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Abstract. In this paper, we show structural cryptanalyses against
two popular networks, i.e., the Feistel Network and the Substitute-
Permutation Network (SPN). Our cryptanalyses are distinguishing
attacks by an improved integral distinguisher. The integral distinguisher
is one of the most powerful attacks against block ciphers, and it is
usually constructed by evaluating the propagation characteristic of inte-
gral properties, e.g., the ALL or BALANCE property. However, the inte-
gral property does not derive useful distinguishers against block ciphers
with non-bijective functions and bit-oriented structures. Moreover, since
the integral property does not clearly exploit the algebraic degree of
block ciphers, it tends not to construct useful distinguishers against
block ciphers with low-degree functions. In this paper, we propose a
new property called the division property, which is the generalization
of the integral property. It can effectively construct the integral distin-
guisher even if the block cipher has non-bijective functions, bit-oriented
structures, and low-degree functions. From viewpoints of the attackable
number of rounds or chosen plaintexts, the division property can con-
struct better distinguishers than previous methods. Although our attack
is a generic attack, it can improve several integral distinguishers against
specific cryptographic primitives. For instance, it can reduce the required
number of chosen plaintexts for the 10-round distinguisher on KECCAK-
f from 21925 to 2515, For the Feistel cipher, it theoretically proves that
SIMON 32, 48, 64, 96, and 128 have 9-, 11-, 11-, 13-, and 13-round integral
distinguishers, respectively.

Keywords: Block cipher - Integral distinguisher - Feistel network -
Substitute-Permutation network - KECCAK - SIMON - AES-like cipher -
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1 Introduction

The structural evaluation of cryptographic networks is an important topic of
cryptology, and it helps a designer to design strong symmetric key primitives.
There are several structural evaluations against the Feistel Network and the
Substitute-Permutation Network (SPN) [6,19,22,26,28]. As one direction of the
structural evaluation, there are the security evaluation by “the generic attack,”
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Table 1. The number of required chosen plaintexts to construct r-round integral dis-
tinguishers on the SIMON family, Serpent, and KECCAK-f

Target log, (#texts) Method |Reference
r=6lr=7r=8|r=9|r=10r =11|r = 12|r =13
SIMON 32 | 17 | 25 29 31 - - - - our | Sect. 4.3
- - - - - - - - degree | [8,21]
SIMON 48 | 17 | 29 39 44 46 47 - - our | Sect. 4.3
17 - - - - - - - degree | [8,21]
SiMON 64 | 17 | 33 49 57 61 63 - - our | Sect. 4.3
17 - - - - - - - degree | [8,21]
SIMON 96 | 17 | 33 57 77 87 92 94 95 our | Sect. 4.3
17 | 33 - - - - - - degree | [8,21]
SIMON 128| 17 33 65 97 113 121 125 127 our | Sect. 4.3
17 | 33 - - - - - - degree | [8,21]
Target log, (#texts) Method |Reference
r=3r=4/r=5|r=6|r=7|r=8|r=9|r=10
Serpent 12 | 28 84 113 | 124 - - - our | Sect. 5.3
28 82 113 123 127 - - - degree [9]
Target log, (#texts) Method |Reference
r=8|r =9|r =10|r = 11|r = 12|r = 13|r = 14|r = 15
KEccak-f| 130 | 258 | 515 | 1025 | 1410 | 1538 | 1580 | 1595 our | Sect. 5.3
257 | 513 | 1025 | 1409 | 1537 | 1579 | 1593 | 1598 | degree 9]

which exploits only the feature of the network and does not exploit the particular
weaknesses of a specific cipher. It is applicable to large classes of block ciphers,
but it is not often effective than the dedicated attack against the specific cipher.
This paper focuses on generic attacks against both the Feistel Network and
the SPN. The existing generic attack shows that the Feistel Network whose F-
functions are chosen from random functions or permutations is vulnerable up
to 5 rounds [22,28]. Moreover, Biryukov and Shamir showed that the SPN is
vulnerable up to 2.5 rounds [6].

Our Contribution. This paper shows generic attacks against two networks
by improving an integral distinguisher. The integral attack was first proposed
by Daemen et al. to evaluate the security of SQUARE [13], and then it was
formalized by Knudsen and Wagner [23]. Nowadays, many integral distinguishers
have been proposed against specific ciphers [23,25,35-37], and they are often
constructed by evaluating the propagation characteristic of integral properties,
e.g., the ALL property or the BALANCE property. In this paper, we revisit
the integral property, and then introduce the division property by generalizing
the integral property. The division property can effectively construct integral
distinguishers even if block ciphers have non-bijective functions, bit-oriented
structures, and low-degree functions.
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The Feistel Network is a generic construction to create a (2¢)-bit pseudo-
random permutation from an ¢-bit pseudo-random function. We call the ¢-bit
function the F-function, and assume that an attacker can not know the specifi-
cation of the F-function. Our distinguishing attack can attack up to 3 rounds,
and it can attack up to 5 rounds if the F-function is limited to a permuta-
tion. Unfortunately, they are not improved compared with the previous ones.
However, assuming that the algebraic degree of the F-function is smaller than
the bit length of the F-function, our attack can attack more rounds than the
previous attacks exploiting the low-degree function. We summarize new integral
distinguishers in Appendix B. Although the assumption of our attack is only the
algebraic degree of the F-function, it can construct new integral distinguishers
on the SIMON family [5]. Since SIMON has a non-bijective F-function and a bit-
oriented structure, it is complicated task to construct the integral distinguisher.
The division property theoretically introduces that SIMON 32, 48, 64, 96, and 128
have at least 9-, 11-, 11-, 13-, and 13-round integral distinguishers, respectively.
Table 1 shows the comparison between our distinguishers and previous ones.

The SPN consists of an S-Layer and a P-Layer, where the S-Layer has m ¢-bit
bijective S-boxes and the P-Layer has an (¢m)-bit bijective linear function. The
attacker can not know the specifications of the S-boxes and the linear function. Sur-
prisingly, our generic attack becomes able to attack more rounds as the number of
S-boxes is larger than the bit length of the S-box. This fact implies that the design
of the P-Layer that can diffuse more outputs of S-boxes may not derive prospective
security improvements. We summarize new integral distinguishers in Appendix C.
Similar to the result against the Feistel Network, the division property is also useful
to construct integral distinguishers against specific cryptographic primitives. For
instance, we can reduce the required number of chosen plaintexts for the 7-round
distinguisher on Serpent [1] from 227 to 2124, Moreover, for the integral distin-
guisher on KECCAK-f [12], we can reduce the required number of chosen plain-
texts compared with previous ones constructed by Boura et al. [9]. Table 1 shows
the comparison between our distinguishers and previous ones.

Organization. This paper is organized as follows: In Sect. 2, we show notations,
Boolean functions, and the framework of integral distinguishers. In Sect. 3, we
propose the division property by generalizing the integral property, and show the
propagation characteristic. In Sect. 4 and Sect. 5, we show new distinguishing
attacks on the Feistel Network and the SPN, respectively. In Sect. 6, we show
that the division property is also useful to construct the dedicated attack against
specific ciphers. As an example, we show new distinguishing attacks on the AES-
like cipher. Section 7 concludes this paper.

2 Preliminaries

2.1 Notation

We make the distinction between addition of Fy and addition of Z, and we use
@ and + as addition of Fy and addition of Z, respectively. For any a € Fy, the
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i-th element is expressed in a[i] and the hamming weight w, is calculated as
we = > 1 ali]. Let 1" € F} be a value whose all elements are 1. Moreover, let
0™ € F3 be a value whose all elements are 0.

Subsets S} and S;’"". Let S} be a subset of F4 for any integer k € {0,1,...,n}.
The subset S} is a set of all a € Fy satisfying k < w,, and it is defined as

Spi={aeFy|k<w,}.

Let Sp™ be a subset of (F3)™ for any vector k € ({0,1,...,n})™. The subset
Sp™ is a set of all @ € (F%)™ satisfying k; < w,,, and it is defined as

S i={(a1,az,...,am) € (F5)™ | ky < wq, for 1 <i<m}.

Bit Product Functions 7, and m,. Let 7, : F} — Fy be a function for any
u € F4. Let « € FY be an input of 7, and 7, (z) is the AND of z[i] satisfying
u[i] = 1, namely, it is defined as

n

mu(x) == [ [ =li]"".

i=1

Let my : (F5)™ — Fg be a function for any u € (F3)™. Let « € (F5)™ be an
input of m,,, namely, m, (x) is calculated as

(@) := H T, (X))

2.2 Boolean Function

A Boolean function is a function from F} to Fo. Let deg(f) be the algebraic
degree of a Boolean function f. As representations of the Boolean function, we
use Algebraic Normal Form, which is defined as follows.

Algebraic Normal Form. Algebraic Normal Form (ANF) is a representation
of a Boolean function. Any f : F} — Fy can be represented as

160 = @ ot ([Tt = @ otmto),

u€Fy u€Fy

where af € T is a constant value depending on f and u. If deg(f) is at most d, all
af satisfying d < w,, are 0. An n-bit S-box can be regarded as the concatenation
of n Boolean functions. If algebraic degrees of n Boolean functions are at most
d, we say the algebraic degree of the S-box is at most d.
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Alc|cC|C Alc|c|C AlcC|C|C AlA|A|A B|B|B|B
C|A|C|C cic|cic Alc|c|cC AlA|A|A B|B|B|B
SB SR MC AK SB SR MC AK SB SR MC AK SB SR MC AK
C|C|A|C cicj|cic Alc|cC|C A|A|A|A B|B|B|B
C|C|C|A cicj|cic Alc|c|cC A|A|A]A B|B|B|B
2% sets 2% sets 2% sets 2% sets

Fig. 1. Integral distinguisher on 4-round AES

2.3 Integral Distinguisher

An integral distinguisher was first proposed by Daemen et al. to evaluate the
security of SQUARE [13], and then it was formalized by Knudsen and Wagner [23].
It uses a set of chosen plaintexts that contains all possible values for some bits and
has a constant value for the other bits. Corresponding ciphertexts are calculated
from plaintexts in the set by using an encryption oracle. If the XOR of the
corresponding ciphertexts always becomes 0, we say that this cipher has the
integral distinguisher.

Integral Property. Nowadays, many integral distinguishers have been pro-
posed against specific ciphers [23,25,35-37], and they are often constructed by
evaluating the propagation characteristic of the integral property. We define four
integral properties as follows:

— ALL (A) : Every value appears the same number in the multiset.

— BALANCE (B) : The XOR of all texts in the multiset is 0.

— CONSTANT (C) : The value is fixed to a constant for all texts in the multiset.
— UNKNOWN (Uf) : The multiset is indistinguishable from one of n-bit random

values.

Knudsen and Wagner showed that AES has the 4-round integral distinguisher
with 232 chosen plaintexts [23]. Figure 1 shows the integral distinguisher.

Unfortunately, the integral property does not derive effective distinguishers
if block ciphers consist of non-bijective functions, e.g., DES [31] and SIMON [5]
consist of non-bijection functions. Moreover, since the propagation characteristic
does not clearly exploit the algebraic degree of block ciphers, it tends not to
construct effective distinguishers against block ciphers with low-degree round
functions.

Degree Estimation. As another method to construct the integral distin-
guisher, there is a higher-order differential attack [21,24], which exploits the
algebraic degree of block ciphers. When the algebraic degree of a block cipher
is at most D, the cipher has the integral distinguisher with 2P*! chosen plain-
texts. Canteaut and Videau showed the bound of the degree of iterated round
functions [11]. Then, Boura et al. improved the bound [9], and showed integral
distinguishers on KeEccAK [12] and Luffa [10]. We show the bound in Appen-
dix A.
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3 Division Property

3.1 Introduction of Division Property

We propose a new property called the division property, which is the generaliza-
tion of the integral property. We consider one bijective S-box with degree d. If
an input multiset has A, the output multiset also has A. If an input multiset
has B, the output multiset has /. If we have the input multiset with 2¢*! cho-
sen texts, the output multiset has B because the degree of the S-box is d. The
integral property does not exploit this property. We now want to exploit useful
properties that are hidden between A and B. Therefore, we redefine A and B by
the same notation, and then introduce the division property by generalizing the
redefinition.

Redefinition of Integral Property. Let X be a multiset whose elements
take an m-bit value. We first consider features of the multiset X satisfying .A.
If we choose one bit from n bits and calculate the XOR of the chosen bit in
the multiset, the calculated value is always 0. Moreover, if we choose at most
(n — 1) bits from n bits and calculate the XOR of the AND of chosen bits in
the multiset, the calculated value is also always 0. However, if we choose all bits
from n bits and calculate the XOR of the AND of n bits in the multiset, the
calculated value becomes unknown®. Above features are expressed by using the
bit product function ,, which is defined in Sect. 2.1, as follows. We evaluate
the parity of m,(x) for all z € X, namely, evaluate @, x mu(z). The parity is
always even for any wu satisfying w, < n. On the other hand, the parity becomes
unknown for u = 1™.

We next consider features of the multiset X satisfying B. If we choose one
bit from n bits and calculate the XOR of the chosen bit in the multiset, the
calculated value is always 0. However, if we choose at least two bits from n bits
and calculate the XOR of the AND of chosen bits in the multiset, the calculated
value becomes unknown. Above features are expressed by using the bit product
function 7, as follows. We evaluate the parity of 7, (x) for all € X. The parity is
always even for any u satisfying w, < 2. On the other hand, the parity becomes
unknown for any u satisfying w, > 2.

3.2 Definition of Division Property

Section 3.1 redefines both the ALL and BALANCE properties by the same
notation. Since the redefinition can be parameterized by the number of product
bits w, of the bit product function 7,, we generalize the integral property as
follows.

L If all values appear the same even number in the multiset, the calculated value is
always 0. If all values appear the same odd number in the multiset, the calculated
value is always 1. Thus, we cannot guarantee whether the calculated value is 0 or
not when we consider the multiset satisfying .A. In this case, we say the calculated
value becomes unknown.
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Definition 1 (Division Property). Let X be a multiset whose elements take
a value of Iy, and k takes a value between 0 and n. When the multiset X has
the division property Dy, it fulfils the following conditions: The parity of m,(x)
for all x € X is always even if w, is less than k. Moreover, the parity becomes
unknown if w, is greater than or equal to k.

When the multiset X has Dy, it satisfies
P ru(x) =0, for all u € (F3 \ Sp),
zeX

where S7 is a subset defined in Sect. 2.1. The parity of m,(x) for all z € X
becomes unknown for any u € S. Namely, in the division property, the set of
u is divided into the subset that @, x 7. (x) becomes unknown and the subset
that @, cx mu(z) becomes 0.

Example 1. Let X be a multiset whose elements take a value of 5. As an exam-
ple, we prepare the input multiset X as

X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, OXE}.

A following table calculates the summation of m,(z).

0x0 | 0x3 | 0x3 | 0x3 | 0x5 | 0x6 | 0x8 | 0xB | 0xD | OxE || > m,(x)

0000[0011]0011[0011[0101[0110{1000[1011[1101[1110[| (B 7u(z))
uw=0000] 1 1 1 1 1 1 1 1 1 1 10 (0)
uw=0001| ©O 1 1 1 1 0 0 1 1 0 6 (0)
u=0010|| © 1 1 1 0 1 0 1 0 1 6 (0)
u=0011( © 1 1 1 0 0 0 1 0 0 4 (0)
uw=0100]] © 0 0 0 1 1 0 0 1 1 4 (0)
uw=0101|| © 0 0 0 1 0 0 0 1 0 2 (0)
u=0110]] © 0 0 0 0 1 0 0 0 1 2 (0)
uw=0111[] ©0 0 0 0 0 0 0 0 0 0 0 (0)
uw=1000|| © 0 0 0 0 0 1 1 1 1 4 (0)
u=1001|] 0 0 0 0 0 0 0 1 1 0 2 (0)
uw=1010]] ©0 0 0 0 0 0 0 1 0 1 2 (0)
uw=1011|| © 0 0 0 0 0 0 1 0 0 1 (1)
u=1100]] © 0 0 0 0 0 0 0 1 1 2 (0)
uw=1101]] ©0 0 0 0 0 0 0 0 1 0 1 (D
uw=1110|| © 0 0 0 0 0 0 0 0 1 1 (D)
u=1111[| 0 0 0 0 0 0 0 0 0 0 0 (0)

For all u satisfying w, < 3, @,cx mu(x) becomes 0. Therefore, the multiset has
the division property Dj.

Each definition of B and U is essentially the same as that of Dy and D7,
respectively. However, the definition of A is different from that of D}'. The mul-
tiset satisfying A always has the division property D]’ but not vice versa. For
instance, the multiset satisfying the EVEN property, which is defined that the
number of occurrences is even for all values [30], does not always have A, but it
always has D]. In this paper, we use only D} instead of A because it is sufficient
to use D! from the viewpoint of the construction of integral distinguishers.
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Propagation Characteristic of Division Property Let s be an S-box whose
degree is d. Let X be an input multiset whose elements take a value of F5. Let
Y be an output multiset whose elements are calculated from s(z) for all z € X.
We assume that X has Dj}, and want to evaluate the division property of Y. In
the division property, the set of u is divided into the subset that @,y mu(x)
becomes unknown and the subset that €, x mu(x) becomes 0. Therefore, we
divide the set of v into the subset that €, ,)cy mv(s(z)) becomes unknown and
the subset that @, ,)cy mv(s(x)) becomes 0. Since the parity of 7, (s(x)) for all
s(z) € Y is equal to that of (1, 0s)(x) for all z € X, we evaluate @, x (m,05)(z).

Proposition 1 (Propagation Characteristic of Division Property). Let
s be an function (S-box) from n bits to n bits, and the degree is d. Assuming
that an input multiset X has the division property Dy, the output multiset Y has
DFET In addition, assuming that the S-box is a permutation, the output multiset

d
Y has D;; when the input multiset has Dj;.

Proof. We represent P, x (7, o s)(x) by using ANF as

@(m os)(x) = @ @ alvm,(x)

zeX zeX \u€eFy
= @ amos <@ ﬂ'u(x)> @ @ aros (@ﬂ'u(x)> _
u€eSy zeX u€ (F3\S}) reX

Since the multiset X has D}, @, x mu(z) is always 0 for any v € (F3 \ S}}).
Therefore, it satisfies

Dm0 5)w) = € a (@m(l‘)> |

zeX ueSy zeX

If aj»°* is 0 for all u € S}, @, 4 (7 0 5)(x) always becomes 0. In other words,
if there exists u € S} such that a;v°* is 1, @, 4 (7 © 5)(x) becomes unknown.
Since the function m, is the AND of w, bits and the degree of S-box is d, the
degree of the Boolean function (7, o s) has the following properties:

— The degree of (m, o s) is at most min{n — 1, w, x d}.
— If the S-box is a permutation, the degree of (m, o s) is at most n — 1 for
Wy < M.

We first assume that the multiset X has Dj!. In this case, we consider only u
satisfying w,, > k. When w, xd < k holds, a]»°® is always 0. Thus, the necessary
condition that a]*°® becomes 1 is w, x d > k, and it is w, > [g] Namely, the
necessary condition that @, x(m, o s)(x) becomes unknown is w, > f%], and
Y has DF% 1 We next assume that the multiset X has D) and the S-box is a
permutation. In this case, we consider only u = 1. When w, < n holds, a2°*
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Dy,

Dry

X—[s|]>Y

Set of u

@nknowra

@Ven parity)

Fig. 2. Propagation characteristic of division property

is always 0 because the degree of the Boolean function (7, o s) is at most n — 1.
Thus, the necessary condition that a7:°® becomes 1 is v = 1. Namely, the
necessary condition that @, x(m, o s)(x) becomes unknown is v = 1", and Y

has D;.

Example 2. Let us consider a following 4-bit S-box.

O

x || 0x0

0x1

0x2 | 0x3 | 0x4

0x5

0x6

0x7|0x8 | 0x9

OxA

0xB

0xC | 0xD

OxE | OXF

s(z) || 0x8

0xC

0x0 | 0xB | 0x9

0xD

OxE

0x5 | 0xA | 0x1

0x2

0x6

0x4 | OxF

0x3|0x7

The S-box is bijective and the algebraic degree is 2. We now prepare the input
multiset X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, OxE}, which is the same
as Example 1 and the division property is D3. The output multiset is calculated
as Y := {0x8, 0xB, 0xB, 0xB, 0xD, OxE, OxA, 0x6, 0xF, 0x3}, and a following table
calculates the summation of ,(y).

0x8 | 0xB | 0xB | 0xB | 0xD | OxE | OxA | 0x6 | OxF | 0x3 || > m,(y)

1000(1011]1011{1011[1101|1110[1010[0110| 1111|0011 || (P 7 (y))
v=0000| 1 1 1 1 1 1 1 1 1 1 10 (0)
v=0001|| ©O 1 1 1 1 0 0 0 1 1 6 (0)
v =0010|| © 1 1 1 0 1 1 1 1 1 8 (0)
v=0011|| © 1 1 1 0 0 0 0 1 1 5 (1)
v=0100|| © 0 0 0 1 1 0 1 1 0 4 (0)
v=0101]] © 0 0 0 1 0 0 0 1 0 2 (0)
v=0110|| © 0 0 0 0 1 0 1 1 0 3 (1)
v=0111|| © 0 0 0 0 0 0 0 1 0 1 (1)
v=1000]] 1 1 1 1 1 1 1 0 1 0 8 (0)
v=1001|| O 1 1 1 1 0 0 0 1 0 5 (1)
v=1010|| © 1 1 1 0 1 1 0 1 0 6 (0)
v=1011[] © 1 1 1 0 0 0 0 1 0 4 (0)
v=1100]] © 0 0 0 1 1 0 0 1 0 3 (1)
v=1101|| © 0 0 0 1 0 0 0 1 0 2 (0)
v=1110]] © 0 0 0 0 1 0 0 1 0 2 (0)
v=1111[] © 0 0 0 0 0 0 0 1 0 1 (D

For all v satisfying w, < 2, EBer 7y (y) becomes 0. Therefore, the multiset Y

has the division property Dj.

Figure 2 shows the outline of the propagation characteristic of the division
property. Let X and Y be input and output multisets, respectively. First, the
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size of the set of u that @,y 7.(z) becomes unknown is small. However, the
size of the set of u that €, x mu(s(x)) becomes unknown expands. If the size
expands to the universal set except for 0, we regard that the output multiset
is indistinguishable from the multiset of random texts.

3.3 Vectorial Division Property

Section 3.2 only shows the division property for one S-box. However, since prac-
tical ciphers use several S-boxes in every round, we can not construct integral
distinguishers by only using Proposition 1. Therefore, we vectorize the division
property.

Let an S-Layer be any function that consists of m n-bit S-boxes with degree d
in parallel. We now consider the propagation characteristic of the division prop-
erty against the S-Layer. Let X be the input multiset of the S-Layer, and x € X
takes a value of (F%)™. The vectorization is the natural extension of the divi-
sion property. Namely, the set of u is divided into the subset that @, x mu ()
becomes unknown and the subset that € x mu () becomes 0, where u is an
m-dimensional vector whose elements take a value of Fy. Figure 3 shows the
difference between the division property and the vectorial one.

Definition 2 (Vectorial Division Property). Let X be the multiset whose
elements take a value of (F3)™, and k is an m-dimensional vector whose ele-
ments take a value between 0 and n. When the multiset X has the division prop-
erty D™, the multiset fulfils the following conditions: The parity of my(x) for
all x € X is always even if u does NOT belong to Si'™. Moreover, the parity
becomes unknown if w belongs to Sp™.

Propagation Characteristic of Vectorial Division Property. Assume
that the input multiset of the S-Layer has the division property D,"™. The
output of the S-Layer is calculated as S(x) = (s1(x1), s2(z2), ..., Sm(xm)) for
(71,22,...,2m) € X. We now consider the set of v that @ x 7 (S(x)) becomes
unknown and the set of v that @y 7, (S(x)) becomes 0. Since the output of
each S-box is calculated independently, the propagation characteristic of the
division property can also be evaluated independently. Namely, the output mul-
tiset has D™, where k] = [k;/d] holds. Moreover, if the S-box is bijective and
k; = n holds, k; = n holds.

3.4 Collective Division Property

By vectorizing of the division property, we can evaluate the multiset whose ele-
ments take a value of (F3)™. However, it is still insufficient to use only vectorial
division property. For simplicity, we consider a multiset X whose elements take
a value of (F§)2. Assume that the number of elements in X is 256, and two ele-
ments of  take all values from 0 to 255 independently. We consider the set of u
that the parity of m,,(z) for all € X becomes unknown and the set of u that
the parity becomes 0.
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division property n (u ¢ SD)
D} D)
unknown

wex (u € Sy)

A

. n n,m
vectorizal # + + D rula) = 0 (uw g S,™)
n,m uw - n,m
Dy H m|  wex unknown (u € Sp"™)

1 n
collective # + ¢ ( ¢ Sn(;r; U S’H(;I)L U SZ(Z)L)
unknown

DZ(T)L k2, k(D) S S S @ Tu (il)' Sn m Sn m Sn m
L [>2 m|  zex (u € S USiay U o)

Fig. 3. Division property, vectorial division property, and collective division property

]

PR

— The parity becomes unknown if u belongs to 8[8 e

The parity becomes unknown if u belongs to 8?028]

— The parity becomes unknown if « belongs to s¥2

[, 1]
— Otherwise, i.e., u does NOT belong to s%2 U sH2
always even.

US*?  the parity is

8,0] [0,8] [1,1]

We can not express this property by using the vectorial division property. There-
fore, we collect several vectorial division properties. Figure 3 shows the difference
between the vectorial division property and the collective division property.

Definition 3 (Collective Division Property). Let X be the multiset whose
elements take a value of (F3)™, and k) (j = 1,2,...,q) are m-dimensional
vectors whose elements take a value between 0 and n. When the multiset X has
the division property ka k) k(@) the multiset fulfils the following conditions:
The parity of my(x) for al x € X is always even if u does NOT belong to the
union Sy 1y US, 5 U- - US”EZ; Moreover, the parity becomes unknown if u belongs

to the union Sk(?; USgiay U US-

It is obvious that the collective division property with ¢ = 1 is the same as the
vectorial division property.

Propagation Characteristic of Collective Division Property. Assume
that the input multiset of the S-Layer has the division property Dk(l) NONTOE
We now consider the set of v that @y 7, (S(x)) becomes unknown, and the set
is derived from only the set of u that @y 7w (2) becomes unknown. Therefore,

we can evaluate the propagation characteristic of ka for all j independently.
e o where k7 = [k /d] holds.
Moreover, if the S-box is bijective and ki = n holds, k:;('” = n holds.

Namely, the output multiset has D}
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4 Improved Integral Distinguishers on Feistel Network

4.1 Feistel Network

(¢, d)-Feistel. The Feistel Network is one of the most popular network to design
block ciphers. When n-bit block ciphers are constructed by the Feistel Network,
the input of the round function is expressed in two (n/2)-bit values. Moreover,
an (n/2)-bit non-linear function F' is used in the round function, and we call
this function the F-function. Let (wi,ws) be the input of the round function,
and the output is calculated as (z1,22) = (F(w1) ® we, w1). We now define an
(¢, d)-Feistel, whose F-function is an ¢-bit non-linear function with degree d (this
function is not limited to a permutation). Figure 4 shows the round function of
the Feistel Network. There are many block ciphers adopting (¢, d)-Feistel, e.g.
DES [31], Camellia [3], and SIMON 2n [5] adopt (32,5)-, (64,7)-, and (n,2)-
Feistel, respectively.

4.2 Propagation Characteristic for Feistel Network

This section shows that the division property is useful to construct integral
distinguishers on (¢, d)-Feistel. Since the Feistel Network has “copy,” “substitu-
tion,” and “compression,” we need to propagate the division property against
them. The “copy” creates the input of the F-function, and the “substitution”
processes the input by the F-function, and finally the “compression” creates the
left half of the output by XOR. Figure 5 shows the outline of the propagation
characteristic.

-1- Copy. Let W be an input set, and (w1, ws) € W denotes the input value.
The round function first creates (x1,xs,x3), where x1 = wy, T2 = wy, and
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x3 = wo hold. Here, z; is the input of the F-function, x5 is the right half
of the output of the round function, and z3 is the right half of the input of
the round function. Let X be the output set whose elements take (z1, z2, z3)

for all (w1, ws) € W. Assume that the input set W has the division property

Diﬁ) K g 1f we use my, satisfying ky) < up and kéj) < ug, the parity of

7o (w) for all w € W becomes unknown. Since z; is equal to 2, the parity of
my(x) for all & € X becomes unknown if we use 7, satisfying k%j) — k' <y,
k' < vy, and k) < v for all & (0 < k' < k). Therefore, the set X has the
0,3

[0k kST, (1,65 =1,k [0 E,0,6E0 ], [R(7,0,k50)

-2- Substitution. The F-function is an ¢-bit function with degree d. Assume

that the input set has the division property Diﬁhk(?),...,k(q)' From the

propagation characteristic of the division property, the output set has

Doty gocer . s Where (B9 k57 kED) = ([B7 /d], k5, k§”) holds. Tf the

division property D

F-function is limited to a permutation, kll(j ) becomes ¢ when kgj ) = ¢ holds.

-3- Compression. Let Y be the input set, and (y1,y2,¥3) € Y denotes the
input value, where y; denotes the output of the F-function. Let y; be XORed
with y3, and then the internal state is expressed in (21, 22) = (y1Dys, y2). Let
Z be the set whose elements take (21, z2) for all (y1,y2,y3) € Y. To evaluate
the division property of the set Z, we calculate the parity of m, (21, 22) for
all (21,20) € Z as

@ 771;(21722) = @ (7T7J1 (Zl) X Ty, (22))

(21,22)€Z (z1,22)€Z

= @ (0, (Y1 B Y3) X Ty (Y2))

(y1,y2,y3)€Y

= P | B ) x moree(ys)  mu (42)

(y1,92,y3)€Y \cXv1

= @ @ Wc(y1> X Ty, (yQ) X 7T111@C(y3) 5

czv1 \ (y1,¥2,¥3)€EY

where the set of ¢ chosen from ¢ < v1 denotes the set of ¢ satisfying cAv; = c.

Assuming that the input set Y has the division property Di’(gl) k(@ g(o the
output set Z has the division property fom w2 (e Where (k'l(j), k;(j)) =

(K9 + £ kY)Y holds. Notice that the parity of my (21, z) for all (21, 23) € Z
becomes 0 if k:gj) + k‘éﬂ) is more than /.

4.3 Path Search Algorithm for (¢, d)-Feistel

This section shows the path search algorithm for integral distinguishers against
(¢, d)-Feistel. The algorithm is based on the propagation characteristic shown
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Algorithm 1. Path search algorithm for integral distinguishers on (¢, d)-Feistel

1: procedure FeistelFuncEval((,d, k1, k2)
2 qg<=0

3 for X =0 to k1 do

4 L <k +[X/d]

5 if L </ then

6: g<=q+1

7: kD <= (L, k1 — X)

8 end if

9 end for

0 return k... k@

1

: end procedure

12: procedure IntegralPathSearch(/,d,r = 0, k1, k2)
13: S NN CO FeistelFuncEval({,d, k1, k2)

14: D < max{k{" + k" EP + k2R 4 kY
15: while 1 < D do

16: r<r+1

17: for i =1 to g do

18: EGD k) = FeistelFuncEval(/,d, k%w, kgz))

19: end for

20: (kW k® .. k) < SizeReduce(k™V, k(12 klarad)
21: D < max{k® + &P £ + £ KO 4 kl0y

22: qg<=q

23: end while

24 return r

25: end procedure

in Sect. 4.2. Assume that k; bits of the left half of the input are active and
the rest (¢ — k1) bits are constant. Moreover, assume that ko bits of the right
half of the input are active and the rest (¢ — kg) bits are constant. Namely, we
prepare 2F11F2 chosen plaintexts. The input set has the division property D[Z,i’ ks
Algorithm 1 shows the path search algorithm to create the integral distinguisher
on (¢, d)-Feistel. Algorithm 1 does not limit the F-function to be a permutation.
If the F-function is limited to be a permutation, L becomes ks + £ when X =/
holds (see the 4-th line in Algorithm 1). Algorithm 1 calls SizeReduce, which

eliminates k(7 if there exists (', j') satisfying Si’(%?j) C Sié'v-i’)'

Results. Table 2 shows the number of required chosen plaintexts to construct
r-round integral distinguishers on (32, 5)- and (64, 7)-Feistel, where DES [31] is
classified into (32, 5)-Feistel with non-bijective function and Camellia [3] is clas-
sified into (64, 7)-Feistel with bijective function. When we construct the integral
distinguisher on (¢, d)-Feistel with 2P chosen plaintexts, we use (k1, k2) satisfying
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Table 2. The number of chosen plaintexts to construct r-round integral distinguishers
on (32,5)- and (64, 7)-Feistel. Our distinguishers are got by implementing Algorithm 1.

Target F-function log, (#texts) Method|Reference
[Application] r=4lr=5lr=6r=7[r=8r=9
(32, 5)-Feistel[non-bijection| 26 | 51 | 62 - - - our | Sect. 4.3
[DES] 26 - - - - - | degree | [8,21]
(64, 7)-Feistel| bijection 50 | 98 | 124 | - - - our | Sect. 4.3
[Camellia] 50 - - - - - | degree | [8,21]
64 - - - - - |integral| [23]

Table 3. The number of chosen plaintexts to construct r-round integral distinguishers
on the SIMON family, where the F-function is not bijective. Our distinguishers are got
by implementing Algorithm 1.

Target log, (#texts) Method|Reference
[Application] [r = 6|r = 7|r = 8|r = 9|r = 10|r = 11|r = 12|r = 13
(16,2)-Feistel| 17 | 25 | 29 | 31 - - - - our | Sect. 4.3
[SIMON 32] - - - - - - - - degree | [8,21]
(24,2)-Feistel| 17 | 29 | 39 | 44 46 47 - - our | Sect. 4.3
[SiMON 48] | 17 - - - - - - - degree | [8,21]
(32,2)-Feistel| 17 | 33 | 49 | 57 61 63 - - our | Sect. 4.3
[SIMON 64] | 17 - - - - - - - degree | [8,21]
(48,2)-Feistel| 17 | 33 57 | 7T 87 92 94 95 our | Sect. 4.3
[SiMON 96] | 17 | 33 - - - - - - degree | [8,21]
(64, 2)-Feistel| 17 | 33 65 97 113 121 125 127 our | Sect. 4.3
[SiMON 128] | 17 | 33 - - - - - - degree | [8,21]

D—1(0) forf <D,
(klka) = ( )
(0,D) for D < .

For the comparison with our integral distinguishers, we consider two previ-
ous methods, one is the propagation characteristic of the integral property and
another is the estimation of the algebraic degree. We first consider the propaga-
tion characteristic of the integral property. If the F-function is a non-bijective
function, the propagation characteristic does not construct sufficient distinguish-
ers. Therefore, results introduced by the integral property are only shown when
the F-function is bijective. We next consider the estimation of the algebraic
degree. Unfortunately, since we do not know the improved bound against the
Feistel Network, we use the trivial bound for the Feistel Network. Assume that
the left half of the plaintext is constant. For any r-round (¢, d)-Feistel, it can be
observed that the function, which associates the right half of the ciphertext with
the right half of the plaintext, has degree at most d"~2 for 2 < r. Therefore, we
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can construct the r-round integral distinguishers with 24" *+1 chosen plaintexts.
Since the right half of the plaintext is at most ¢ bits, the distinguisher can be
constructed with 24" °+1 < 2¢,

As a result, as far as we try, all distinguishers constructed by the division
property are “better” than those by previous methods. We summarize integral
distinguishers on other (¢, d)-Feistel in Appendix B. We already know a “bet-
ter” integral distinguisher on Camellia in [36], but it is constructed by using the
specific feature of Camellia. On the other hand, our method is generic distin-
guishing attacks against (¢, d)-Feistel. From the result of (64, 7)-Feistel, it shows
that even if the F-function of Camellia is chosen from any functions with degree
7, the modified Camellia has the 6-round integral distinguisher.

Integral Distinguishers on Simon Family. Although our attack is a generic
attack, it can create new integral distinguishers on the SIMON family [5]. SIMON
is a lightweight block ciphers proposed by the National Security Agency. Since
SIMON has a non-bijective F-function and a bit-oriented structure, it is compli-
cated task to construct the integral distinguisher. The division property theo-
retically shows that SIMON 32, 48, 64, 96, and 128 have at least 9-, 11-, 11-, 13-,
and 13-round integral distinguishers, respectively. Table 3 shows the comparison
between our distinguishers and previous ones by the degree estimation. On the
other hand, Wang et al. showed that SIMON 32 has the 15-round integral dis-
tinguisher by experiments [33]. Therefore, there are 6-round differences between
our theoretical result and Wang’s experimental result. Our distinguisher is valid
against all (32, 2)-Feistel and it does not exploit the feature of the round function.
Namely, we expect that the 6-round difference is derived from the specification
of the round function of SIMON 32.

5 Improved Integral Distinguishers on Substitute-
Permutation Network

5.1 Substitute-Permutation Network

(¢,d, m)-SPN. The Substitute-Permutation Network (SPN) is another impor-
tant structure for block ciphers. The SPN has a round function that consists of
an S-Layer and a P-Layer, and a block cipher is designed by iterating the round
function. We now define an (¢,d, m)-SPN, whose round function has m ¢-bit
S-boxes in the S-Layer and one (¢m)-bit linear function in the P-Layer. Here,
each S-box is any bijective function whose degree is at most d, and an (¢m)-
bit linear function is any bijective function whose degree is at most 1. Figure 6
shows the round function of the SPN. Nowadays, many block ciphers adopting
(¢,d, m)-SPN have been proposed, e.g. AES [32], PRESENT [7], and Serpent [1]
adopt (8,7,16)-, (4,3,16)-, and (4, 3, 32)-SPN, respectively. Moreover, KECCAK-
f [12], which is a permutation in the hash function KECCAK, can be regarded
as (5,2, 320)-SPN.
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5.2 Propagation Characteristic for SPN

This section shows that the division property is useful to construct integral dis-
tinguishers on (¢, d, m)-SPN. We first prepare the set of the input of the S-Layer
such that k; bits of the input of the i-th S-box are active and the rest (£—k;) bits
are constant. In this case, the input set has the division property Di’m. We first
evaluate the propagation characteristic against the S-Layer. Next, the P-Layer
is applied but the input and output take a value of F5™. Therefore, we need to
convert the division property Di’m into Dﬁm, and then evaluate the propaga-
tion characteristic against the P-Layer. Since the S-Layer is applied again after
the P-Layer, we convert the division property Di’” into Dé(lmxk(%,m,k(q)' After
the second round, we evaluate the propagation characteristic of this collective
division property.

- S-Layer. Assume that the input set of the S-Layer has the division property
Di’m. Since the S-Layer consists of m ¢-bit S-boxes with degree d, the output
set of the S-Layer has Dy/™. Here, if k; < £ holds, k} is calculated as k] =
[ki/d]. If k; = € holds, ki is calculated as k] = /.

- Concatenation (Conversion form S-Layer to P-Layer). The output
of the S-Layer is expressed in a value of (F4)™, but the input of the P-
Layer is expressed in a value of F§™. Let X be the output set of the S-Layer
whose elements take a value of (F5)™. Let Y be the input set of the P-
Layer whose elements take a value of F5™. The transformation is generally
implemented by a simple bit concatenation, namely, y = (z1|z2|| - ||zm)
where (x1,29,...,%,) and y are values of X and Y, respectively. We now
consider the conversion of the division property from Di’m to Di’,”. The
parity of m,(y) for all y € Y becomes unknown if and only if we choose v
satisfying w, > >_." | k;. Therefore, the input set of the P-Layer has the
division property Dy, where k' = Y"1 | k; holds.

- P-Layer. The P-Layer consists of an (¢m)-bit linear function. Since the degree
of the linear function is at most 1, there is no change in the division property.

- Partition (Conversion form P-Layer to S-Layer). The output of the P-
Layer is expressed in a value of F5™, but the input of the S-Layer is expressed
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in a value of (F5)™. Let X be the output set of the P-Layer whose elements
take a value of F§™. Let Y be the input set of the S-Layer whose elements
take a value of (F)™. The transformation is generally implemented by a sim-
ple bit partition, namely, (y1([yzll - [|ym) = @ where z and (y1,92,...,Ym)
are values of X and Y, respectively. We now consider the conversion of the
division property from D™ to D[,;’/m. When the output set of the P-Layer has
D™ | the sufficient condition that the parity of m, () for all x € X becomes
unknown is k£ < w,. Therefore the input set of the S-Layer has the collec-

tive division property Dk/(n R ) where ¢ denotes the number of all

possible vectors satisfying kl(]) + k;(j) ot kD =k (1 <j<q). After the
second round, we evaluate the propagation characteristic of the collective
division property.

,,,,,

We can construct the integral distinguisher by evaluating the propagation char-
acteristic of the collective division property. However, since the size of ¢ extremely
expands, it is infeasible to execute the straightforward implementation. There-
fore, we show more efficient technique. Let X be the input set of the S-Layer, and
the elements take a value of (F5)™. Assume that the input set has the division

property Dku) O R@ that is created by the partition of the division property

D™ If k > (£—1)m holds, at least (m —¢m+k) elements of k/) have to become
£. In this case, the rest elements have to become ¢ — 1. Since the S-Layer derives
V*TW and ¢ from (¢ — 1) and ¢, respectively, the output set has the division
property D, where k’ is calculated as

Here, if £ < (¢—1)m holds, we simply regard the round function of (¢, d, m)-SPN
as one (¢m)-bit S-box with degree d.

‘ <\

] (m — k) + £(m — tm + k) for k> (£ —1)m,
| for k < (£ —1)m.

ISWES

5.3 Path Search Algorithm for (¢,d, m)-SPN

We now consider integral distinguishers on (¢, d, m)-SPN. We first prepare the set
of chosen plaintexts such that k; bits of the input of the ¢-th S-box are active and
the rest (£—k;) bits are constant. Namely, we prepare 222721 ki chosen plaintexts.
The input set has the division property Di’m. Algorithm 2 shows the path search
algorithm to construct the integral distinguisher.

Results. Table 4 shows the number of required chosen plaintexts to construct

the r-round integral distinguisher on (4,3,16)- and (8,7,16)-SPN, where

PRESENT [7] and AES [32] are classified into (4,3,16)- and (8,7,16)-SPN,

respectively. When we construct the integral distinguisher on (¢, d, m)-SPN with
D chosen plaintexts, we use a vector k satisfying
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Algorithm 2. Path search algorithm for integral distinguishers on (¢, d, m)-SPN

1: procedure IntegralPathSearch(f,d,m,r = 0,ki,ka,...,kn)

2: if k; < ¢ then k; < [k;/d] > 1-st round S-Layer
3: end if

4: B ki > 1-st round Concatenation and P-Layer
5: while 1 < k£ do

6: r<r+1

7 if £ < (¢ —1)m then k < [k/d] > (r 4 1)-th round
8: else k < [51] (bm — k) + €(m — tm + k) > (r + 1)-th round
9: end if

10: end while

11: return r

12: end procedure

Table 4. The number of chosen plaintexts to construct r-round integral distinguishers
on (¢,d,m)-SPN. Our distinguishers are got by implementing Algorithm 2.

Target log, (#texts) Method |Reference
r=3r=4/r=5|r=6{r="7
(4,3,16)-SPN| 12 | 28 | 52 | 60 - our | Sect. 5.3
[PRESENT] | 28 | 52 | 60 | 63 - | degree [9]
(8,7,16)-SPN| 56 | 120 | - - - our | Sect. 5.3
[AES] 117 | 127 | - - - | degree 9]

Table 5. The number of chosen plaintexts to construct r-round integral distinguishers
on KECCAK-f and Serpent. Our distinguishers are got by implementing Algorithm 2.

Target log, (#texts) Method |Reference
[Application] |r =3[r=4|r=5|r=6|r=7[r=8[r=9|r =10
(4,3,32)-SPN | 12 28 84 113 124 - - - our | Sect. 5.3
[Serpent] 28 | 82 | 113 | 123 | 127 - - - degree 9]
Target log, (#texts) Method |Reference
[Application] |r = 8[r = 9|r = 10[r = 11|r = 12|r = 13|r = 14|r = 15
(5,2,320)-SPN| 130 | 258 | 515 | 1025 | 1410 | 1538 | 1580 | 1595 our | Sect. 5.3
[KECCAK-f] | 257 | 513 | 1025 | 1409 | 1537 | 1579 | 1593 | 1598 | degree 9]

for il < D,
—(@—=1)¢ for (i—1)¢ <D <il,
for D < (i — 1)¢.

&
[
o g~

For the comparison with our integral distinguishers, we first consider the
propagation characteristic of the integral property. However, it does not con-
struct a sufficient distinguisher because the P-Layer is any linear function. Next,
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we estimate the algebraic degree by using the method proposed by Boura et al.
We show the method in Appendix A.

As a result, as far as we try, all distinguishers constructed by the division
property are “better” than those by previous methods. We summarize inte-
gral distinguishers on other (¢,d, m)-SPN in Appendix C. We already know the
7-round integral distinguisher on PRESENT in [34] and the 4-round integral
distinguisher on AES in [23]. However, they are constructed by using the spe-
cific feature of each block cipher. On the other hand, our method is generic
distinguishing attacks against (¢,d, m)-SPN. From the result of (4, 3,16)-SPN,
it shows that even if the P-Layer of PRESENT is chosen from any bijective
linear functions, the modified PRESENT has the 6-round integral distinguisher.
Similarly, from the result of (8,7,16)-SPN;, it shows that even if the P-Layer of
AES is chosen from any bijective linear function, the modified AES still has the
4-round integral distinguisher.

Integral Distinguishers on Serpent and Keccak-f Although our attack
is a generic attack, it can create new integral distinguishers on Serpent and
KECCAK-f. Serpent is one of AES finalists and is classified into (4, 3, 32)-SPN.
The existing integral distinguisher is shown in [37], and it shows that Serpent has
3.5-round integral distinguisher. On the other hand, we show that all (4, 3, 32)-
SPNs have at least 7-round integral distinguishers with 2'24 chosen plaintexts.
Table 5 shows the comparison between our distinguishers and previous ones by
the degree estimation.

KEccAK is chosen as SHA-3, and the core function KECCAK-f is classified
into (5,2,320)-SPN. Boura et al. estimated the algebraic degree of KECCAK-f
in [9]. We search for the integral distinguisher by using Algorithm 2. As a result,
our distinguishers can reduce the number of chosen plaintexts compared with
previous ones. Table 5 shows the comparison between our distinguishers and
previous ones.

6 Toward Dedicated Attack

We introduced the division property in Sect. 3, and proposed distinguishing
attacks against the Feistel Network and the SPN in Sect. 4 and Sect. 5, respec-
tively. In this section, we show that the division property is also useful to con-
struct the dedicated attack against specific ciphers. As an example, we show
integral distinguishers on AES-like ciphers.

6.1 AES-Like Cipher

(¢,d, m)-AES. AES is a 128-bit block cipher, and an intermediate text of AES
is expressed in a 4 x 4 matrix whose elements are 8 bits. The round function of
AES consists of SubBytes, ShiftRows, MixColumns, and AddRoundKey, where
each function is defined as follows:
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Algorithm 3. Evaluating algorithm against the round function of (¢, d, m)-AES

1: procedure AesFuncEval({,d, m, K)

2: for r =1tom do

3: for c=1 tom do

4: if krc < £ then k. < [kr/d] > SubBytes
5: end if

6: end for

7 end for

8: K <« ShiftRows(K) > ShiftRows
9: ke <> k. forall ¢ > MixColumns
10: k' < sort(k’)

11: return k’

12: end procedure

— SubBytes (SB) : It substitutes each byte in the matrix into another byte by
an S-box.

— ShiftRows (SR) : Each byte of the i-th row is rotated ¢ — 1 bytes to the left.

MixColumns (MC) : It diffuses bytes within each column by a linear function.

— AddRoundKey (AK) : A round key is XORed with the intermediate text.

We define an (¢, d, m)-AES, where ¢, d, and m denote the bit length of an S-box,
the algebraic degree of an S-box, and the size of the matrix, respectively. This
intermediate text is expressed in an m X m matrix whose elements are ¢ bits.
Let X € (F5)™*™ be an input of the round function, which is arranged as

T1,1 T1,2 *° Tim
T21 T22 **° T2m
Tm,1 Tm,2 " Tm,m

Let Y € (F)™*™ be an output of the round function, which is calculated as
Y = (AK o MC o SR o SB)(X). Each function is the same as that of AES
except for the scale. For instance, AES [32] and LED [18] adopt (8, 7,4)-AES and
(4,3, 4)-AES, respectively. Moreover, Pasq of PHOTON [17] adopts (4, 3,8)-AES?.

6.2 Path Search Algorithm for (¢,d, m)-AES

Section 5 shows how to construct integral distinguishers on (¢, d, m)-SPN, but
practical block ciphers have a specific P-Layer. For instance, the P-Layer in
AES consists of ShiftRows and MixColumns, and it is not any linear function.
Taking into account the structure of the P-Layer, we can construct more effective
algorithm. In this section, as an example, we show a path search algorithm to
construct integral distinguishers on (¢,d, m)-AES. Algorithm 3 evaluates the
propagation characteristic of the division property against the round function

2 Since PHOTON is a hash function, it uses AddConstant instead of AddRoundKey.
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Algorithm 4. Path search algorithm for integral distinguishers on (¢, d, m)-AES
1: procedure IntegralPathSearch({,d,m,r =0,K € {0,1,...,£}"*™)

2: AS AesFuncEval(¢,d,m, K) > 1-st round
32 DeYm kY
4: qg<=1
5: while 1 < D do
6: r<r+1
T for i =1 to g do
8: KU  K®® < Partition(k")
9: for j =1tosdo
10: E<1), ceey Y < AesFuncEval (¢, d,m, K 7)) > (r + 1)-th round
11: if (4,7) = (1,1) then
12: AR UC R SizeReduce(l_c<1), e I_c(t))
13: else
14: EO k) = SizeReduce(k'W), ..., [ 2COR E<1), e E(t))
15: qd<=q"
16: end if
17: end for
18: end for
19: kW < k'™ forall 1 <i<g
20: qg<dq
21: D <min{>X"™ k& Sm kP k)
22: end while
23: return r

24: end procedure

of AES-like ciphers, and it calls ShiftRows and sort. ShiftRows performs a
similar transformation to SR. sort is the sorting algorithm, which is useful for
feasible implementation. Algorithm 4 shows the path search algorithm, and it
calls Partition, AesFuncEval, and SizeReduce. Partition(k(*)) calculates all
possible K(9) satisfying

m
(Z killj ) 5’1727)7" Zkr #3) ,k'g),...,k'gfl)),

r=1 r=1

where 0 < k') < ¢ holds. SizeReduce eliminates k(i) if there exists (¢, ;')
satisfying SZ” ]’? C SZ"/T/)

Notice that the size of ¢ in the division property extremely expands when the
partition of the division property is executed (see the 8-th line in Algorithm 4).
Namely, our algorithm takes large execution time and large memory capacity
if we straightforwardly implement our algorithm. Therefore, we use an effective
method, which uses the feature of (¢, d, m)-AES, for the feasible implementation.
Notice that each column of (¢, d, m)-AES is equivalent each other. Assuming that
the input set has Di";c,m that k' is a permutation of elements of k, the division
property of the next round calculated from k is exactly the same as that from k'
because columns of (¢, d, m)-AES are equivalent each other. Namely, it is enough
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Table 6. The number of chosen plaintexts to construct r-round integral distinguish-
ers on (4,3, m)-AES. Our distinguishers are got by implementing Algorithm 2 and
Algorithm 4.

Target log, (#texts) Method |Reference
[Application] |r =3|r =4|r =5|r=6[r =T|r =38
(4,3,4)-AES 4 12 | 32 | 52 - - |our (AES)| Sect. 6.2
[LED] 12 | 28 | 52 | 60 | - | - |our (SPN)| Sect. 5.3
28 | 52 | 60 | 63 - - degree [9]
4 16 - - - - integral | [13,23]
(4,3,5)-AES | 4 | 12 | 20 | 72 | 97 | - |our (AES)| Sect. 6.2
[Pioo in PHOTON]| 12 | 28 | 76 | 92 - - |our (SPN)| Sect. 5.3
28 | 76 | 92 | 98 - - degree [9]
4 20 - - - - integral | [13,23]
(4,3,6)-AES 4 12 24 84 | 132 - |our (AES)| Sect. 6.2
[P144 in PHOTON]| 12 28 84 | 124 | 140 - |our (SPN)| Sect. 5.3
98 | 82 | 124 | 138 | 142 | - | degree 9]
I [ 24 | - | - [ - | - [ integral | [13,23]
(4,3,7)-AES 4 12 24 84 | 164 | 192 |our (AES)| Sect. 6.2
[Pi9s in PHOTON]| 12 | 28 | 84 | 160 | 184 | 192 |our (SPN)| Sect. 5.3
28 82 | 158 | 184 | 192 | 195 degree [9]
4 28 - - - - integral | [13,23]
(4,3,8)-AES | 4 | 12 | 28 | 92 | 204 | 249 |our (AES)| Sect. 6.2
[P256 in PHOTON]| 12 28 84 | 200 | 237 | 252 |our (SPN)| Sect. 5.3
28 | 82 | 198 | 237 | 250 | 254 | degree [9]
4 32 - - - - integral | [13,23]

to save either, and we implement it by a sorting algorithm (see the 10-th line in
Algorithm 3). This technique enables us to execute our path search algorithm
feasibly in many parameters.

Results. Table 6 shows the number of required chosen plaintexts to construct
r-round integral distinguishers on (4,3, m)-AES. When we construct the integral
distinguisher on (£, d, m)-AES with 2 chosen plaintexts, we carefully choose the
input matrix K.

For the comparison with our improved integral distinguishers, we also show
integral distinguishers by using the propagation characteristic of the integral
property. We also estimate the algebraic degree by the method proposed Boura et
al. (see Appendix A). Moreover, since (4,3, m)-AES are classified into (4, 3, m?)-
SPN, we construct integral distinguishers by Algorithm 2.

As a result, as far as we try, all distinguishers constructed by the division
property are at least better than those by previous methods. Especially, the
advantage of our method is large when we construct the integral distinguisher
with the small number of texts. For instance, our method shows that (4,3, 8)-
AES, which is adopted by Pssg in PHOTON, has the 6-round distinguisher with
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292 chosen plaintexts. If we regard (4,3,8)-AES as (4, 3,64)-SPN, 22%° chosen
plaintexts are required to construct the distinguisher.

7 Conclusions

In this paper, we proposed the fundamental technique to improve integral dis-
tinguishers, and showed structural cryptanalyses against the Feistel Network and
the SPN. Our new technique uses the division property, which is the
generalization of the integral property. It can effectively construct integral dis-
tinguishers even if block ciphers have non-bijective functions, bit-oriented struc-
tures, and low-degree functions. For the Feistel Network, when the algebraic
degree of the F-function is smaller than the bit length of the F-function, our
method can attack more rounds than previous generic attacks. Moreover, we
theoretically showed that SIMON 48, 64, 96, and 128 have 11-, 11-, 13-, and 13-
round integral distinguishers, respectively. For the SPN, our method extremely
reduces the required number of chosen plaintexts compared with previous meth-
ods. Moreover, we improved integral distinguishers on KECCAK-f and Serpent.
The division property is useful to construct integral distinguishers against spe-
cific ciphers. As one example, we showed a path search algorithm to construct
integral distinguishers on the AES-like cipher, which is the sub class of the
SPN. From this fact, we expect that the division property can construct many
improved integral distinguishers against specific ciphers by constructing the ded-
icated path search algorithm.

A Estimation of Algebraic Degree for (¢,d, m)-SPN

If the degree of r iterated round functions is at most D, we can construct the -
round integral distinguisher with 2°%! chosen plaintexts. In a classical method,
if the degree of the round function is at most d, the degree of r iterated round
functions is bounded by d”". In 2011, Boura et al. showed tighter bound as follows.

Theorem 1 ([9]). Let S be a function from Fy into FY corresponding to the
concatenation of m smaller S-boxes, defined over F3°. Let & be the mazimal
degree of the product of any k bits of anyone of these S-boxes. Then, for any

function G from Fy into Fa, we have

deg(GoS)<n— %7
Y
where
ng — )

v = max .
1<i<no—1 ng — 0;

By using this bound, we can estimate the degree of (¢, d, m)-SPN. For instance,
we show the degree of (4, 3,64)-SPN as follows.
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Number of rounds 1 2 3 4 5 6 7 8 9
Bound on degree 3 9 27 81 197 236 249 253 255

Therefore, we can construct the 8-round integral distinguisher on (4, 3, 64)-SPN

with 22°4 chosen plaintexts.

B

Table 7 shows integral distinguishers on (¢, d)-Feistel, where (¢,d)-Feistel is
defined in Sect. 4.1. If we construct the dedicated path search algorithm for

Table 7. The number of required chosen plaintexts to construct r-round integral dis-

Integral Distinguishers on (£, d)-Feistel

tinguishers on (¢, d)-Feistel. We get these values by implementing Algorithm 1.

Target | F-function log, (#texts) Examples
r=6r="7r=8r=9|r=10\r = 11|r = 12|r = 13|r = 14
(16,2) |non-bijection| 17 | 25 | 29 | 31 - - - - SIMON 32 [5]
bijection 16 23 28 30 31 - - - -
(24,2) |non-bijection| 17 | 29 | 39 | 44 46 47 - - - SIMON 48 [5]
bijection 17 | 27 | 38 | 43 46 47 - - -
(32,2) [non-bijection| 17 | 33 | 49 | 57 | 61 | 63 | - - ~ | SimoN 64 [5]
bijection 17 | 32 | 47 | 56 60 62 63 - -
(48,2) |non-bijection| 17 33 57 7 87 92 94 95 - SIMON 96 [5]
bijection 17 | 33 | 55 | 76 86 91 94 95 -
(64, 2) [non-bijection| 17 33 65 97 113 121 125 127 - |SimMoON 128 [5]
bijection 17 33 64 | 95 112 120 124 126 127
Target | F-function log, (#texts) Examples
r=3r=4/r=5\r=6|r=7|r=8|r=9|r=10r =11
(32,5) |non-bijection| 6 26 | 51 | 62 - - - - DES [31]
bijection 6 26 | 46 | 61 - - - - -
(48,5) |non-bijection| 6 26 | 64 | 90 95 - - - -
bijection 6 26 59 | 89 95 - - - -
(64,5) [non-bijection| 6 26 | 77 | 118 | 126 - - - -
bijection 6 26 72 | 117 | 126 - - - -
Target | F-function log, (#texts) Examples
r=3r=4/r=5\r=6/r=7|r=8|r=9|r=10r =11
(32,7) |non-bijection| 8 35 | 60 - - - - - -
bijection 8 32 59 - - - - - -
(48,7) |non-bijection| 8 49 | 90 - - - - - -
bijection 8 48 84 | 95 - - - - -
(64,7) |non-bijection| 8 50 | 104 | 125 - - - - -
bijection 8 | 50 | 98 | 124 - - - - - Camellia [3]
Target | F-function log, (#texts) Examples
r=3r=4/r=5|r=6/r=7|r=8|r=9|r=10r =11
(32,31) |non-bijection| 32 | 62 - - - - -
bijection 32 32 | 63 - - - - - -
(48,47) |non-bijection| 48 | 94 - - - - - - -
bijection 48 | 48 | 95 - - - - - -
(64, 63) |lnon-bijection| 64 | 126 | - - - - - - -
bijection 64 64 | 127 - - - - - -
(32, 32) |non-bijection| 33 - - - - - - - -
(48, 48) |non-bijection| 49 - - - - - - - -
(64, 64) |lnon-bijection| 65 - - - - - - - -
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the specific cipher, we expect that the algorithm can create better integral dis-
tinguishers.

C Integral Distinguishers on (¢,d, m)-SPN

Table 8 shows integral distinguishers on (¢,d, m)-SPN, where (¢,d, m)-SPN is
defined in Sect. 5.1. If we construct the dedicated path search algorithm for the
specific cipher, we expect that the algorithm can create better integral distin-

guishers.

Table 8. The number of required chosen plaintexts to construct r-round integral dis-
tinguishers on (¢, d, m)-SPN. We get these values by implementing Algorithm 2.

Target | Size log, (#texts) Examples
(bits)|r =4|r=5|r=6|r=7|r=8|r=9[r=10
(4,3,16)| 64 | 28 | 52 | 60 | - - - PRESENT [7], LED [18]
(4,3,24)| 96 | 28 | 76 | 89 | - - - -
(4,3,32) | 128 | 28 | 84 | 113 | 124 | - N - Serpent [1], NOEKEON [14]
(4,3,40) | 160 | 28 84 136 152 - - -
(4,3,48) | 192 | 28 | 84 | 156 | 180 | 188 | - -
(4,3,56) | 224 | 28 84 177 209 220 - -
(4,3,64) | 256 | 28 | 84 | 200 | 237 | 252 | - ~ [Prost-128 [20], Minalpher-P [29]
(4,3,128)| 512 | 28 84 244 424 484 504 509 Prost-256 [20]
Target | Size log, (#texts) Examples
(bits)[r =5{r=6|r=7|r=8|r=9|r=10r =11
(5,2,40) | 200 | 18 | 35 | 65 | 130 | 178 | 195 | - PRIMATE-80 [2]
(5,2,56) | 280 | 18 35 65 130 | 230 | 265 275 PRIMATE-120 [2]
(5,2,64) | 320 | 18 35 65 130 | 258 | 300 | 315 ASCON Permutation [16]
Target | Size log, (#texts) Examples
(bits){r = 9|r = 10[r = 11|r = 12|r = 13|r = 14|r = 15
(5,2,160)| 800 | 258 | 515 705 770 790 798 - KECCAK-£[800] [12]
(5,2,256)| 1280 | 258 | 515 | 1025 | 1195 | 1253 | 1271 | 1278
(5,2,320)| 1600 | 258 | 515 | 1025 | 1410 | 1538 | 1580 | 1595 KECCAK-f[1600] [12]
Target | Size log, (#texts) Examples
(bits)[r =3|r=4|r=5|r=6|r=T|r=8[r=9
(5,4,40) | 200 | 20 65 170 195 - - -
(5,4,56) | 280 | 20 65 230 270 - - -
(5,4,64) | 320 | 20 65 260 305 - - -
(5,4,160)| 800 | 20 65 260 | 665 770 795 -
(5,4,256) 1280 | 20 65 260 | 1025 | 1220 | 1265 - ICEPOLE Permutation [27]
(5,4,320)[ 1600 | 20 65 260 | 1025 | 1460 | 1565 | 1595
Target | Size log, (#texts) Examples
(bits)[r =3|r=4|r=5|r=6|r=7T[r=8[r=9
(8,7,16) | 128 | 56 120 - - - - - AES [32]
(8,7,24) | 192 | 56 176 - - - - - Rijndael-192 [15
(8,7,32) | 256 | 56 232 - - - - - Rijndael-256 [15
(8,7,64) | 512 | 56 | 344 | 488 - - - - WHIRLPOOL primitive [4]
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