
Twisted Polynomials and Forgery Attacks
on GCM

Mohamed Ahmed Abdelraheem(B), Peter Beelen, Andrey Bogdanov,
and Elmar Tischhauser

Department of Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

{mohab,pabe,anbog,ewti}@dtu.dk

Abstract. Polynomial hashing as an instantiation of universal hashing
is a widely employed method for the construction of MACs and authenti-
cated encryption (AE) schemes, the ubiquitous GCM being a prominent
example. It is also used in recent AE proposals within the CAESAR com-
petition which aim at providing nonce misuse resistance, such as POET.
The algebraic structure of polynomial hashing has given rise to security
concerns: At CRYPTO 2008, Handschuh and Preneel describe key recov-
ery attacks, and at FSE 2013, Procter and Cid provide a comprehensive
framework for forgery attacks. Both approaches rely heavily on the abil-
ity to construct forgery polynomials having disjoint sets of roots, with
many roots (“weak keys”) each. Constructing such polynomials beyond
näıve approaches is crucial for these attacks, but still an open problem.

In this paper, we comprehensively address this issue. We propose to
use twisted polynomials from Ore rings as forgery polynomials. We show
how to construct sparse forgery polynomials with full control over the
sets of roots. We also achieve complete and explicit disjoint coverage of
the key space by these polynomials. We furthermore leverage this new
construction in an improved key recovery algorithm.

As cryptanalytic applications of our twisted polynomials, we develop
the first universal forgery attacks on GCM in the weak-key model that
do not require nonce reuse. Moreover, we present universal weak-key
forgeries for the nonce-misuse resistant AE scheme POET, which is a
CAESAR candidate.

Keywords: Authenticated encryption · Polynomial hashing · Twisted
polynomial ring (Ore ring) · Weak keys · GCM · POET

1 Introduction

Authenticated encryption (AE) schemes are symmetric cryptographic primitives
combining the security goals of confidentiality and integrity. Providing both
ciphertext and an authentication tag on input of a plaintext message, they allow

Due to page limitations, several details are omitted in this proceedings version. A
full version is available at [2].

c© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part I, LNCS 9056, pp. 762–786, 2015.
DOI: 10.1007/978-3-662-46800-5 29

Twisted Polynomials and Forgery Attacks on GCM 763

two parties sharing a secret key to exchange messages in privacy and with the
assurance that they have not been tampered with.

Approaches to construct AE schemes range from generic composition of a
symmetric block or stream cipher for confidentiality and a message authentica-
tion code (MAC) for integrity to dedicated designs. An important method for
constructing both stand-alone MACs and the authentication tag generation part
of dedicated AE algorithms is based on universal hash functions, typically fol-
lowing the Carter-Wegman paradigm [21]. This construction enjoys information-
theoretic security and is usually instantiated by polynomial hashing, that is, the
evaluation of a polynomial in H (the authentication key) over a finite field with
the message blocks as coefficients.

One of the most widely adopted AE schemes is the Galois Counter Mode
(GCM) [6], which has been integrated into important protocols such as TLS,
SSH and IPsec; and furthermore has been standardized by among others NIST
and ISO/IEC. It combines a 128-bit block cipher in CTR mode of operation for
encryption with a polynomial hash in F

128
2 over the ciphertexts to generate an

authentication tag. The security of GCM relies crucially on the uniqueness of its
nonce parameter [7,10,11].

As a field, authenticated encryption has recently become a major focus of
the cryptographic community due to the ongoing CAESAR competition for a
portfolio of recommended AE algorithms [1]. A large number of diverse designs
has been submitted to this competition, and a number of the submissions feature
polynomial hashing as part of their authentication functionality. Among these,
the new AE schemes POET [3], Julius [5] and COBRA [4] feature stronger
security claims about preserving confidentiality and/or integrity under nonce
reuse (so-called nonce misuse resistance [12]).

Background. The usual method to build a MAC or the authentication com-
ponent of an AE scheme from universal hash functions is to use polynomial
hashing, in other words, to evaluate a polynomial in the authentication key with
the message or ciphertext blocks as coefficients:

Definition 1 (Polynomial-based Authentication Scheme). A polynomial
hash-based authentication scheme processes an input consisting of a key H and
plaintext/ciphertext M = (M1||M2|| · · · ||Ml), where each Mi ∈ F

n
2 , by evaluating

the polynomial

hH(M) :=
l∑

i=1

MiH
i ∈ F

n
2 .

To produce an authentication tag, the value hH(M) is often processed fur-
ther, for example by encryption, or additive combination with another pseu-
dorandom function. For a survey of existing constructions, we refer the reader
to [10]. Out of these schemes, GCM [6,13] is by far the most important and
widespread algorithm. We therefore recapitulate existing security results about
polynomial hashing at the example of GCM.

764 M.A. Abdelraheem et al.

The Galois Counter Mode. GCM is defined as follows. It takes as input the
plaintext M = M1||M2|| · · · ||Ml, a key k and a nonce N . It outputs correspond-
ing ciphertext C = C1||C2|| · · · ||Cl and an authentication tag T . The ciphertext
blocks are generated using a block cipher Ek (usually AES) in counter mode:
Ci = Ek(Ji−1) ⊕ Mi, with J0 an initial counter value derived from N , and the
J1, J2, . . . successive increments of J0. The ciphertexts are then processed with
polynomial hashing to generate the tag

T = Ek(J0) ⊕ hH(C)

with H = Ek(0) as the authentication (hash) key. GCM is typically instantiated
with a 128-bit block cipher, uses 128-bit keys and 96-bit nonces and produces
128-bit tags.

Joux’ “forbidden” attack. Soon after the proposal of GCM, Joux [11] pointed
out that the security of GCM breaks down completely if nonces are re-used with
the same key. Since GCM is built upon the assumption of nonce uniqueness,
his attack is referred to as the “forbidden” attack against GCM. It recovers the
hashing key H using pairs of different messages M and M ′ that are authenticated
using the same nonce N . This leads to the following equation in one unknown
H:

T ⊕ T ′ = hH(C) ⊕ EK(N) ⊕ hH(C ′) ⊕ EK(N) = hH(C ⊕ C ′),

where C/C ′ and T/T ′ are the ciphertext/tag of M/M ′. This is equivalent to
saying that the polynomial T ⊕ T ′ ⊕ hH(C ⊕ C ′) has a root at H. By using
multiple message pairs and computing the GCD of the arising polynomials, H
can be uniquely identified. This attack does not apply to the nonce-respecting
adversarial model.

Ferguson’s Short Tag attacks. While Joux’ attack establishes GCM’s sensitivity
to nonce reuse, Ferguson [7] demonstrated that truncation of its output to shorter
tags of s < 128 bits not only (generically) limits its authentication security
level to s/2 bits, but also allows a key recovery attack with little more than
2s/2 queries, which especially does not require a collision on the full 128-bit
polynomial hash. Ferguson’s attacks make use of so-called error polynomials

l∑

i=1

(Ci − C ′
i)H

i,

with the Ci the original and the C ′
i the modified ciphertext blocks. Since GCM

operates in a field or characteristic two, squaring is a linear operation, and this
allows Ferguson to consider linearized error polynomials, i.e. where only the
coefficients of H2i are nonzero. The effect of these modifications on the first
bits of the (truncated) authentication tag is then a linear function of H and the
coefficients. Using linear algebra, the coefficients of the error polynomial are then
computed such that the first s/2 bits of the shortened tag will not change. The
attack then exploits a generic birthday-type collision on the remaining s/2 tag

Twisted Polynomials and Forgery Attacks on GCM 765

bits to obtain a complete collision on the short tag. A small number of further
forgeries then yield enough linear relations about bits of H to allow its complete
recovery. Note that this attack does not require nonce reuse.

Handschuh and Preneel’s Key Recovery Attacks. Handschuh and Preneel [10]
propose various methods for recovering the hash key of polynomial hashing-
based MACs, among them GCM. The main idea is to obtain a valid ciphertext-
tag pair C, T and then to attempt verification with a different message C ′ but
the same tag; here C ′ is chosen such that C − C ′ has many distinct roots. If
verification is not successful, another C ′′ is used which is chosen such that C−C ′′

has no roots in common with C − C ′, and so on. Once a verification succeeds,
this indicates that the authentication key is among the roots of this polynomial.
Further queries can then be made to subsequently reduce the search space until
the key is identified. When using polynomials of degree d in each step, the total
number of verification queries needed is 2n/d. Knowing the authentication key
then allows the adversary to produce forgeries for any given combination of
nonce and corresponding ciphertext blocks. The attack of [10] does not require
nonce reuse, however is limited to ciphertexts as it does not allow the adversary
to create universal forgeries for any desired plaintext message.

Handschuh and Preneel further identify the key H = 0 as a trivially weak key
for GCM-like authentication schemes. They further provide a formalization of
the concept of weak keys, namely a class D of keys is called weak if membership
in this class requires less than |D| key tests and verification queries.

Saarinen’s Cycling Weak Key Forgery Attacks. This concept of weak keys for
polynomial authentication was taken a step further by Saarinen in [20], where
a forgery attack for GCM is described for the case where the order of the hash
key H in F

×
2128 is small. If the hash key belongs to a cyclic subgroup of order t,

i.e. Ht+1 = H, then the attacker can create a blind forgery by simply swapping
any two ciphertext blocks Ci and Ci+jt. Such hash keys with short cycles (small
value of t) can be labelled as weak keys. In other words, Saarinen identifies all
elements with less than maximal order in F

×
2128 as weak keys. Since constructing

a corresponding forgery requires a message length of at least 2t blocks, and GCM
limits the message to 232 blocks, this means that all keys with order less than
232 are weak keys for GCM. We finally note that cycling attacks depend on the
factorisation of 2n −1, since any subgroup order is a divisor of the order of F×

2128 .

Procter and Cid’s General Weak-Key Forgery Framework. The idea behind
cycling attacks was extended and formalized by Procter and Cid [15] by intro-
ducing the notion of so-called forgery polynomials: Let H be the (unknown) hash
key. A polynomial q(X) =

∑l
i=1 qiX

i is then called a forgery polynomial if it
has H as a root, i.e. q(H) = 0. This designation is explained by noting that for
C = (C1||C2|| · · · ||Cl) and writing Q = q1|| · · · ||ql, we have

hH(C) = hH(C + Q),

766 M.A. Abdelraheem et al.

that is, adding the coefficients of q yields the same authentication tag, i.e. a
forgery.1 More concretely, for GCM, we have that (N,C + Q,T) is a forgery
for (N,C, T) whenever q(H) = 0. This also means that all roots of q can be
considered weak keys in the sense of [10]. In order to obtain forgeries with high
probability, Procter and Cid note that a concrete choice for q should have a high
degree and preferably no repeated roots.

Since any choice of q is a forgery polynomial for its roots as the key, Procter
and Cid establish the interesting fact that any set of keys in polynomial hashing
can be considered weak: membership to a weak key class D can namely be
tested by one or two verification queries using the forgery polynomial q(X) =∏

d∈D(X − d) regardless of the size of D. They also note that such a forgery
polynomial can be combined with the key recovery technique of [10], namely
by using the polynomial q(X) =

∏
H∈F

n
2 ,Hn=0(X − H) and then subsequently

fixing more bits of H according to the results of the verification queries. This
only requires two queries for a first forgery, and at most n + 1 for complete
key recvoery. Note however that this requires messages lengths up to 2n blocks,
which is clearly infeasible for GCM (where n = 128).

We also note that all previously described attacks can be seen as special cases
of Procter and Cid’s general forgery framework [15,16].

Our Problem. We start by noting that besides the attacks of Joux and Fer-
guson, which apply to the special cases where the nonce is reused or tags are
truncated, only Saarinen’s cycling attack gives a concrete security result on GCM
and similar authentication schemes. In the formalism of [15], it uses the forgery
polynomials Xt − X with t < 232 the subgroup order. To the best of our knowl-
edge, no other explicit forgery polynomials have been devised. In [15], two generic
classes of forgery polynomials are discussed: random polynomials of degree d in
F2n [X] or näıve multiplication of linear factors (x−H1) · · · · ·(x−Hd). The latter
construction requires d multiplications already for the construction of the forgery
polynomial, which quickly becomes impractical. We also note that in both cases,
the coefficients will be “dense”, i.e. almost all of them will be nonzero. This means
that all of the ciphertext blocks have to be modified by the adversary to submit
each verification query. In the same sense, the observation of [15] that any key
is weak is essentially a certificational result only since |D| multiplications are
needed to produce q for a weak key class of size |D|. The construction of explicit
forgery polynomials is left as an important open problem in [15].

Similarly, the key recovery technique of [10] does not deal with the impor-
tant question of how to construct new polynomials of degree d having distinct
roots from all previously chosen ones, especially without the need to store all d
roots from each of the 2n/d iterations. These observations lead to the following
questions:
1 Note that forgery polynomials are conceptually different from Ferguson’s error poly-

nomials, since the authentication key H typically is not a root of an error polynomial,
while this is the defining property for forgery polynomials.

Twisted Polynomials and Forgery Attacks on GCM 767

Can we efficiently construct explicit forgery polynomials having pre-
scribed sets of roots, ideally having few nonzero coefficients? Moreover,
can we disjointly cover the entire key space using these explicit forgery
polynomials?

Answers to these questions would essentially solve the open problem mentioned
in [15], and also make the observation concrete that any key in polynomial
hashing can be considered weak. It would also improve the key recovery algo-
rithm of Handschuh and Preneel [10]. On the application side, we ask whether
plaintext-universal forgeries for GCM can be constructed in the nonce-respecting
adversarial model.

Our Results. In this paper, we answer the above-mentioned questions in the
affirmative. We comprehensively address the issue of polynomial construction
and selection in forgery and key recovery attacks on authentication and AE
schemes based on polynomial hashing. In detail, the contributions of this paper
are as follows.

Explicit construction of sparse forgery polynomials. In contrast to the existing
generic methods to construct forgery polynomials, we propose a construction
based on so-called twisted polynomial rings that allows us to explicitly describe
polynomials of degree 2d in any finite field F

n
2 which have as roots precisely the

elements of an arbitrary d-dimensional subspace of Fn
2 , independent of n or the

factorisation of 2n − 1. While achieving this, our polynomials are very sparse,
having at most d + 1 nonzero coefficients.

Complete disjoint coverage of the key space by forgery polynomials. In order to
recover the authentication key (as opposed to blind forgeries), the attacks of
Handschuh and Preneel [10] and Procter and Cid [15] need to construct polyno-
mials having a certain set of roots, being disjoint from the roots of all previous
polynomials. We propose an explicit algebraic construction achieving the parti-
tioning of the whole key space Fn

2 into roots of structured and sparse polynomials.
This substantiates the certificational observation of [15] that any key is weak,
in a concrete way. We give an informal overview of our construction of twisted
forgery polynomials in the following proposition.

Proposition (informal). Let q = re and let V be a subspace of Fq of over the
field Fr of dimension d. Then there exists a twisted polynomial φ from the Ore
ring Fq{τ} with the following properties:

1. φ can be written as φ(X) = c0+
∑d

i=1 ciX
2i , i.e. φ has at most d+1 nonzero

coefficients;
2. For any a ∈ Fq, the polynomial φ(X)−φ(a) has exactly a+V as set of roots;
3. The sets of roots of the polynomials φ(X) − b with b ∈ Im φ partition Fq.

768 M.A. Abdelraheem et al.

Improved key recovery algorithm. We then leverage the construction of sparse
forgery polynomials from the twisted polynomial ring to propose an improved key
recovery algorithm, which exploits the particular structure of the root spaces of
our forgery polynomials. In contrast to the key recovery techniques of [10] or [15],
it only requires the modification of a logarithmic number of message blocks in
each iteration (i.e., d blocks for a 2d-block message). It also allows arbitrary
trade-offs between message lengths and number of queries.

New universal forgery attacks on GCM. Turning to applications, we develop
the first universal forgery attacks on GCM in the weak-key model that do not
require nonce reuse. We first use tailored twisted forgery polynomials to recover
the authentication key. Depending on the length of the nonce, we then either use
a sliding technique on the counter encryptions or exploit an interaction between
the processing of different nonce lengths to obtain valid ciphertext-tag pairs for
any given combination of nonce and plaintext.

Analysis of POET, Julius, and COBRA. Using our framework, we finally present
further universal forgery attacks in the weak-key model also for the recently
proposed nonce-misuse resistant AE schemes POET, Julius, and COBRA.

Our results on POET prompted the designers to formally withdraw the vari-
ant with finite field multiplications as universal hashing from the CAESAR
competition. Previously, an error in an earlier specification of POET had been
exploited for constant-time blind forgeries [9]. This attack however does not
apply to the corrected specification of POET. Likewise, for COBRA, a previous
efficient attack by Nandi [14] does not yield universal forgeries.

Organization. The remainder of the paper is organized as follows. We introduce
some common notation in Sect. 2. In Sect. 3, we describe our method to con-
struct explicit and sparse forgery polynomials. Sect. 4 proposes two approaches
to construct a set of explicit forgery polynomials whose roots partition the whole
finite field F

128
2 . In Sect. 5, we describe our improved key recovery algorithm. In

Sect. 6, two universal weak-key forgery attacks against GCM are presented. In
Sect. 7, we present several universal forgery attacks on POET under the weak-
key assumption. For the attacks on Julius and COBRA, we refer to the full
version of this paper [2]. We conclude in Sect. 8.

2 Preliminaries

Throughout the paper, we denote by Fpn the finite field of order pn and char-
acteristic p, and write F

n
p for the corresponding n-dimensional vector space over

Fp. We use + and ⊕ interchangeably to denote addition in F2n and F
n
2 .

Twisted Polynomials and Forgery Attacks on GCM 769

Forgery polynomials. We formally define forgery polynomials [15] as polynomials
q(X) =

∑r
i=1 qiX

i with the property that that q(H) = 0 for the authentication
key H. Assume that M = (M1||M2|| · · · ||Ml) and that l ≤ r. Then

hH(M) =
r∑

i=1

MiH
i =

l∑

i=1

MiH
i +

r∑

i=1

qiH
i =

r∑

i=1

(Mi + qi)Hi = hH(M + Q)

where Q = q1|| · · · ||qr. If l < r, we simply pad M with zeros. Throughout the
paper, we will refer to Q as the binary coefficient string of a forgery polynomial
q(X).

Using q as a forgery polynomial in a blind forgery gives a success probability
p = #roots of q(X)

2n . Therefore, in order to have a forgery using the polynomial
q(X) with high probability, q(X) should have a high degree and preferably no
repeated roots.

In the next section, we will present methods to construct explicit sparse
forgery polynomials q(X) with distinct roots and high forgery probability.

3 Explicit Construction of Twisted Forgery Polynomials

When applying either the key recovery attack of [10] or any of the forgery or
key recovery attacks of [15], a crucial issue lies in the selection of polynomials
that have a certain number � of roots in F

n
2 , and additionally being able to select

each polynomial to have no common roots with the previous ones. Ideally, these
polynomials should both be described by explicit constructive formulas, and they
should be sparse, i.e. have few nonzero coefficients.

As noted in [15], the direct way to do this is to choose distinct elements
α1, . . . , α� ∈ F2n and to work out the product (X−α1) · · · (X−α�), which quickly
gets impractical for typical values of � and will not result in sparse polynomials.
The second suggestion described in [15] is to select them at random, which
is efficient, but also does not produce sparse polynomials. Moreover, as noted
in [16], subsequently chosen random polynomials will likely have common roots,
which rules out the key recovery attacks of both [10] and [16].

The only proposed explicit construction of forgery polynomials so far are the
polynomials Xt−1 with t|(2128−1), due to Saarinen [20]. Their roots correspond
precisely to the cyclic subgroups of F128

2 , which also limits their usefulness in the
key recovery attacks.

In this section, we propose a new method which yields explicit constructions
for polynomials with the desired number of roots. At the same time, the resulting
polynomials are sparse in the sense that a polynomial with 2d roots will have at
most d + 1 nonzero coefficients.

For this, we use the fact that F2128 can be seen as a vector space (of dimension
128) over F2. More precisely, given a subvector space V of F2128 of dimension
d with basis {b1, . . . , bd}, we describe a fast procedure to find a polynomial
pV (X) ∈ F2128 [X] whose roots are exactly all elements of V . Note that this
implies that deg PV (X) = 2d. We will also see that the pV (X) is sparse, more

770 M.A. Abdelraheem et al.

precisely that the only coefficients of pV (X) that may be distinct from zero are
the coefficients of the monomials X2i with 0 ≤ i ≤ d. In particular this will
imply that pV (X) has at most d + 1 non-zero coefficients despite the fact that
it has degree 2d.

To explain the above, we introduce the concept of a twisted polynomial ring,
also called an Ore ring.

Definition 2. Let Fq be a field of characteristic p. The twisted polynomial or
Ore ring Fq{τ} is defined as the set of polynomials in the indeterminate τ having
coefficients in Fq with the usual addition, but with multiplication defined by the
relation τα = αpτ for all α ∈ Fq.

The precise ring we will need is the ring F2128{τ}. In other words, two polynomi-
als in τ can be multiplied as usual, but when multiplying the indeterminate with
a constant, the given relation applies. This makes the ring a non-commutative
ring (see [8] for an overview of some of its properties). One of the reasons to
study this ring is that it gives a convenient way to study linear maps from F2128

to itself, when viewed as a vector space over F2. A constant α ∈ F2128{τ} then
corresponds to the linear map sending x ∈ F2128 to α ·x, while the indeterminate
τ corresponds to the linear map sending x ∈ F2128 to x2. Addition in the Ore
ring corresponds to the usual addition of linear maps, while multiplication cor-
responds to composition of linear maps. This explains the relation τ · α = α2 · τ ,
since both expressions on the left and right of the equality sign correspond to
the linear map sending x to α2x2. To any element φ from the Ore ring, we can
associate a polynomial φ(X), by replacing τ i with X2i . The resulting polynomi-
als have possibly non-zero coefficients from F2128 only for those monomials Xe,
such that e is a power of 2. Such polynomials are called linearized and are just
yet another way to describe linear maps from F2128 to itself. The advantage of
this description is that the null space of a linear map represented by a linearized
polynomial p(X) just consists of the roots of p(X) in F2128 .

Now we describe how to find a polynomial pV (X) having precisely the ele-
ments of a subspace V of F2128 as roots. The idea is to construct a linear map
from F2128 to itself having V as null space recursively. We will assume that we
are given a basis {β1, . . . , βd} of V . For convenience we define Vi to be the sub-
space generated by {β1, . . . , βi}. Note that V0 = ∅ and Vd = V . Then we proceed
recursively for 0 ≤ i ≤ d by constructing a linear map φi (expressed as an ele-
ment of the Ore ring) with null space equal to Vi. For i = 0 we define φ0 := 1,
while for i > 0 we define φi := (τ + φi−1(βi))φi−1. For d = 2, we obtain for
example

φ0 = 1, φ1 = τ + β1

and

φ2 = (τ + (β2
2 + β1β2))(τ + β1) = τ2 + (β2

2 + β1β2 + β2
1)τ + β1β

2
2 + β2

1β2.

The null spaces of these linear maps are the roots of the polynomials

X, X2 + β1X

Twisted Polynomials and Forgery Attacks on GCM 771

and
X4 + (β2

2 + β1β2 + β2
1)X

2 + (β1β
2
2 + β2

1β2)X.

It is easy to see directly that the null spaces of φ0, φ1, φ2 have respective bases
∅, {β1} and {β1, β2}. More general, a basis for the null space of φi is given by
{β1, . . . , βi}: indeed, since φi := (τ +φi−1(βi))φi−1, it is clear that the null space
of φi−1 is contained in that of φi. Moreover, evaluating φi in βi, we find that

φi(βi) = (τ + φi−1(βi))(φi−1(βi)) = φi−1(βi)2 + φi−1(βi)φi−1(βi) = 0.

This means that the null space of φi at least contains Vi (and therefore at least
2i elements). On the other hand, the null space of φi can be expressed as the
set of roots of the linearized polynomial φi(X), which is a polynomial of degree
2i. Therefore the null space of φi equals Vi. For i = d, we obtain that the
null space of φd is V . In other words: the desired polynomial pV (X) is just the
linearized polynomial φd(X). The above claim about the sparseness of pV (X)
now also follows. It is not hard to convert the above recursive description to
compute pV (X) into an algorithm (see Alg. 5.1). In a step of the recursion, the
multiplication (τ + φi−1(βi))φi−1 needs to be carried out in the Ore ring. Since
the left term has degree one in τ , this is easy to do. To compute the coefficients in
φi of all powers of τ one needs the commutation relation τα = α2τ for α ∈ F2128 .
Computing a coefficient of a power of τ in a step of the recursion, therefore takes
one multiplication, one squaring and one addition. The computation of φd can
therefore be carried out without further optimization in quadratic complexity in
d. A straightforward implementation can therefore be used to compute examples.
Two examples are given in Appendix A with d = 31 and d = 61 needed for
attacking GCM and POET.

Note that the above theory can easily be generalized to the setting of a
finite field Fre and Fr-subspaces V over the field Fre . In the corresponding Ore
ring Fre{τ} the commutation relation is τα = αrτ . Similarly as above, for any
subspace of a given dimension d one can find a polynomial pV (X) of degree
rd having as set of roots precisely the elements of V . It may have non-zero
coefficients only for monomials of the form Xri

. In the program given in the full
version of this paper [2], r and e can be chosen freely. See [8] for a more detailed
overview of properties of linearized polynomials and the associated Ore ring.

4 Disjoint Coverage of the key Space with Roots of
Structured Polynomials

The purpose of this section is to describe how one can cover the elements of a
finite field Fq by sets of roots of families of explicitly given polynomials. We will
focus our attention to the case that q = 2128, but the given constructions can
directly be generalized to other values of q = re. We denote by γ a primitive
element of Fq. Two approaches will be described. The first one exploits the
multiplicative structure of Fq\{0}, while the second one exploits the additive
structure of Fq seen as a vector space over F2. We will in fact describe a way

772 M.A. Abdelraheem et al.

to partition the elements of Fq as sets of roots of explicit polynomials, that is
to say that two sets of roots of distinct polynomials will have no elements in
common. In both cases the algebraic fact that will be used is the following: Let
G be a group with group operation ∗ and let H ⊂ G be a subgroup. Then two
cosets g ∗H and f ∗H are either identical or disjoint. Moreover the set of cosets
gives rise to a partition of G into disjoint subsets.

4.1 Using the Multiplicative Structure

We first consider the group G = Fq\{0} with group operation ∗ the mul-
tiplication in Fq. For any factorization q − 1 = n · m we find a subgroup
Hm := {γnj | 0 ≤ j ≤ m − 1} consisting of m elements. This gives rise to
the following proposition:

Proposition 1. Let γ be a primitive element of the field Fq and suppose that
q − 1 = n · m for positive integers n and m. For i between 0 and n − 1 define

Ai := {γi+nj | 0 ≤ j ≤ m − 1}.

Then the sets A0, . . . , An−1 partition Fq\{0}. Moreover, the set Ai consists
exactly of the roots of the polynomial Xm − γim.

Proof. As mentioned we work in the multiplicative group Fq\{0} and let Hm be
the subgroup of G of order m. Note that A0 = Hm and that Hm is the kernel
of the group homomorphism φ : G → G sending x to xm. In particular, Hm is
precisely the set of roots of the polynomial Xm − 1. Any element from the coset
gHm is sent by φ to gm. This means that gHm is precisely the set of roots of
the polynomial Xm − gm. Note that gm = γim for some i between 0 and n − 1,
so that the set of roots of Xm − gm equals γiHm = Ai for some i between 0 and
n − 1. Varying i we obtain all cosets of Hm, so the result follows.

If q = re for some prime power r, one can choose n = r − 1 and m =
re−1 + · · · + r + 1. For any element α ∈ Fq we then have αm ∈ Fr, since αm

is just the so-called Fq/Fr-norm of α. Therefore the family of polynomials in
the above lemma in this case take the particularly simple form xm − a, with
a ∈ Fr\{0}. In case q = 2128, Proposition 1 gives rise to a family of polynomials
whose roots partition F2128\{0}. For more details about the explicit form of these
polynomials, we refer the reader to the full version [2] of this paper.

4.2 Using the Additive Structure

Now we use a completely different approach to partition the elements from Fq in
disjoint sets where we exploit the additive structure. Suppose again that q = re,
then we can view Fq as a vector space over Fr. Now let V ⊂ Fq be any linear
subspace (still over the field Fr). If V has dimension d, then the number of
elements in V equals rd. For any a ∈ Fq, we define a + V , the translate of V by
a, as

a + V := {a + v | v ∈ V }.

Twisted Polynomials and Forgery Attacks on GCM 773

Of course a+V can also be seen as a coset of the subgroup V ⊂ Fq with addition
as group operation. Any translate a + V has rd elements and moreover, it holds
that two translates a + V and b + V are either disjoint or the same. This means
that one can choose n := re/rd = re−d values of a, say a1, . . . , an such that the
sets a1 + V, . . . , an + V partition Fq.

The next task is to describe for a given subspace V of dimension d, the
n := rd−e polynomials with a1 + V, . . . , an + V as sets of roots. As a first step,
we can just as before, construct an Fr-linear map φ from Fq to itself, that can be
described using a linearized polynomial of the form pV (X) = Xrd

+cd−1X
rd−1

+
· · · + c1X

r + c0X. The linear map φ then simply sends x to pV (x) and has as
image

W := {pV (x) | x ∈ Fq}.

A coset a + V of V is then sent to the element pV (a) by φ. This means that any
coset of V can be described as the set of roots of the polynomial pV (X)−pV (a),
that is to say of the form pV (X) − b with b ∈ W (the image of the map φ).
Combining this, we obtain that we can partition the elements of Fq as sets
of roots of polynomials of the form pV (X) − b with b ∈ W . Note that these
polynomials still are very structured: just a constant term is added to the already
very sparse polynomial pV (X). Note that pV (X) − pV (a) = pV (X − a), since
pV (X) is a linearized polynomial. This makes it easy to confirm that indeed the
set of roots of a polynomial of the form pV (X) − pV (a) is just the coset a + V .
The number of elements in W is easily calculated: since it is the image of the
linear map φ and the dimension of the null space of φ is d (the dimension of V),
the dimension of its image is e− d. This implies that W contains re−d elements.
We collect some of this in the following proposition:

Proposition 2. Let q = re and let V be a linear subspace of Fq of over the
field Fr of dimension d. Moreover denote by pV (x) be the linearized polynomial
associated to V and define W := {pV (x) | x ∈ Fq}.

Then for any a ∈ Fq, the polynomial pV (x) − pV (a) has as sets of roots
exactly a + V . Moreover, the sets of roots of the polynomials pV (x) − b with
b ∈ W partition Fq.

A possible description of a basis of W can be obtained in a fairly straight-
forward way. If {β1, . . . , βd} is a basis of V , one can extend this to a basis of Fq,
say by adding the elements βd+1, . . . , βe. Then a basis of the image W of φ is
simply given by the set {pV (βd+1), . . . , pV (βe)} (note that φ(βi) = pV (βi) = 0
for 1 ≤ i ≤ d). This means that the re−d polynomials whose roots partition Fq

are given by

pV (X) +
e∑

i=d+1

aipV (βi), with ai ∈ Fr.

The set of roots of a polynomial of this form is given by
∑e

i=d+1 aiβi + V . In
the appendix, we give examples for re = 2128 and d = 31 or d = 61.

774 M.A. Abdelraheem et al.

5 Improved key Recovery Algorithm

Suppose that we have observed a polynomial hash collision for some forgery
polynomial pV (X) of degree d, i.e. some observed message M and M + pV have
the same image under hH with the unknown authentication key H. This means
that H must be among the roots of pV (X), and we can submit further verification
queries using specially chosen forgery polynomials to recover the key.

5.1 An Explicit key Recovery Algorithm Using Twisted Polynomials

Being constructed in a twisted polynomial ring, our polynomials pV (X) are lin-
earized polynomials, so that all roots are contained in a d-dimensional linear
space V ⊂ F

n
2 . This enables an explicit and particularly efficient key recov-

ery algorithm which recovers the key H by writing it as H =
∑d

i=1 biβi with
respect to (w.r.t.) a basis B = {β1, . . . , βd} for V over F2 and determining its
d binary coordinates w.r.t. B one by one. Shortening the basis by the last ele-
ment, we can test if bd = 0 by using the forgery polynomial corresponding to
V ′ = span{β1, . . . , βd−1}. If this query was not successful, we deduce bd = 1. We
then proceed recursively for the next bit.

Unless all bi = 0, the search space will be restricted to an affine instead of a
linear subspace at some point. It is easy to see, however, that the corresponding
polynomial for A = V +a with V a linear subspace, can always be determined as
pA(X) = pV (X−a) = pV (X)−pV (a) since the pV (X) are linearized polynomials.

The complexity of Algorithm 5.2 for a polynomial of degree d (corresponding
to |V | = 2d) is given by d verification queries and one invocation of the polyno-
mial construction algorithm 5.1, which in turn takes O(d2) finite field operations.
Note that typically, d < 64. The total length of all verification queries is limited
by 2d+1 blocks. Since the polynomials pU(i)(X) have at most d+1 nonzero coef-
ficients, they are very sparse and only very few additions to M are required to
compute the message M + PU(i) for the forgery attempt.

We emphasize that this algorithm can be readily generalized to deal with
input polynomials pA(X) having affine root spaces A = V +a by operating with
the corresponding linear space V and adding pV (i)(a) to all verification queries.
This especially allows to combine this algorithm with the key space covering
strategy of Sect. 4.2.

In the context of authenticated encryption, M will typically correspond to
ciphertexts instead of plaintexts, so also in this case, only calls to the verifi-
cation oracle are required. It is also straightforward to adapt Algorithm 5.2 to
cases where a polynomial hash collision cannot directly be observed, but instead
propagates into some other property visible from ciphertext and tag. This is for
example used in our attacks on the COBRA authenticated encryption scheme
(see the full version [2] for details).

5.2 Comparison to Previous Work

The idea of using a binary search-type algorithm to recover authentication keys
has previously been applied to various universal hashing-based MAC construc-

Twisted Polynomials and Forgery Attacks on GCM 775

Algorithm 5.1. Construction of
twisted polynomials
Input: basis B = {β1, . . . , βd} of V ⊂

F
n
2

Output: polynomials pV (i)(X) having
span{β1, . . . , βi} as set of roots

1: Set a1 ← 1
2: Set ai ← 0 for 2 ≤ i ≤ d + 1
3: for i = 1 to d do
4: v ←∑d

k=1 akβ2k

i

5: c1 ← v · a1

6: for j = 2 to d + 1 do
7: cj ← a2

j−1 + v · aj

8: end for
9: pV (i) ←∑d+1

k=1 ckX2k−1

10: end for
11: return polynomials

pV (1)(X), . . . , pV (d)(X)

Algorithm 5.2. Key recovery using
twisted polynomials
Input: message M , polynomial pV (X)

s.t. hH(M) = hH(M + PV),basis
B = {β1, . . . , βd} of d-dimensional
linear subspace V ⊂ F

n
2 .

Output: authentication key H.
1: bi ← 0, 1 ≤ i ≤ d
2: Call Alg. 5.1 on V , obtain

pV (1) , . . . , pV (d)

3: for i = d downto 1 do
4: Denote U (i) = span{β1, . . . , βi−1},

so that pU(i) = pV (i−1)

5: α ← pU(i)(
∑d

j=i bjβj)
6: if hH(M) = hH(M + PU(i) + α)

then
7: bi ← 0
8: else
9: bi ← 1

10: end if
11: end for
12: return key H =

∑d
i=1 biβi

tions by Handschuh and Preneel [10]. Their attack algorithm however does not
deal with the (important) questions of determining new polynomials having dis-
tinct roots from all previously used ones, and also requires the calculation and
storage of the 2d roots during the key search phase. Also, the required polynomi-
als will not be sparse and require up to 2d nonzero coefficients. By contrast, our
algorithm leverages the twisted polynomial ring to explicitly construct sparse
polynomials with exactly the necessary roots for restricting the search space in
each iteration.

A different approach for binary-search type key recovery is given in Sect. 7.3
of [15], suggesting the use of forgery polynomial q(X) =

∏
H∈F

n
2 ,Hn=0(X−H) and

then subsequently fixing more bits of H according to the results of the verification
queries. While this is clearly optimal with respect to the number of queries
(which is n), the resulting messages are up to 2n blocks long, which typically
exceeds the limits imposed by the specifications. Additionally, the polynomials
will have almost no zero coefficients, which requires up to 2n+1 additions for
the verification queries. By contrast, when combined with the keyspace covering
strategy outlined in Sect. 4.2, our algorithm requires 2n/d ·d queries, each of them
being maximally 2d blocks long. This not only allows staying within the specified
limits, but also allows choosing any desired trade-off between the number and
length of the queries. Our explicit polynomials also have a maximum of d + 1
nonzero coefficients each, which limits the number of additions to 2n/d · (d + 1).

776 M.A. Abdelraheem et al.

6 Nonce-respecting Universal Forgeries for GCM

In this section, we describe two nonce-respecting universal forgery attacks
against GCM [6] under weak keys. Before describing the attacks we describe the
GCM authenticated encryption scheme and the GCM counter values generation
procedure as defined in the NIST standard [6].

6.1 More Details on GCM

We recall the GCM ciphertext/tag generation:

T = Ek(J0) ⊕ hH(C),

with T denoting the tag, with M = M1||M2|| · · · ||Ml the plaintext and C =
C1||C2|| · · · ||Cl the ciphertext blocks produced using a block cipher Ek in counter
mode, i.e. Ci = EK(Ji−1) ⊕ Mi. The Ji’s are successive counters with the initial
J0 generated from the nonce N ; furthermore H = Ek(0) with k the secret key.

We now focus on the detailed generation of the counter values in GCM. We
have

J0 =

{
N ||031||1 if |N | = 96,

hH(N ||0s+64||[|N |]64) if |N | 	= 96,

where Ji = inc32(Ji−1), where s = 128
|N |/128�−|N |, [X]64 is the 64-bit binary
representation of X and inc32(X) increments the right-most 32 bits of the binary
string X modulo 232; the other left-most |X| − 32 bits remain unchanged.

6.2 Universal Forgery Attacks on GCM

Our universal forgery attacks are possible if the hash key H is weak. There-
fore, our attack starts by detecting whether the hashing key H is weak or not
using our forgery polynomial q(X) = pV (X) of degree 231 explicitly described in
Appendix A.1. In other words, we make a blind forgery for an observed ciphertex-
t/tag pair (C;T) by asking for the verification of the forged ciphertext (C+Q);T
where Q = q1||...||ql. Now if H is a weak key according to our forgery polyno-
mial – is a root of q(X) = pV (X) – then the verification succeeds and the GCM
scheme outputs a random plaintext.

Once we know that H is a weak-key, then we can recover it using Algo-
rithm 5.2 over the roots of q(X) = pV (X) (see Appendix A.1) where at each
query we can choose different nonces.

Now, the only hurdle for generating a nonce-respecting forgery is computing
the value of EK(J0) since we do not know the secret key K (we have only
recovered H = EK(0)). However, since GCM is using a counter mode encryption
where the successive counter values Ji, are generated from the nonce, we can
easily get the encryption of the counter values EK(Ji) by simply xoring the
corresponding plaintext and ciphertext blocks (Note that in NIST GCM, the
right-most 32 bits of the counter values are successive modulo 232 as shown
below). In the sequel, we show how to use the encryption of the counter values
in order to construct universal forgeries.

Twisted Polynomials and Forgery Attacks on GCM 777

Fig. 1. Forgeries for GCM via sliding the counter encryptions

Slide Universal Forgeries Using Chosen Nonce N with |N | �= 96 Sup-
pose that we have observed an l-block plaintext/ciphertext with tag T , M =
M1|| · · · ||Ml and C = C1|| · · · ||Cl, where Ci = Mi ⊕ EK(Ji−1), Ji = inc32(Ji−1)
and T = EK(J0) ⊕ hH(C). Our goal now is to generate a valid ciphertext/tag
for a different message M ′ using a different chosen nonce N ′ where |N ′| 	= 96.

As mentioned above, the counter mode of operation enables us to find the
encryption of the counter values, EK(J0), EK(J1), · · · , EK(Jv), · · · , EK(Jl). The
idea of the attack is to slide these encrypted counter values v positions to the left
in order to re-use the (l − v) encrypted counter values EK(Jv), · · · , EK(Jl) to
generate valid ciphertext/tag for any new message M ′ with a new chosen nonce
N ′ that gives us an initial counter value J ′

0 = Jv. This will enable us to make
slide universal forgeries for an (l − v)-block message. See Fig. 1.

One can see that using Jv, v > 0, it is possible to choose a nonce N ′ that
gives J ′

0 = Jv by solving the following equation for N ′

J ′
0 = Jv = hH(N ′||0s+64||[|N ′|]64)

Note that when |N ′| = 128 (i.e. s = 0), we have only one solution for N ′

and more than one solution for |N ′| > 128. However, when |N ′| < 128 we might
have no solution. Therefore we assume that |N ′| ≥ 128.

Once we find the nonce N ′ that yields J ′
0 = Jv, then one can see that we

have the following ‘slid’ identities:

EK(J ′
0) = EK(Jv), EK(J ′

1) = EK(Jv+1), · · · , EK(J ′
l−v) = EK(Jl)

Consequently, we are able to compute C ′
i = M ′

i ⊕ EK(J ′
i−1) for 1 ≤ i ≤ l − v

and T ′ = EK(J ′
0)⊕hH(C ′). Thus observing the encryption of an l-block message

and setting J ′
0 = Jv as shown above enable us to generate a valid ciphertext/tag

(C ′/T ′) for an (l − v)-block message M ′ under the nonce-respecting setting.

Universal Forgeries Using Arbitrary Nonces N with |N | = 96. Assume
that we are using a GCM implementation that supports variable nonce lengths.
For example, the implementation of GCM in the latest version of OpenSSL

778 M.A. Abdelraheem et al.

[17,18] makes the choice of the nonce length optional, i.e. one can use different
nonce sizes under the same secret key. Now, suppose that using such a GCM
oracle with the secret key K, we need to find the ciphertext/tag of a message
M = M1|| · · · ||Ml with a nonce N where |N | = 96, so J0 = N ||031||1. In order
to generate the ciphertext/tag we need to find EK(Ji) where Ji = inc32(Ji−1).
We do not know the secret key K. However, since we know the secret hash key
H, we can solve for N ′ the following equation

J0 = hH(N ′||0s+64||[|N ′|]64) where |N ′| 	= 96

Note that we assume that |N ′| ≥ 128 as otherwise we might not get a solu-
tion. After finding N ′, we can query the same GCM oracle (that has been
queried for encrypting M with the nonce N where |N | = 96) with a new nonce
N ′ that has a different size |N ′| ≥ 128 2 for the encryption of some plain-
text M = M ′

1|| · · · ||M ′
l . Now, |N ′| 	= 96 means that the initial counter value

J ′
0 = hH(N ′||0s+64||[|N ′|]64) = J0. Therefore, from the corresponding ciphertext

blocks C ′
1, · · · , C ′

l , we find EK(Ji) = EK(J ′
i) = M ′

i ⊕C ′
i. Consequently the corre-

sponding ith ciphertext block of Mi is Ci = EK(J ′
i)⊕Mi and the corresponding

tag is T = EK(J ′
0)⊕hH(C). It is worthy to note, that this interaction possibility

between two different nonce lengths on GCM had been listed in [19] as one of the
undesirable characteristics of GCM. Fig. 2 demonstrates the interaction attack.

7 Analysis of POET

In this section, we present a detailed weak key analysis of the online authenti-
cation cipher POET when instantiated with Galois-Field multiplication. More
specifically, we create universal forgery attacks once we recover the hashing weak
key. Before this we give a brief description of POET.

7.1 Description of POET

A schematic description of POET [3] is given in Fig. 3a. Five keys L,K,Ltop, Lbot

and LT are derived from a user key as encryptions of the constants 1, . . . , 5. K
denotes the block cipher key, L is used as the mask in the AD processing, and LT

is used as a mask for computing the tag. Associated data (AD) and the nonce
are processed using the secret value L in a PMAC-like fashion (see [3] for details)
to produce a value τ which is then used as the initial chaining value for both top
and bottom mask layers, as well as for generating the authentication tag T . The
“header” H encompasses the associated data (if present) and includes the nonce

2 Two of the test vectors (Test Case 3 and Test Case 6, see the full version [2]) for
the GCM implementation in the latest release of OpenSSL share the same secret
key (and therefore the same hash key) but they use different nonce sizes, Test Case
3 uses a nonce with length 96 while Test Case 6 uses a nonce with length 480 [18].
This suggests that it is conceivable to have different IV sizes under the same secret
key.

Twisted Polynomials and Forgery Attacks on GCM 779

Fig. 2. Forgeries for GCM via cross-nonce interaction

in its last block. S denotes the encryption of the bit length of the message M ,
i.e. S = EK(|M |). The inputs and outputs of the i-th block cipher call during
message processing are denoted by Xi and Yi, respectively.

One of the variants of POET instantiates the functions Ft and Fb by Ft(x) =
Ltop ·x and Fb(x) = Lbot ·x, with the multiplication taken in F

128
2 . This is also the

variant that we consider in this paper. The top AXU hash chain then corresponds
to the evaluation of a polynomial hash in F

128
2 :

gt(X) = τLtop
m +

m∑

i=1

XiLtop
m−i,

with gt being evaluated at X = M1, . . . ,Mm−1,Mm ⊕ S.
For integral messages (i.e., with a length a multiple of the block size), the

authentication tag T then generated as T = T β with empty Z, as shown in
Fig. 3b. Otherwise, the tag T is the concatenation of the two parts Tα and T β ,
see Fig. 3a and 3b.

7.2 Universal Weak-key Forgeries for POET

We start by the following observations.

Observation 1 (Collisions in gt imply tag collisions). Let M = M1, . . . ,
Mm and M ′ = M ′

1, . . . ,M
′
m be two distinct messages of m blocks length such that

gt(M) = gt(M ′) or gt(M1, . . . ,M�) = gt(M ′
1, . . . ,M

′
�) with � < m and Mi = M ′

i

for i > �. This implies a collision on POET’s internal state Xi, Yi for i = m or
i = � respectively, and therefore equal tags for M and M ′.

780 M.A. Abdelraheem et al.

FtFt FtFt

FbFb FbFb

S

S

E E EE

X0 X2 X�M −2 X�M −1
X�M

Y0 Y2 Y�M −2 Y�M −1

Y�M

M1 M2 M�M −1 M�M
|| τα

C1 C2 C�M −1 C�M
|| T α

(a) First-part tag generation in POET [3]

Ft

Fb

E

LT

LT

X�M

Y�M

τ

T β || Z

(b) Second-part tag
generation in POET [3]

Fig. 3. Schematic description of POET

We note that such a collision also allows the recovery of Ltop by Algorithm 5.2.

Observation 2 (Knowing Ltop implies knowing Lbot). Once the first hash
key Ltop is known, the second hash key Lbot can be determined with only two 2-
block queries: Choose arbitrary M1,M2,∇1 with ∇1 	= 0 and obtain the encryp-
tions of the two 2-block messages M1,M2 and M ′

1,M
′
2 with M ′

1 = M1⊕∇1,M
′
2 =

M2 ⊕ ∇1 · Ltop. Denote Δi = Ci ⊕ C ′
i. Then we have the relation Δ1 · Lbot = Δ2,

so Lbot = Δ−1
1 · Δ2.

It is worth noting that this procedure works for arbitrary Lbot, and is in
particular not limited to Lbot being another root of the polynomial q.

A Generic Forgery. In the setting of [15], consider an arbitrarily chosen
polynomial q(X) =

∑m−1
i=1 qiX

i = pV (X) of degree m − 1 and some message

M = M1‖ · · · ‖Mm−1‖Mm. Write Q = q1‖ · · · ‖qm−1 and define M ′ def= M + Q
with Q zero-padded as necessary. For a constant nonce (1-block header) H,
denote ciphertext and tag corresponding to M by C = C1, . . . , Cm and T , and
ciphertext and tag corresponding to M ′ = M + Q by C ′ = C ′

1, . . . , C
′
m and T ′,

respectively.
If some root of q is used as the key Ltop, we have a collision between M and

M ′ = M + Q in the polynomial hash evaluation after m − 1 blocks:

τLtop
m +

m−1∑

i=1

MiLtop
m−i = τ ′Ltop

m +
m−1∑

i=1

M ′
iLtop

m−i

This implies Xm−1 = X ′
m−1 and therefore Ym−1 = Y ′

m−1. Since the messages
are of equal length, S = S′ and we also have a collision in Xm and Ym. It follows
that Cm = C ′

m. Furthermore, since τ = τ ′, the tag T is colliding as well. Since
then M and M + Q have the same tag, M + Q is a valid forgery whenever some

Twisted Polynomials and Forgery Attacks on GCM 781

root of q(X) = pV (X) is used as Ltop. Note that both M and the forged message
will be m blocks long.

Using the class of weak keys represented by the roots of the forgery polyno-
mial q(X) = pV (X) explicitly described in Appendix A and Appendix A.2, we
discuss the implication of having one such key as the universal hash key Ltop.
Since POET allows nonce-reuse, we consider nonce-repeating adversaries, i.e. for
our purposes, the nonce will be fixed to some constant value for all encryption
and verification queries. However, once we recovered τ , we will be able to recover
the secret value L and consequently we can make forgeries without nonce-reuse.

More specifically, we show that weak keys enable universal forgeries for POET
under the condition that the order of the weak key is smaller than the maximal
message length in blocks. For obtaining universal forgeries, we first use the poly-
nomial hash collision described above to recover the weak keys Ltop and Lbot,
and then recover τ , which is equal to the initial states X0 and Y0, under the
weak key assumption.

Recovering τ . Suppose that we have recovered the weak keys Ltopand Lbot.
Now our goal is to recover the secret X0 = Y0 = τ . We know that Xi = τLi

top +
M1L

i−1
top +M2L

i−2
top + · · ·+Mi and Xi+j = τLi+j

top +M1L
i+j−1
top +M2L

i+j−2
top + · · ·+

Mi+j .
Now if Ltop has order j , i.e. Lj

top = Identity, then we get Xi = Xi+j by
constructing Mi+1, · · · ,Mi+j such that Mi+1L

j−1
top +Mi+2L

j−2
top + ...+Mi+j = 0.

The easiest choice is to set Mi+1 = Mi+2 = · · · = Mi+j = 0. This gives us
Yi = Yi+j . Now equating the following two equations and assuming that Lj

bot 	=
Identity, Yi = τLi

bot+C1L
i−1
bot +C2L

i−2
bot +· · ·+Ci and Yi+j = τLi+j

bot +C1L
i+j−1
bot +

C2L
i+j−2
bot + · · · + Ci+j . We get

τ =
(
C1L

i−1
bot + C2L

i−2
bot + · · · + Ci

+ C1L
i+j−1
bot + C2L

i+j−2
bot + · · · + Ci+j

) · (Li
bot + Li+j

bot)−1,

which means that we now know the initial values of the cipher state.

Querying POET’s Block Cipher EK . One can see from Fig. 3a that once
we know Ltop, Lbot and τ , we can directly query POET’s internal block cipher
without knowing its secret key K. internal block cipher, i.e. we want to compute
EK(x). Now from Fig. 3a, we see that the following equation holds: EK(τLtop ⊕
M1) = C1 ⊕ τLbot, therefore EK(x) = C1 ⊕ τLbot. If M1 was the last message
block, however, we would need the encryption S = EK(|M |). Therefore we have
to extend the auxiliary message for the block cipher queries by one block, yielding
the following:

Observation 3 (Querying POET’s block cipher). Knowing Ltop, Lbot and
τ enables us to query POET’s internal block cipher without the knowledge of its
secret key K. To compute EK(x) for arbitrary x, we form a two-block auxiliary
message M ′

1 = (x⊕ τLtop,M
′
2) for arbitrary M ′

2 and obtain its POET encryption

782 M.A. Abdelraheem et al.

as C ′
1, C

′
2. Computing EK(x) := C ′

1 ⊕ τLbot then yields the required block cipher
output.

This means that we can produce valid ciphertext blocks C1, . . . , C�M and
(if necessary) partial tags Tα for any desired messages, by simply following the
POET encryption algorithm using the knowledge of Ltop, Lbot, τ and querying
POET with the appropriate auxiliary messages whenever we need to execute an
encryption EK . Note that this also includes the computation of S = EK(|M |).

Generating the Final Tag. In order to generate the second part of the tag T β

(see Fig. 3b), which is the full tag T for integral messages, we use the following
procedure.

We know the value of X�M for our target message M from the computation
of C�M . If we query the tag for an auxiliary message M ′ with the same X ′

�M′ ,
the tag for M ′ will be the valid tag for M as well, since having X ′

�M′ = X�M

means that Y ′
�M′ = Y�M and consequently T β ′ = T β .

Therefore, we construct an auxiliary one-block message M ′ = (X�M ⊕
EK(|M ′|)⊕τLtop and obtain its tag as T ′ (computing the encryption of the one-
block message length by querying EK as above). By construction X ′

1 = X�M , so
T ′ is the correct tag for our target message M as well.

By this, we have computed valid ciphertext blocks and tag for an arbitrary
message M by only querying some one- or two-block auxiliary messages. This
constitutes a universal forgery.

We finish by noting that in case a one- or two-block universal forgery is
requested, we artificially extend our auxiliary messages in either the final tag
generation (for one-block targets) or the block cipher queries (for two-block
messages) with one arbitrary block to avoid having queried the target message
as one of our auxiliary message queries.

7.3 Further Forgery Strategies

Since the universal forgery of the previous section relies on having a weak key
Ltop with an order smaller than the maximum message length for recovering
τ , we describe two further forgery strategies that are valid for any weak key,
regardless of its order. We also show how the knowledge of τ enables us to
recover the secret value L. This will enable us to make universal forgeries on
POET within the nonce-respecting adversary model. In other words, recovering
the secret value L means that we will be able to process the header (associated
data and nonce) and generate a new τ and consequently have a total control
over the POET scheme. Due to the space limitation, all these further forgery
attacks are given in the full version [2] of this paper.

8 Conclusion

Polynomial hashing is used in a large number of MAC and AE schemes to derive
authentication tags, including the widely deployed and standardized GCM, and

Twisted Polynomials and Forgery Attacks on GCM 783

recent nonce misuse-resistant proposals such as POET, Julius, and COBRA.
While a substantial number of works has pointed out weaknesses stemming
from its algebraic structure [10,15,20], a crucial part of the proposed attacks,
the construction of appropriate forgery polynomials, had not been satisfactorily
addressed.

In this paper, we deal with this open problem of polynomial construction
and selection in forgery and key recovery attacks on such schemes. We describe
explicit constructions of such forgery polynomials with controlled sets of roots
that have the additional advantage of being very sparse. Based upon this, we
propose two strategies to achieve complete disjoint coverage of the key space
by means of such polynomials, again in an explicit and efficiently computable
construction. We also saw that this yields an improved strategy for key recovery
in such attacks.

We then apply our framework to GCM in the weak-key model and describe,
to the best of our knowledge, the first universal forgeries without nonce reuse. We
also describe such universal forgeries for the recent AE schemes POET, Julius,
and COBRA.

A Appendix: Forgery Polynomial Suggestions for GCM
and POET

In this appendix we give some examples of polynomials whose roots form a linear
subspace Vd of F2128 of dimension d for d = 31 and d = 61. As vector space Vd we
have chosen the space spanned by the elements 1, γ, · · · , γd−1, with γ a primitive
elements of F2128 satisfying γ128 = γ7+γ2+γ+1. The calculated polynomial will
have the form cd+1X

2d +cdX
2d−1

+ · · ·+c1X
20 and it is sufficient to simply state

the coefficients ci, which can be expressed in the form aei with 0 ≤ ei ≤ 2128−2.
To save space we only list the exponents ei for each polynomial in the following
tables.

A.1 Forgery Polynomial with Degree 231 for Attacking GCM

For d = 31, one obtains the following coefficients:

784 M.A. Abdelraheem et al.

Table 1. The table shows the coefficients of the forgery polynomial q(X) = pV (X) for
attacking GCM

i ei

1 5766136470989878973942162593394430677
2 88640585123887860771282360281650849369
3 228467699759147933517306066079059941262
4 60870920642211311860125058878376239967
5 69981393859668264373786090851403919597
6 255459844209463555435845538974500206397
7 263576500668765237830541241929740306586
8 37167015149451472008716003077656492621
9 58043277378748107723324135119415484405
10 321767455835401530567257366419614234023
11 45033888451450737621429712394846444657
12 258425985086309803122357832308421510564
13 105831989526232747717837668269825340779
14 267464360177071876386745024557199320756
15 280644372754658909872880662034708629284
16 105000326856250697615431403289357708609
17 45825818359460611542283225368908192857
18 82845961308169259876601267127459416989
19 44217989936194208472522353821220861115
20 69062943960552309089842983129403174217
21 268462019404836089359334939776220681511
22 30001648942113240212113555293749765514
23 669737854382487997736546203881056449
24 127958856468256956044189872000451203235
25 277162238678239965835219683143318848400
26 134662498954166373112542807113066342554
27 219278415175240762588240883266619436470
28 216197476010311230105259534730909158682
29 281783005767613667130380044536264251829
30 181483131639777656403198412151415404929
31 38384836687611426333051602240884584792
32 0

Table 2. The table shows the coefficients of the forgery polynomial q(X) = pV (X) for
attacking POET

i ei i ei
1 20526963135026773119771529419991247327 32 109604555581389038896555752982244394616
2 264546851691026540251722618719245777504 33 119482829110451460647031381779266776526
3 79279732305833474902893647967721594921 34 165259785861038013124994816644344468967
4 325712555585908542291537560181869632351 35 155444340258770748055544634836807134293
5 28114083879843420358932488547561249913 36 86982184438730045821274025831061961430
6 271147943451442547572675283203493325775 37 104870645496065737272877350967826010844
7 335255520823733252020392488407731432338 38 56281281579002318337037919356127105369
8 6718016882907633170860567569329895273 39 10006851898283792847187058774049983141
9 255889065981883867903019621991013125435 40 93687920075554812358890244898088345449
10 49457687721601463712640189217755474230 41 69832672900303432248401753658262533506
11 311579005442569730277030755228683616807 42 246360754285298743574294101515912517720
12 227984510405461964893924913268809066393 43 89567893601904271767461459448076404968
13 324660953045118328235538900161997992161 44 337681726780870315172220356080972321854
14 101370059745789285127519397790494215441 45 210317547004302372764274348440690947691
15 335840777837142047555650075244373419708 46 158574321133010145534802861165087620178
16 31458849980267201461747347071710907523 47 291559826228649927512447763293001897434
17 339477818976914242962960654286547702007 48 15635124331244231609760952717791457746
18 267056244491330957618685443721979120206 49 196562458398036090488379086660199368109
19 115274327651619347046091793992432007152 50 308779188958300135859037769338975723488
20 309606471838332610868454369483105904888 51 311961723579011854596575128443762996895
21 31472831963470543380493543496732929763 52 153505386496968503239745640447605550270
22 191332595597193424626322329032056378009 53 266880473479137548264080346617303001989
23 189553913431309255614514163550670075672 54 325361660912502344542873376867973189476
24 224617322052671248319257827067474740867 55 75648626101374794093175916332043285057
25 63041230306788032973111145533307051562 56 122904035765598179315104311504496672627
26 221576606272152354153350739375040337239 57 240654849065616783877381099532333510366
27 291799903540006289220245045188573741192 58 71774746460316463981542974558280671865
28 290489624437950764499707232619770186293 59 318833970371431372762935716012099244730
29 263754726506046639985479240660603777000 60 176351990917361872511208705771673004140
30 45160807436167307990689150792052670707 61 227372417807158122619428517134408021585
31 33630881905996630925237701622950425950 62 0

A.2 Forgery Polynomial with Degree 261 for Attacking POET

Similarly for d = 61 one obtains the following coefficients:
Let us denote the found polynomials by pd(X) (with d = 31 or d = 61). From

pd(X), we can obtain a family of 2128−d polynomials whose root sets partition

Twisted Polynomials and Forgery Attacks on GCM 785

F
128
2 . The polynomials have the form pd(X) + b, with b ∈ Wd := {pd(a) | a ∈

F
128
2 }. Since in the above examples Vd has basis {1, γ, . . . , γd−1} A basis of Wd

is given by {pd(γi) | d ≤ i ≤ 127}, making it straightforward to describe all
possibilities for b.

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness, March 2014. http://competitions.cr.yp.to/caesar.html

2. Abdelraheem, M.A., Beelen, P., Bogdanov, A., Tischhauser, E.: Twisted Polyno-
mials and Forgery Attacks on GCM. IACR ePrint Archive (2015)

3. Abed, F., Fluhrer, S., Foley, J., Forler, C., List, E., Lucks, S., McGrew, D., Wenzel,
J.: The POET Family of On-Line Authenticated Encryption Schemes. Submission
to the CAESAR competition, March 2014

4. Andreeva, E., Luykx, A., Mennink, B., Yasuda, K.: COBRA: a parallelizable
authenticated online cipher without block cipher inverse. In: Cid, C., Rechberger,
C. (eds.) Fast Software Encryption, FSE 2014. LNCS, p. 24. Springer (2014) (to
appear)

5. Bahack, L.: Julius: Secure Mode of Operation for Authenticated Encryption Based
on ECB and Finite Field Multiplications. Submission to the CAESAR competition,
March 2014. http://competitions.cr.yp.to/round1/juliusv10.pdf

6. Doworkin, M.: Recommendation for Block Cipher Modes of Operation: Galois/-
Counter Mode (GCM) and GMAC, November 2007. http://csrc.nist.gov/
publications/nistpubs/800-38D/SP-800-38D.pdf

7. Ferguson, N.: Authentication weaknesses in GCM. Comments submitted to NIST
Modes of Operation Process (2005)

8. Goss, D.: Basic structures of function field arithmetic. Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol.
35. Springer, Berlin (1996)

9. Guo, J., Jean, J., Peyrin, T., Lei, W.: Breaking POET Authentication with a Single
Query. Cryptology ePrint Archive, Report 2014/197 (2014) http://eprint.iacr.org/

10. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–
161. Springer, Heidelberg (2008)

11. Joux, A.: Authentication Failures in NIST version of GCM. Comments submitted
to NIST Modes of Operation Process (2006)

12. McGrew, D., Fluhrer, S., Lucks, S., Forler, C., Wenzel, J., Abed, F., List, E.:
Pipelineable on-line encryption. In: Cid, C., Rechberger, C. (eds.) Fast Software
Encryption, FSE 2014. LNCS, p. 24. Springer (2014) (to appear)

13. McGrew, D., Viega, J.: The galois/counter mode of operation (gcm). Submission
to NIST (2004). http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/
gcm-spec.pdf

14. Nandi, M.: Forging attacks on two authenticated encryptions cobra and poet. Cryp-
tology ePrint Archive, Report 2014/363 (2014). https://eprint.iacr.org/2014/363

15. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 287–304.
Springer, Heidelberg (2014)

16. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
mac schemes. Cryptology ePrint Archive, Report 2013/144 (2013). http://eprint.
iacr.org/

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round1/juliusv10.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://eprint.iacr.org/
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
https://eprint.iacr.org/2014/363
http://eprint.iacr.org/
http://eprint.iacr.org/

786 M.A. Abdelraheem et al.

17. OpenSSL Project. https://www.openssl.org/
18. OpenSSL Project. GCM Implementation: crypto/modes/gcm128.c. https://www.

openssl.org/source/ (latest release: April 7, 2014) (openssl-1.0.1g)
19. Rogaway, P.: Evaluation of some blockcipher modes of operation. Evaluation car-

ried out for the Cryptography Research and Evaluation Committees (CRYPTREC)
for the Government of Japan (2011)

20. Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs
and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 216–225.
Springer, Heidelberg (2012)

21. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences 22(3), 265–279 (1981)

https://www.openssl.org/
https://www.openssl.org/source/
https://www.openssl.org/source/

	Twisted Polynomials and Forgery Attacks on GCM
	1 Introduction
	2 Preliminaries
	3 Explicit Construction of Twisted Forgery Polynomials

	4 Disjoint Coverage of the key Space with Roots of Structured Polynomials
	4.1 Using the Multiplicative Structure
	4.2 Using the Additive Structure

	5 Improved key Recovery Algorithm
	5.1 An Explicit key Recovery Algorithm Using Twisted Polynomials
	5.2 Comparison to Previous Work

	6 Nonce-respecting Universal Forgeries for GCM
	6.1 More Details on GCM
	6.2 Universal Forgery Attacks on GCM

	7 Analysis of POET
	7.1 Description of POET
	7.2 Universal Weak-key Forgeries for POET
	7.3 Further Forgery Strategies

	8 Conclusion
	A Appendix: Forgery Polynomial Suggestions for GCM and POET
	A.1 Forgery Polynomial with Degree 231 for Attacking GCM
	A.2 Forgery Polynomial with Degree 261 for Attacking POET

	References

