which the norm φ(θi) is B′-smooth. In other simpler
words, we create relations thanks to polynomials that cross over the diagram
of Figure 3 in two paths: the one on the left side of the drawing and (at least)
another one among those on the right. If we set that the factor base consists in
the union of all the prime ideals in the rings of integers that have a B-or-B′-
smooth norm, the smoothness bound depending on the number field, then we
keep only relations that involve these factor base elements. Note that B and B′

are two smoothness bounds possibly different from one another.

Z [X]

Q (θ1) Q (θ2) . . . Q (θi) . . . Q (θV )

Fpn

X �→θ2

θ2 �→m

Fig. 3. Commutative diagram for the dissymmetric Multiple Number Field Sieve with
Conjugation Method
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After the same post-processing as in [JLSV06] or as detailed in [BGGM14]
more recently, each such polynomial φ yields a linear equation between “loga-
rithms of ideals” coming from two number fields. Hence, from each relation we
obtain a linear equation where the unknowns are the logarithms of ideals. Let
us remark that by construction each equation only involves a small number of
unknowns.

The sparse linear algebra and individual logarithm phases run exactly as in
the classical Number Field Sieve of [JLSV06]. Even if there exists a specific way
to manage the last phase with a multiple variant as detailed in [BP14], taking
advantage of the large number of number fields again, we do not consider it here.
In fact, the runtime of the classical individual logarithm phase is already negligi-
ble with regards to the total runtime of the algorithm, as proved by Barbulescu
and Pierrot in their article.

3 Combining the Multiple Number Field Sieve with the
General Joux-Lercier Method

In 2003 Joux and Lercier [JL03] gave a polynomial selection to compute discrete
logarithms in prime fields. Barbulescu, Gaudry, Guillevic and Morain propose
in [BGGM14, Paragraph6.2] to generalize this construction. Using again lattice
reduction, they obtain an improvement on the asymptotic complexity in the
boundary case where the characteristic can be written as p = LQ(2/3, c) for
some specific c. We propose here to apply a Multiple variant of NFS to this
construction in a very simple way.

Let us recall the General Joux-Lercier (GJL) method as presented in
[BGGM14]. In order to compute discrete logarithms in the finite field Fpn , we
first select an irreducible polynomial f1 in Fp[X] with small coefficients (let us
say of the size of O(log pn)) and such that it has an irreducible factor ϕ of
degree n modulo p. We assume furthermore that this irreducible factor is monic.
Let us write ϕ = Xn +

∑n−1
i=0 ϕiX

i and d + 1 the degree of f . Thus we have
d + 1 > n.2 To assure that the second polynomial shares the same irreducible
factor modulo p, we define it thanks to linear combination of polynomials of
the form ϕXk and pXk. Lattice reduction permits then to obtain small coeffi-
cients. More precisely, we note M the following (d + 1) × (d + 1) matrix:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p
...

p︸ ︷︷ ︸
n columns

1
... ϕn−1

1
...

...
ϕn−1 ϕ0

...
...

ϕ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
d+1−n columns

Xd

Xd−1

...
Xn−1

...
1

2 We emphasize that we require ϕ to be different from f1 since we need that f2 is not
equal to f1 mod p.
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A generator of this lattice of polynomials is represented in one column, meaning
that each one of its coefficients is written in the row corresponding to the associated
monomial (see indications on the right of the matrix). Clearly, the determinant of
the lattice is pn and its dimension is d+1. Hence, running the LLL algorithm on M
gives a polynomial of degree at most d that has coefficients of size at most pn/d+1

(assuming that 2(d+1)/4 stays small compared to pn/d+1).
In a nutshell, we obtain two polynomials f1 and f2 that share a common

degree n factor over Fp[X] and such that:

deg f1 = d + 1 > n, ‖f1‖∞ = O(log pn),
deg f2 = d, ‖f2‖∞ = pn/(d+1).

where ‖fi‖∞ denotes the largest coefficients of fi in absolute value. This ends
the GJL method. As in [BP14], we perform then linear combination of these two
polynomials. Setting for all i from 3 to V :

fi = αif2 + βif3

with αi and βi of the size of
√

V . Thus, for all 3 � i � V , fi has degree d + 1
and coefficients of size pn/(d+1). Note that is is also possible to extract from the
lattice reduction a second polynomial f3 that has, as f2, degree d and coefficients
of size pn/(d+1). Making linear combination of f2 and f3 leads to polynomials of
degree d instead of degree d + 1. Yet, this little improvement has no impact on
the asymptotic complexity of the algorithm.

As usual in this boundary case where p = LQ(2/3, c), we propose to sieve
on degree 1 polynomials. We apply then a dissymmetric MNFS, as described in
Section 2.2.

4 Asymptotic Complexity Analyses

We give now details about the asymptotic heuristic complexities we obtain with
MNFS-CM in medium characteristic and with both MNFS-CM and MNFS-GJL
in the boundary case between medium and high characteristics. Let us fix the
notations. We write the extension degree n and the characteristic p of the target
finite field FQ as:

n =
1
cp

(
log Q

log log Q

)1−lp

and p = exp(cp(log Q)lp(log log Q)1−lp)

with 1/3 � lp � 2/3. The parameters taking part in the heuristic asymptotic
complexity analyses are: the sieving bound S, the degree of the polynomials we
are sieving over t − 1, the number of number fields V , the smoothness bound B
related to the first number field and the smoothness bound B′ related to the
others number fields. The analyses of both MNFS-CM and MNFS-GJL work
by optimizing the total runtime of the sieving and linear algebra phases while
complying with two constraints.
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Balancing the Cost of the Two First Phases. We first require that the
runtime of the sieving phase St equals the cost of the linear algebra. Since the
linear system of equations we obtain is sparse, the cost of the linear algebra
is asymptotically (B + V B′)2. Similarly to balancing the runtime of the two
phases, we require that B = V B′. Thus, leaving apart the constant 4 that is
clearly negligible with regards to the sizes of the parameters, the first constraint
can be written as:

St = B2. (1)

Balancing the Number of Equations with the Number of Unknows. To
be able to do the linear algebra phase correctly, we require that the number of
unknows, that is approximately B, is equal to the number of equations produced
in the sieving phase. If we note P the probability that a polynomial give a good
relation then we want to have StP = B. Combining it with the constraint (1),
it leads to:

B = 1/P.

4.1 Analysis of MNFS-CM in the Medium Characteristic Case

We continue the analysis for the large range of finite fields where the character-
istic can be written as p = LQ(lp, cp) with 1/3 � lp < 2/3. We consider here
MNFS-CM as described in Section 2.

Evaluating the Probability of Smoothness. To evaluate the probability P
we need to recall some tools about norms in number fields. For fi ∈ Z[X] an
irreducible polynomial, θi a complex root of fi, and for any polynomial φ ∈ Z[X],
the norm N(φ(θ)) satisfies Res(φ, fi) = ±ldeg φ

i N(φ(θ)), where the term li is
the leading coefficient of fi. Since we treat li together with small primes, we
make no distinction in smoothness estimates between norms and resultants. We
have the upper bound on the resultant:

|Res(φ, fi)| ≤ (deg fi + deg φ)! · ‖fi‖deg φ
∞ · ‖φ‖deg fi∞ .

Thus, recalling that f1 is of degree 2n and has constant coefficients and that
every other polynomials fi has degree n and coefficients of the size

√
p, we

obtain that the norm of a sieving polynomial φ is upper-bounded by S2n in the
first number field and by Snpt/2 in every other number fields. To evaluate the
probability of smoothness of these norms with regards to B and B′, the main
tool is the following theorem:

Theorem 1 (Canfield, Erdős, Pomerance [CEP83]). Let ψ(x, y) denote the
number of positive integers up to x which are y-smooth. If ε > 0 and 3 ≤ u ≤
(1 − ε) log x/ log log x, then ψ(x, x1/u) = xu−u+o(u).

Yet, this result under this form is not very convenient. If we write the two
integers x and y with the Lq-notation, we obtain a more helpful corollary:
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Corollary 1. Let (α1, α2, c1, c2) ∈ [0, 1]2 × [0,∞)2 be four reals such that
α1 > α2. Let P denote the probability that a random positive integer below
x = Lq(α1, c1) splits into primes less than y = Lq(α2, c2). Then we have P−1 =
Lq

(
α1 − α2, (α1 − α2)c1c−1

2

)
.

So we would like to express both norms and sieving bounds with the help of
this notation. As usual, we set:

t =
ct

cp

(
log Q

log log Q

)2/3−lp

, St = LQ(1/3, csct), B = LQ(1/3, cb) and

V = LQ(1/3, cv).

Thanks to this, we first remark that the first constraint can be rewritten as:

csct = 2cb. (2)

Besides, we apply the Corollary 1 to reformulate the second constraint. Let us
note LQ(1/3, pr) (respectively LQ(1/3, pr′)) the probability to get a B-smooth
norm in the first number field (respectively a B′-smooth norm in at least one
other number field). The second constraint becomes cb = −(pr + pr′). Using
equation (2), the constants in the probabilities can be written as:

pr =
−2cs

3cb
=

−2(2/ct)cb

3cb
and pr′ = cv − (2/ct)cb + ct/2

3(cb − cv)
.

That leads to require cb = −(−4/(3ct) + cv − (4cb + c2t )/(6ct(cb − cv))) and
afterwards 6ct(c2b − c2v) = 8(cb − cv) + 4cb + c2t . Finally we would like to have:

(6ct)c2b − 12cb − 6ctc
2
v + 8cv − c2t = 0. (3)

Optimizing the Asymptotic Complexity. We recall that the complexity
of our algorithm is given by the cost of the sparse linear algebra LQ(1/3, 2cb),
since we equalize the runtime of the sieving and linear algebra phases. Hence we
look for minimizing cb under the above constraint (3). The method of Lagrange
multipliers indicates that cb, cv and ct have to be solutions of the following
system: ⎧⎨

⎩
2 + λ(12ctcb − 12) = 0
λ(−12cvct + 8) = 0
λ(6c2b − 6c2v − 2ct) = 0

with λ ∈ R
∗. From the second row we obtain ct = 2/(3cv) and from the third one

we get cb = (c2v +2/(9cv))1/2. Together with equation (3), it gives the equation in
one variable: 405c6v +126c3v − 1 = 0. We deduce that cv = ((3

√
6− 7)/45)1/3 and

we recover cb = ((9 + 4
√

6)/15)1/3. Finally, the heuristic asymptotic complexity
of the Multiple Number Field Sieve with Conjugation Method is, as announced:

LQ

⎛
⎝1

3
,

(
8 · (9 + 4

√
6)

15

)1/3
⎞
⎠ .



166 C. Pierrot

This has to be compared with the Number Field Sieve with Conjugation Method
proposed in [BGGM14] that has complexity LQ(1/3, (96/9)1/3). Note that our
second constant is (8(9 + 4

√
6)/15)1/3 ≈ 2.156, whereas (96/9)1/3 ≈ 2.201.

4.2 Analysis of MNFS-CM in the Boundary Case p = LQ(2/3, cp)

The analysis made in this case follows the previous one except for the fact that
we have to reconsider the parameter t. We consider here a family of algorithms
indexed by the degree t − 1 of the polynomials of the sieving. We compute so
the final complexity of each algorithm as a function of cp (and t). Moreover, we
underline that the round off error in t in the computation of the norms is no
longer negligible.

Sieving on Polynomials of Degree t − 1. Again, to easily evaluate the
probability of smoothness of norms, we set the following parameters:

V = LQ(1/3, cv), B = LQ(1/3, cb), B′ = LQ(1/3, cb − cv) and
S = LQ(1/3, cs).

With these notations, the first constraint becomes this time:

cst = 2cb. (4)

Moreover, the norms are upper-bounded by S2n = LQ(2/3, 2cs/cp) in the first
number field and by Snp(t−1)/2 = LQ(2/3, cs/cp + cp(t − 1)/2) in all the other
number fields. We apply the Canfield-Erdős-Pomerance theorem, and, with the
same notation as in the previous paragraph, we obtain pr = −2cs/(3cbcp) in
one hand and pr′ = cv − (cs/cp + cp(t − 1)/2)/(3(cb − cv)) in the other hand.
Using equation (4), the second constraint cb = −(pr + pr′) can be rewritten as
3tcp(cb − cv)(cb + cv) = 4(cb − cv) + 2cb + t(t − 1)c2p/2. As a consequence, we
require:

(6tcp)c2b − 12cb − 6tcpc
2
v + 8cv − t(t − 1)c2p = 0. (5)

As previously, we want to minimize 2cb under the constraint (5). The method of
Lagrange multipliers shows that we need that the derivative of (6tcp)c2b − 12cb −
6tcpc

2
v + 8cv − t(t − 1)c2p with respect to cv is equal to 0. This leads to require

that cv = 2/(3tcp). Putting this value in equation (5) we get:

(18t2c2p)c
2
b − (36tcp)cb + 8 − 3t2(t − 1)c3p = 0.

Finally, solving this equation in cb we deduce that cb = (6 + (20 + 6t2(t −
1)c3p)

1/2)/(6tcp). Consequently, the asymptotic complexity of the Multiple Num-
ber Field Sieve with Conjugation Method in this boundary case is:

LQ

(
1
3
,

2
cpt

+

√
20

(9cpt)2
+

2
3
cp(t − 1)

)
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where t−1 is the degree of the polynomials we are sieving on. Figure 4 compares
our MNFS-CM with previous and various algorithms in this boundary case. For
almost all variants of the Number Field Sieve presented in this figure (namely
NFS, MNFS, NFS-CM and MNFS-CM), each hollow in the curve corresponds
to a particular degree of the polynomials we are sieving on.

Remark 1. This boundary case has been the scene of various recent improve-
ments but, as far as we know, all of them are not yet published nor available on
the Internet. In particular, this is the case of the so-called PiRaTh algorithm,
presented at the DLP conference in May 2014 by Pierrick Gaudry, Razvan Bar-
bulescu and Thorsten Kleinjung. Yet, for the sake of comparison, we plot it
together with already broadcast algorithms.

The Best Asymptotic Complexity of any Variant of the Number Field
Sieve: MNFS-CM on Linear Polynomials. According to Figure 4, sieving
on linear polynomials seems to give the best complexity, as usual in this boundary
case. Let us make a more precise analysis of the optimal case reached by our
Multiple Number Field Sieve with Conjugation Method. We consider now cp as
a variable and we would like to find the minimal complexity obtained by each
algorithm. Namely, we want to minimize:

C(cp) =
2

cpt
+

√
20

(9cpt)2
+

2
3
cp(t − 1).

The derivative of this function with respect to cp vanishes when 2 · 92 t cp(20/
(9 cp t)2 + (2/3)cp(t − 1))1/2 = −20 + 27(t − 1)t2c3p. This leads to the quadratic
equation in c3p: 36t4(t − 1)2c6p − 24 33 43 t2(t − 1)c3p − 26 · 5 · 19 = 0. Thus, the
optimal value comes when cp = (2/3) · ((43 + 18

√
6)/(t2(t − 1))1/3. We get for

this value the minimal complexity:

LQ

(
1
3
,

(
9 +

√
177 + 72

√
6

3 · (43 + 18
√

6)1/3

)
·
(

t − 1
t

)1/3
)

.

Looking at this formula, it is clear that the best possible complexity is obtained
when t = 2, i.e. when we sieve on linear polynomials. Interestingly enough, we
conclude that we have with our MNFS-CM the best complexity of any medium,
boundary and high characteristics cases, which is:

LQ

(
1
3
,

9 +
√

177 + 72
√

6
3 · (2 · (43 + 18

√
6))1/3

)
.

Note that the approximation of the second constant in the complexity is given
by (9+

√
177 + 72

√
6)·3−1 ·(2·(43+18

√
6))−1/3 ≈ 1.659. We get this complexity

when p can be written as p ≈ LQ(1/3, 1.86).
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4.3 Analysis of MNFS-GJL in the Boundary Case p = LQ(2/3, cp)

In this setting, we recall that we propose to sieve on linear polynomials. As usual,
we assume that B = V B′ where V is the number of number fields and B′ is the
smoothness bound relatively to the last V −1 number fields. Thus, the constraint
given in Equation (1) leads to require that the sieving bound S is equal to the
first smoothness bound B. With the same notations as previously, we also require
that B = 1/P. Finally, we emphasize that the polynomial selection proposed in
Section 3 requires that n < d + 1. If we set that:

d = δ

(
log Q

log log Q

)1/3

,

where δ is a parameter to define, then we have to keep in mind that our com-
plexity results are valid provided δ � 1/cp.

Since f1 has small coefficients and degree d+1 the norms in the first number
field are upper-bounded by LQ(2/3, cbδ). The probability to get a B-smooth
norm is though LQ(1/3, pr) with pr = −δ/3. Similarly, the norms in the last
V − 1 number fields are bounded by LQ(2/3, cbδ + 1/δ). The probability to
get a B′-smooth norm in a least one number field is LQ(1/3, pr′) where pr′ =
−(cbδ + 1/δ)/(cb − cv) + cv.

From cb = −(pr + pr′) we get then:

cb + cv =
δ

3
+

δ2cb + 1
3δ(cb − cv)

⇔ 3δ(c2b − c2v) = 2δ2cb − δ2cv + 1
⇔ 3δc2b − 2δ2cb + δ2cv − 3δc2v − 1 = 0.

The method of Lagrange multipliers shows that we require:
⎧⎪⎨
⎪⎩

3δc2b − 2δ2cb + δ2cv − 3δc2v − 1 = 0

3c2b − 4δcb + 2δcv − 3c2v = 0

δ2 − 6δcv = 0

(6)

From the third line of System (6) we recover δ = 6cv. Substituting in the second
line, we obtain c2b −8cvcb +3c2v = 0. Then, writing cv as as function of cb we get:
cv = ((4 − √

13)/3)cb. Substituting the value of δ in the first line of the system
gives 18cvc2b − 72c2vcb + 18c3v − 1 = 0, and, substituting again with the value of
cv we finally get: cb = (46 + 13

√
13/108)1/3. With this constant, we recover the

value of δ which is (4
√

13 − 14)1/3. Thus, as soon as:

cp �
(

7 + 2
√

13
6

)1/3

,

which is approximately equal to 1.33, the complexity of the Multiple Number
Field Sieve with the Generalized Joux-Lercier method is:

LQ

⎛
⎝1

3
,

(
2 · (46 + 13

√
13)

27

)1/3
⎞
⎠ .
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Fig. 4. Asymptotic complexities LQ(1/3, C(cp)) in the boundary case, as a function
of cp with p = LQ(2/3, cp). The dark blue curve represents the complexities obtained
with our Multiple Number Field Sieve with Conjugation Method while the brown one
represents the complexity of the Multiple Number Field Sieve with the General Joux-
Lercier method (see next Section). The red, light blue, black, yellow and purple curves
represent respectively the complexities of NFS [JLSV06], MNFS [BP14], PiRaTh, NFS-
GJL [BGGM14] and NFS-CM [BGGM14].

As expected, we recover the exact asymptotic complexity given by [BP14] when
solving the discrete logarithm problem in high characteristic finite fields. This
has to be compared with the asymptotic complexity of the classical Number
Field Sieve with the Generalized Joux-Lercier method [BGGM14] in the same
case which is LQ(1/3, (64/9)1/3). For the sake of comparison we recall that
(64/9)1/3 ≈ 1.92 whereas (2(46 + 13

√
13)/27)1/3 ≈ 1.90.

When cp <
(
(7 + 2

√
13)/6

)1/3
, from the constraint δ > 1/cp we get δ >

(4
√

13−14)1/3 and the previous simplification no longer applies. Yet, the equal-
ities cb = 3cv/(4−√

13) = δ/(2(4−√
13)) show that we minimize the complexity

when δ = 1/cp. We obtain thus cb = (4 +
√

13)/(6cp). Finally, when:

cp <

(
7 + 2

√
13

6

)1/3

,
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the asymptotic complexity of MNFS with the Generalized Joux-Lercier method
is:

LQ

(
1
3
,
4 +

√
13

3cp

)
.

Figure 4 shows how this asymptotic complexity varies with cp.
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