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Abstract. Given k independent pseudorandom permutations f1, . . . , fk

over {0, 1}n, it is natural to define a pseudorandom function by XORing
the permutations: f1 ⊕ . . . ⊕ fk. In [9] Stefan Lucks studied the security
of this PRF. In this paper we improve the security bounds of [9] by using
different proof techniques.
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1 Introduction

Much research dealt with constructing cryptographic operations from other
ones: Levin [6] got “pseudorandom bit generators” from “one-way functions”,
then Goldreich, Goldwasser and Micali [4] constructed pseudorandom functions
(PRFs) from “pseudorandom bit generators”. In [1], Aiello and Venkatesan stud-
ied how to construct PRFs from smaller PRFs. Luby and Rackoff [7] dealt with
the problem of getting pseudorandom permutations (PRPs) from PRFs; fur-
ther work about their construction can be found in [8,11]. Our article focuses
on the reverse problem of converting PRPs into PRFs named “Luby-Rackoff
backwards” which was first considered in [3]. This problem is obvious if we are
interested in an asymptotical polynomial versus non polynomial security model
(since a PRP is then a PRF), but not if we are interested in achieving more
optimal and concrete security bounds. More precisely, the loss of security when
regarding a PRP as a PRF comes from the “birthday attack” which can dis-
tinguish a random permutation from a random function of n bits to n bits in
2

n
2 operations and 2

n
2 queries. Therefore different ways to build PRF from PRP

with a security above 2
n
2 and by performing very few computations have been

suggested (see [2,3,5,9]). One of the simplest way is to XOR k independent
pseudorandom permutations with k ≥ 2. In [9] (Theorem 2, p.474) Stefan Lucks
proved, with a simple proof, that the XOR of k independant PRPs gives a PRF
with security at least in O

(
2

k
k+1 n

)
. In [2,12] difficult analyses of k = 2 are

given, with proofs that the security is good when the number of queries is lower
than O (

2n

n2/3

)
or O (2n). For k ≥ 3 there is a significant gap between the proven

security of [9] and the best attacks of [13].
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In this paper we reduce this gap by improving the proven security for the
XOR of k permutations, k ≥ 3. Constructions with k ≥ 3 instead of k = 2
are interesting for various reasons. First, our proofs are much simpler than the
proofs of [2,12]. Second, in many cryptographic applications the size n of the
blocks cannot be chosen by the designer of the algorithm since it is imposed by
the application. Then it is interesting to have another parameter to decrease the
proven advantage of any adversary to a value as small as wanted with a simple
construction. Our proof technique is based on the “coefficient H technique” of
Patarin (cf [14]). However we only use the first steps (and not all the refine-
ments) in order to keep very simple proofs with still better security results than
previously known; we could achieve tighter bounds by using the full technique,
but it would require more computations (such as [15]).

Related Problems. In [10] the security of the XOR of two public permutations
are studied (i.e. indifferentiability instead of indistinguishability).

Organisation of the Paper. Section. 2 presents the notations and basic def-
initions that are used in this paper. In Sects. 3 and 4, two security bounds are
shown with different techniques (respectively the “Hσ coefficient” technique and
the “H coefficient” technique). Then both these results are compared to the one
from [9] in the last section.

2 Preliminaries

We denote In the set of n−bits strings and Jq
n the subset of Iq

n of values (xi)1≤i≤q

satisfying xi �= xj ,∀i �= j. We denote Fn the set of functions from In to In and
Bn the set of permutations of In. The notation x ∈R E stands for “x is chosen
randomly with a uniform distribution in E”.

An adversary A trying to distinguish between f1 ⊕ . . . ⊕ fk, where fi ∈R Bn

for each i ∈ {1, . . . , k}, from a random function F ∈R Fn is considered to have
access to an oracle Q. This oracle either simulates F or f1 ⊕ . . . ⊕ fk. A chooses
inputs x ∈ {0, 1}n; then Q responds Q(x) ∈ {0, 1}n. After at most q queries,
A outputs A(Q) ∈ {0, 1}. A(Q) is then seen as a random variable over {0, 1}.
This is an adaptative chosen plaintext attack (cpa). To measure the pseudo-
randomness of the XOR of k permutations one must evaluate the advantage
Advcpa

A,f1⊕...⊕fk
of an adversary A which is defined as

Advcpa
A,f1⊕...⊕fk

= |Pr[A(f1 ⊕ . . . ⊕ fk) = 1] − Pr[A(F ) = 1]|.
We write Advcpa

f1⊕...⊕fk
for the maximal advantage any adversary can get when

trying to distinguish the XOR of k random permutations from a random function.

3 Security Bound from the Hσ Technique

3.1 Linking the Advantage to a Combinatorial Problem

Let k ≥ 2. We use Theorem 3 from [14]:
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Theorem 1. Let α, β ∈ R
+ and q ∈ N \ {0}. Let E be a subset of Iq

n such that
|E| ≥ (1−β)2nq. Suppose that, for each sequence (ai)1≤i≤q, (bi)1≤i≤q ∈ Jq

n, with
(bi)1≤i≤q ∈ E:

H(a, b) ≥ (1 − α)
|Bn|k
2nq

,

with H(a, b) the number of (f1, . . . , fk) ∈ Bk
n such that:

∀i, 1 ≤ i ≤ q, (f1 ⊕ . . . ⊕ fk)(ai) = bi.

Then:

Advcpa
f1⊕...⊕fk

≤ α + β.

For every b ∈ Jq
n, let hq(b) be the number of sequences x1, x2, . . . , xk−1 ∈ Jq

n

such that x1 ⊕ . . . ⊕ xk−1 ⊕ b ∈ Jq
n then

Lemma 1. For all a, b ∈ Jq
n:

H(a, b) = hq(b)
|Bn|k(

2n × · · · × (2n − q + 1)
)k

.

Proof. The number H(a, b) can be seen as the sum, over the sequences x1, x2, . . . ,
xk−1 ∈ Jq

n such that x1 ⊕ . . . ⊕ xk−1 ⊕ b ∈ Jq
n, of the number of f1, . . . , fk ∈ Bn

satisfying the equations fj(ai) = xj
i for all j ≤ k−1, i ≤ q and fk(ai) = x1

i ⊕. . .⊕
xk−1

i ⊕ bi,∀i ≤ q. Then, for each choices of x1, . . . , xk−1, each fj is a uniformly

random permutation fixed on q points so H(a, b) = hq(b)
(

|Bn|
2n×···×(2n−q+1)

)k

,
which also shows that H(a, b) does not depend of a. �	

We now see hq as a random variable over b ∈R Iq
n. The security of the XOR

of k permutations is closely related to the variance and the expectancy of this
random variable:

Lemma 2. The advantage satisfies:

Advcpa
f1⊕...⊕fk

≤ 2

(
V [hq]
E [hq]

2

)1/3

. (1)

Proof. For all a, we define H(a) the random variable over b equal to H(a, b).
The Bienayme-Chebyshev’s inequality yields:

∀ε > 0,Pr [|H(a) − E [H(a)]| ≤ ε] ≥ 1 − V [H(a)]
ε2

.

Taking ε = αE [H(a)]:

∀α > 0,Pr [|H(a) − E [H(a)]| ≤ αE [H(a)]] ≥ 1 − V [H(a)]
α2E [H(a)]2

.
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Then

∀α > 0,Pr [H(a) ≥ (1 − α)E [H(a)]] ≥ 1 − V [H(a)]
α2E [H(a)]2

.

Thus, defining E = {(bi)1≤i≤q|H(a, b) ≥ (1 − α)E [H(a)]}, Theorem 1 yields:

∀α > 0,Advcpa
f1⊕...⊕fk

≤ α +
V [H(a)]

α2E [H(a)]2
.

Then, with α =
(

V[H(a)]

E[H(a)]2

)1/3

:

Advcpa
f1⊕...⊕fk

≤ 2

(
V [H(a)]
E [H(a)]2

)1/3

= 2

(
V [hq]
E [hq]

2

)1/3

.

�	
Lemma 3. The mean of hq satisfies:

E [hq] =

[
2n(2n − 1) . . . (2n − q + 1)

]k

2nq
.

Proof. This result generalizes a theorem found in [12]. We define δx, with x =
(x1, . . . , xk−1) ∈ (Jq

n)k−1, a random variable over b such that δx = 1 if x1, . . . ,
xk−1, b ⊕ x1 ⊕ · · · ⊕ xk−1 ∈ Jq

n and δx = 0 otherwise. It’s clear that hq =∑
x∈(Jq

n)k−1

δx, then

E [hq] =
∑

x∈(Jq
n)k−1

E [δx]

=
∑

x∈(Jq
n)k−1

Pr
[
the bi ⊕ x1

i ⊕ . . . ⊕ xk−1
i are pairwise distinct

]

=
∑

x∈(Jq
n)k−1

2n(2n − 1) . . . (2n − q + 1)
2nq

= |Jq
n|k−1 × 2n(2n − 1) . . . (2n − q + 1)

2nq

=

[
2n(2n − 1) . . . (2n − q + 1)

]k

2nq
.

�	
We now focus on the variance of hq.

3.2 Study of V [hq]

Wedenoteλq thenumber of sequences g1, . . . , g2k ∈ Jq
n such that g1 ⊕ · · · ⊕ g2k = 0.

These conditions will be referred to as the λq conditions. This is 2k sequences of q
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pairwise distinct elements and q equations so, we could expect λq to be close to

Uq :=
(2n(2n − 1)(2n − q + 1))2k

22nq
.

We see in the next lemma that the problem of knowing how close λq is from Uq

is at the core of the computation of the advantage.

Lemma 4. The advantage satisfies:

Advcpa
f1⊕...⊕fk

≤ 2
(

λq

Uq
− 1

)1/3

.

Proof. We know that hq =
∑

x δx with the sum being over x ∈ (Jq
n)k−1, so the

linearity of the expected value operator yields:

V [hq] = E

⎡
⎣

(∑
x

δx − E [hq]

)2
⎤
⎦

= E

⎡
⎣

(∑
x

δx

)2

− 2

(∑
x

δx

)
E [hq] + E [hq]

2

⎤
⎦

= E

[(∑
x

δx

) (∑
x′

δx′

)]
− 2E

[∑
x

δx

]
E [hq] + E [hq]

2

= E

⎡
⎣∑

x,x′
δxδx′

⎤
⎦ − E [hq]

2
,

the sum being over x, x′ ∈ (Jq
n)k−1. Then:

E

⎡
⎣∑

x,x′
δxδx′

⎤
⎦ =

1
2nq

∑
b,x,x′

δx(b)δx′(b).

We know that δx(b)δx′(b), with x, x′ ∈ (Jq
n)k−1, equals 1 if and only if b⊕x1⊕· · ·⊕

xk−1 ∈ Jq
n and b⊕x′1⊕· · ·⊕x′k−1 ∈ Jq

n. If we change variables like this: gi := xi

and gi+k−1 := x′i for all 1 ≤ i ≤ k − 1 and g2k−1 := b ⊕ x1 ⊕ · · · ⊕ xk−1, g2k :=
b ⊕ x′1 ⊕ · · · ⊕ x′k−1, we see that

∑
b,x,x′ δx(b)δx′(b) is equal to λq. Then:

V [hq] =
λq

2nq
− E [hq]

2

=
λq − Uq

2nq
since E [hq]

2 =
Uq

2nq
.
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Moreover, using Lemma 2:

Advcpa
f1⊕...⊕fk

≤ 2

(
V [hq]
E [hq]

2

)1/3

≤ 2
(

λq − Uq

Uq

)1/3

≤ 2
(

λq

Uq
− 1

)1/3

.

�	
The strategy we follow is to evaluate recursively, more and more accurately,

the coefficients λα for 1 ≤ α ≤ q.

3.3 First Evaluation of λα

By definition, λα+1 is the number of tuples g1, . . . , g2k ∈ Jα+1
n such that:

1. the λα conditions hold,
2. for all 1 ≤ j ≤ 2k, gj

α+1 �∈ {gj
i , 1 ≤ i ≤ α},

3. g1α+1 ⊕ · · · ⊕ g2k
α+1 = 0. (Eα+1)

Hence there are 2kα equations that should not be verified. For 1 ≤ i ≤ 2kα,
we denote βi the i-th such equation. Let Bi be the set of tuples (g1, . . . , g2k)
which satisfy the λα conditions, the equation (Eα+1) and the equation βi, for
1 ≤ i ≤ 2kα. Then:

λα+1 = 2(2k−1)nλα −
∣∣∣∣∣
2kα⋃
i=1

Bi

∣∣∣∣∣ .

Using the inclusion-exclusion principle:

λα+1 = 2(2k−1)nλα +
2kα∑
l=1

(−1)l
∑

i1<...<il

|Bi1 ∩ . . . ∩ Bil
|.

When more than 2k + 1 equations βi are considered, at least two of them use
the same variable, for example g1α+1 = g11 and g1α+1 = g12 , which is impossible
according to the λα conditions. Thus:

λα+1 = 2(2k−1)nλα +
2k∑
l=1

(−1)l
∑

i1<...<il

|Bi1 ∩ . . . ∩ Bil
|. (2)

Now, we study every kind of intersection.
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• 1 equation:

The βi equation fixes the value of one new variable, whereas the others are
free, so:

|Bi| = 2(2k−2)nλα

and there exists 2kα such sets.

• l equations (2 ≤ l ≤ 2k − 1):

Such an intersection is non-empty if every equation βi uses a different new vari-
able. In this case, l new variables are fixed and the others remain free. Thus,

|Bi1 ∩ . . . ∩ Bil
| = 2(2k−1−l)nλα

and there are
(

2k
�

)
αk such non-empty intersections.

• 2k equations:

Like before, such a set is non-empty if every equation βi uses a different new
variable. In this case, the set Bi1 ∩ . . . ∩ Bi2k

is composed of tuples such that
g1α+1 = g1i1 , . . . , g

2k
α+1 = g2k

i2k
and the equation (Eα+1) implies that:

g1i1 ⊕ · · · ⊕ g2k
i2k

= 0.

We denote X this equation and λ′
α(X) the size of |Bi1 ∩ . . . ∩ Bi2k

|. There are
3 possible cases:

– If the 2k indexes in X are equal then X is always true. There are α possibilities
and λ′

α(X) = λα.
– If 2k − 1 indexes are equal and the last is different, then λ′

α(X) = 0 since X
is in contradiction with λα. There are 2kα(α − 1) possibilities.

– We denote S the set of equations X that are not of the previous types. We
denote λ′

α = maxS λ′
α(X).

Hence, thanks to (2), one has:

λα+1 = 2(2k−1)nλα − 2kαλα +
2k−1∑
�=2

(
2k
�

)
(−1)lαl2(2k−1−�)nλα +

∑
X

λ′
α(X)

=

(
22kn − 2kα2n +

2k−1∑
�=2

(
2k
�

)
(−1)lαl2(2k−�)n

)
λα

2n
+ αλα +

∑
X∈S

λ′
α(X)

≤
(
(2n − α)2k − α2k + 2nα

)
λα

2n
+

(
α2k − α − 2kα(α − 1)

)
λ′

α

We denote εα = 2nλ′
α

λα
− 1, so:

2nλα+1

λα
≤ (2n − α)2k − α2k + 2nα +

2nλ′
α

λα
× (α2k − α − 2kα(α − 1))

≤ (2n − α)2k + 2nα − α − 2kα(α − 1) + εα × (α2k − α − 2kα(α − 1))
≤ (2n − α)2k − 2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))
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3.4 Relation Between the Advantage and εα

Lemma 5. For every m ≥ 1, the advantage satisfies:

Adv
cpa
f1⊕...⊕fk

≤ 2

⎛
⎝

m−1∏
α=1

(
1 +

−2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))

(2n − α)2k

)
− 1

⎞
⎠

1/3

.

Proof. We know that
2nUα+1

Uα
= (2n − α)2k,

and the result of the previous section yields:

λα+1

Uα+1
≤ λα

Uα

(
(2n − α)2k − 2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))

(2n − α)2k

)

≤ λα

Uα

(
1 +

−2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))

(2n − α)2k

)

Since U1 = λ1 = 2(2k−1)n:

λm

Um
≤

m−1∏
α=1

(
1 +

−2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))
(2n − α)2k

)

And Lemma 4 ends the proof. �	

3.5 First Approximation of εα

Before evaluating εα, we need a technical lemma:

Lemma 6. For every α ∈ {2, . . . , m}, one has:

1 − 2kα

2n
≤ λα

2(2k−1)nλα−1
≤ 1. (3)

Proof. We consider g1, . . . , g2k ∈ Jα
n satisfying the conditions λα−1. To satisfy

the conditions λα, there are (2n − (α − 1)) possibilities for each g1α, . . . , g2k−2
α

and there are 2(α − 1) non-equalities left: g2k−1
α �= g2k−1

i and g2k
α �= g2k

i for all
i ≤ α − 1. Since g2k

α = g1α ⊕ · · · ⊕ g2k−1
α , one sees these 2(α − 1) non-equalities as

equations on g2k−1
α . So, there are between 2n −2(α−1) and 2n − (α−1) possible

choices for g2k−1
α and 1 choice for g2k

α . Then:

λα−1(2n − (α − 1))2k−2(2n − 2(α − 1)) ≤ λα ≤ λα−1(2n − (α − 1))2k−1

which is equivalent to:
(

1 − α − 1
2n

)2k−2 (
1 − 2(α − 1)

2n

)
≤ λα

2(2k−1)nλα−1
≤

(
1 − α − 1

2n

)2k−1

.

Since the left term is bigger than 1 − 2kα
2n and the right term is inferior to 1, it

ends the proof. �	
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Lemma 7. Every value λ′
α(X) with X ∈ S satisfies:

2nλ′
α(X)
λα

≤ 1 +
2kα(

1 − 2kα
2n

)
2n

.

Proof. We now express λ′
α in terms of λα−1. Without loss of generality, we

suppose that X involves g1α, otherwise we can just reorder the variables. Let i
be any index such that gi

α is not involved in X (this is possible since X ∈ S).
Let g1, . . . , g2k ∈ Jα

n such that the λα−1 conditions are satisfied. We now count
λ′

α(X). There are at most 2n −(α−1) possible choices for each gj
α, j �= 1, i. After

we made these choices, there are two variables left: g1α and gi
α. Since gi

α is not
involved in X, there is only, at most, one possible choice for g1α and there is, at
most, one possible choice for gi

α using the equation g1α ⊕ · · · ⊕ g2k
α = 0. Then:

λ′
α(X) ≤ (2n − (α − 1))2k−2λα−1.

Applying Lemma 6, one finds that:

λ′
α(X) ≤ (2n − (α − 1))2k−2

(
1

1 − 2kα
2n

)
λα

2(2k−1)n

Since 2n − α − 1 ≤ 2n and 1
1− 2kα

2n
= 1 + 2kα

(1− 2kα
2n )2n

, this ends the proof. �	

Remark: These two technical lemmas formalize the intuition that, when one
equation is added to the system, one degree of freedom is lost and this divides
the number of possible solutions by around 2n.

Finally

εα ≤ 2kα(
1 − 2kα

2n

)
2n

.

First notice that if q ≤ 2n

2k , −2kα2 + α(2n) ≥ 0. Then, from Lemma 5,

Adv
cpa
f1⊕...⊕fk

≤ 2

⎛
⎝

q−1∏
α=1

(
1 +

−2kα2 + α(2n + 2k − 1) + εα × (α2k − 2kα2 + α(2k − 1))

(2n − α)2k

)
− 1

⎞
⎠

1/3

.

If q ≤ 2n

2k , all the terms of the product are greater than 1 and

Adv
cpa
f1⊕...⊕fk

≤ 2

⎛
⎝

q−1∏
α=1

⎛
⎝1 +

−2kα2 + α(2n + 2k − 1)

(2n − α)2k
+

2kα × (α2k − 2kα2 + α(2k − 1))(
1 − 2kα

2n

)
2n × (2n − α)2k

⎞
⎠− 1

⎞
⎠

1/3

≤ 2

⎛
⎝

q−1∏
α=1

⎛
⎝1 +

α2n

(2n − α)2k
+

2kα2k+1
(
1 − 2kα

2n

)
2n(2n − α)2k

⎞
⎠− 1

⎞
⎠

1/3

≤ 2

⎛
⎝
⎛
⎝1 +

q2n

(2n − q)2k
+

2kq2k+1
(
1 − 2kq

2n

)
2n(2n − q)2k

⎞
⎠

q

− 1

⎞
⎠

1/3

.

Thus we have proven that:
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Theorem 2 (Upper Bound of the Advantage Using Hσ). The maximal
advantage an adversary can get using q queries, with q ≤ 2n

2k verifies:

Advcpa
f1⊕...⊕fk

≤ 2

⎛
⎝

⎛
⎝1 +

q2n

(2n − q)2k
+

2kq2k+1

(
1 − 2kq

2n

)
2n(2n − q)2k

⎞
⎠

q

− 1

⎞
⎠

1/3

.

Notice that

Advcpa
f1⊕...⊕fk

� 2

(
q2

2(2k−1)n(1 − q
2n )2k

+
2kq2k+2

2(2k+1)n(1 − 6kq
2n )

)1/3

.

Since k ≥ 3 and q ≤ 2n, the first term is negligible in front of 1. Moreover, when
q2k+2 � 2(2k+1)n, Advcpa

f1⊕...⊕fk
� 1. Hence we have proven that the XOR of k

permutations is safe as long as q � 2
2k+1
2k+2n with this first technique.

4 Security Bound from the Standard H Technique

We now use the “standard H technique”, i.e. proofs from the general result (the
Corollary 8) below. In this section, E[hq] is noted h̃q to lighten the notations.

Corollary 8. Let α > 0. If, for every sequence b = (bi)1≤i≤q ∈ Iq
n

hq(b) ≥ (1 − α)h̃q,

then

Advcpa
f1⊕...⊕fk

≤ α.

Proof. This result comes immediately from Theorem 1 with β = 0 and Lemmas
1 and 3. �	

4.1 First Approximation

Let us study hα

h̃α
.

One has:

h̃α+1 = h̃α
(2n − α)k

2n
.

We now evaluate hα+1 from hα. From the definition of hα (see Sect. 3.1), we see
that hα+1 is the number of sequence (P j

i )1≤i≤m,1≤j≤k such that:

– the hα conditions hold;
– P 1

α+1 ⊕ . . . ⊕ P k
α+1 = bα+1, this equation will be called X;

– P j
α+1 �= P j

i for every 1 ≤ i ≤ α, 1 ≤ j ≤ k.
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Let βi, 1 ≤ kα be the kα equations which should be false. Let, for 1 ≤ i ≤ kα,
Bi be the set of the

(
P j

i

)
1≤i≤α+1,1≤j≤k

for which the hα conditions and the

equation βi hold.
From the inclusion-exclusion principle, we get:

hα+1 = 2(k−1)nhα − | ∪kα
i=1 Bi|

= 2(k−1)nhα +
∑

1≤l≤kα

(−1)l
∑

i1<...<il

|Bi1 ∩ . . . ∩ Bil
|.

When k + 1 sets are intersected, at least two equations will use the same P j
α+1

variable, which is in contradiction with hα. Thus,

hα+1 = 2(k−1)nhα +
∑

1≤l≤k

(−1)l
∑

i1<...<il

|Bi1 ∩ . . . ∩ Bil
|. (4)

We study the number of possible messages in function of the number of sets in
the intersection.

• l equations, 1 ≤ l ≤ k − 1:

If we want |Bi1 ∩. . .∩Bil
| �= 0, every new βi equation should bring a new variable

P j
α+1. In this case, X and βi fix l + 1 variables, the remaining ones are free, so

|Bi1 ∩ . . . ∩ Bil
| = 2(k−l−1)nhα and

∑
i1<...<il

|Bi1 ∩ . . . ∩ Bil
| =

(
k
l

)
αl2(k−l−1)nhα

• k equations:

As well as above, in order to have |Bi1 ∩ . . .∩Bik
| �= 0, there must be an equation

in every new variable:
P j

α+1 = P j
ij

, 1 ≤ j ≤ k.

So the condition P 1
α+1 ⊕ . . . ⊕ P k

α+1 = bα+1 becomes:

P 1
i1 ⊕ . . . ⊕ P k

ik
= bα+1.

Let h′
α(b1, . . . , bα+1)(i1, . . . , ik) or h′

α(i1, . . . , ik) the number of (P j
i )1≤i≤α,1≤j≤k ∈

Ikα
n such that:

– the conditions hα hold,
– P 1

i1
⊕ . . . ⊕ P k

ik
= bα+1.

Let Y (i1, . . . , ik) be this equality. Thus
∑

i1<...<ik

|Bi1 ∩ . . . ∩ Bik
| =

∑
1≤i1,...,ik≤α

h′
α(i1, . . . , ik).
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From (4), we have:

hα+1 =
(2n − α)k − (−1)kαk

2n
hα + (−1)k

∑
1≤i1,...,ik≤α

h′
α(i1, . . . , ik). (5)

Remark: if k is even, one has:

hα+1 ≥ hα

(
(2n − α)k − αk

2n

)
.

So
hα+1

h̃α+1

≥ hα

h̃α

(
1 − αk

(2n − α)k

)
.

As h1 = h̃1 = 2(k−1)n,

hq ≥ h̃q

(
1 − qk

(2n − q)k

)q

≥ h̃q

(
1 − qk+1

(2n − q)k

)

Then, using Corollary 8,

Advcpa
f1⊕...⊕fk

≤ qk+1

(2n − q)k
.

The upper bound we get in this case is in the same order of magnitude as the
one from [9]. If we study more closely h′

α, we will get a better inequality.

4.2 Second Approximation

In this section, we suppose that k ≥ 3.
Let M = {i, 1 ≤ i ≤ α, bi = bα+1}. If i ∈ M , we have h′

α(i, . . . , i) = hα

and if i �∈ M , h′
α(i, . . . , i) = 0. Furthermore, in order to be compatible with

hα, if i ∈ M , for each 1 ≤ j ≤ α, i �= j, h′
α(j, i, . . . , i) = h′

α(i, j, . . . , i) =
. . . = h′

α(i, . . . , i, j) = 0. Let I be the set of the tuples that do not satisfy these
requirements. Then |I| = αk − α − k|M |(α − 1). By applying (5), one gets:

hα+1 =
(2n − α)k − (−1)kαk + (−1)k2n|M |

2n
hα + (−1)k

∑
(i1,...,ik)∈I

h′
α(i1, . . . , ik).

(6)
We now need a technical lemma:

Lemma 9. If i = (i1, . . . , ik) ∈ I,

1 − 3α

(2n − α)(1 − α
2n )

≤ 2nh′
α(i1, . . . , ik)

hα
≤ 1

1 − 3α
2n

.
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Proof. Without loss of generality, we can suppose that i1 = α and i2 = α − 1
(because we can reorder the queries). Let us evaluate h′

α and hα from hα−2. To
get hα from hα−2, we have 2k new variables P j

α−1 and P j
α, 1 ≤ j ≤ k, such that:

– P 1
α ⊕ . . . ⊕ P k

α = bα,
– P 1

α−1 ⊕ . . . ⊕ P k
α−1 = bα−1,

– ∀j, 1 ≤ j ≤ k, ∀i, 1 ≤ i ≤ α − 2, P j
α−1 �= P j

i ,

– ∀j, 1 ≤ j ≤ k, ∀i, 1 ≤ i ≤ α − 1, P j
α �= P j

i .

We decide that the first equation will fix P 1
α−1 and the next one P 1

α. For j ≥ 3,
we have respectively 2n − (α − 2) and 2n − (α − 1) possibilities for P j

α−1 and
P j

α. When these messages have been chosen, only P 2
α−1 and P 2

α remain, and they
must satisfy:

– P 2
α−1 �= P 2

i , 1 ≤ i ≤ α − 2,
– P 2

α−1 �= P 1
i ⊕ bα−1 ⊕ P 3

α−1 ⊕ . . . ⊕ P k
α−1, 1 ≤ i ≤ α − 2,

– P 2
α �= P 2

i , 1 ≤ i ≤ α − 1,
– P 2

α �= P 1
i ⊕ bα ⊕ P 3

α ⊕ . . . ⊕ P k
α , 1 ≤ i ≤ α − 1.

There are for P 2
α−1 between 2n − 2(α− 2) and 2n − (α− 2) choices and for P 2

α−1

between 2n − 2(α − 1) and 2n − (α − 1). Thus

(2n − (α − 2))k−2(2n − (α − 1))k−2(2n − 2(α − 2))(2n − 2(α − 1)) ≤ hα

hα−2
, (7)

hα

hα−2
≤ (2n − (α − 2))k−1(2n − (α − 1))k−1. (8)

In order to go from hα−2 to h′
α, we also have 2k new variables P j

α−1 and P j
α,

1 ≤ j ≤ k, such that:

– P 1
α−1 ⊕ . . . ⊕ P k

α−1 = bα−1,
– P 1

α = bα+1 ⊕ P 2
α−1 ⊕ P 3

i3
⊕ . . . ⊕ P k

ik
,

– P 1
α ⊕ . . . ⊕ P k

α = bα,
– ∀j, 1 ≤ j ≤ k, ∀i, 1 ≤ i ≤ α − 2, P j

α−1 �= P j
i ,

– ∀j, 1 ≤ j ≤ k, ∀i, 1 ≤ i ≤ α − 1, P j
α �= P j

i .

We have, for j ≥ 4, respectively 2n − (α − 2) and 2n − (α − 1) possibilities for
P j

α−1 and P j
α. From these 3 equalities, we can fix the following variables:

1. P 1
α−1 = bα−1 ⊕ P 2

α−1 ⊕ . . . ⊕ P k
α−1,

2. P 1
α = bα+1 ⊕ P 2

α−1 ⊕ P 3
i3

⊕ . . . ⊕ P k
ik

,

3. P 2
α = (bα+1 ⊕ bα) ⊕ P 2

α−1 ⊕ (P 3
i3

⊕ P 3
α) ⊕ . . . ⊕ (P k

ik
⊕ P k

α).

Then

– the condition ∀i, 1 ≤ i ≤ α − 2, P 1
α−1 �= P 1

i becomes:

∀i, 1 ≤ i ≤ α − 2, P 2
α−1 �= P 1

i ⊕ bα−1 ⊕ P 3
α−1 ⊕ . . . ⊕ P k

α−1,

– ∀i, 1 ≤ i ≤ α − 1, P 1
α �= P 1

i becomes:

∀i, 1 ≤ i ≤ α − 1, P 2
α−1 �= bα+1 ⊕ P 1

i ⊕ P 3
i3 ⊕ . . . ⊕ P k

ik
,
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– ∀i, 1 ≤ i ≤ α − 2, P 2
α �= P 1

i becomes:

∀i, 1 ≤ i ≤ α − 2, P 2
α−1 �= (bα+1 ⊕ bα) ⊕ P 2

i ⊕ (P 3
i3

⊕ P 3
α) ⊕ . . . ⊕ (P k

ik
⊕ P k

α)

For P 2
α �= P 2

α−1, there are two cases. If i3 = . . . = ik = α, since (i1, . . . , ik) ∈ I,
we have bα+1 �= bα and this non-equality is automatically verified. Else, this
means that there is an index 3 ≤ j ≤ k such that ij �= α, e.g. j = 3. Then
P 2

α �= P 2
α−1 becomes:

P 3
α �= (bα+1 ⊕ bα) ⊕ P 3

i3 ⊕ . . . ⊕ (P k
ik

⊕ P k
α).

Thus, after the other messages have been chosen, there are between 2n − α and
2n − (α − 1) possibilities for P 3

α, 2n − (α − 2) possibilities for P 3
α−1 and finally

between 2n − (4α − 7) and 2n − (α − 2) possibilities for P 2
α−1. Then

(2n − (α − 2))k−2(2n − (α − 1))k−3(2n − α)(2n − (4α − 7)) ≤ h′
α

hα−2
(9)

(2n − (α − 2))k−1(2n − (α − 1))k−2 ≥ h′
α

hα−2
. (10)

From 7 and 9 we can deduce the following inequalities that allow us to get the
result we want:

2nh′
α

hα−2
≥ 2n (2n−4α+7)(2n−α)

(2n−(α−2))(2n−(α−1))2 ,

2nh′
α

hα−2
≤ 2n 2n−(α−2)

(2n−2(α−2))(2n−2(α−1)).

�	
Remark: if we suppose α < 2n

12 , we get

0 < 1 − 12α

2n
≤ 2nh′

α(i1, . . . , ik)
hα

≤ 1 +
3α

2n − 3α
. (11)

One has:

hα+1

h̃α+1

=
hα

h̃α

⎛
⎝1 +

(−1)k+1αk

(2n − α)k
+ (−1)k 2n|M |

(2n − α)k
+ (−1)k

∑ 2nh′
α

hα

(2n − α)k

⎞
⎠ (12)

=
hα

h̃α

(1 − Aα) (13)

where

Aα :=
(−1)kαk

(2n − α)k
− (−1)k 2n|M |

(2n − α)k
− (−1)k

∑ 2nh′
α

hα

(2n − α)k
.

Lemma 10. If q < 2n

12 ,

Aα ≤ k.2nα

(2n − α)k
+ 12

αk+1

(2n − 3α)(2n − α)k
.
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Proof. We have to study Aα according to the parity of k.

• k even:

Aα ≤ αk

(2n − α)k
− 2n|M |

(2n − α)k
− (αk − α − k|M |(α − 1))(1 − 12α

2n )
(2n − α)k

≤ − 2n|M |
(2n − α)k

+
(α + k|M |(α − 1))(1 − 12α

2n )
(2n − α)k

+ 12
αk+1

2n(2n − α)k

≤ k.α2

(2n − α)k
+ 12

αk+1

2n(2n − α)k

• k odd:

Aα ≤ − αk

(2n − α)k
+

2n|M |
(2n − α)k

+
(αk − α − k|M |(α − 1))(1 + 3α

2n−3α )
(2n − α)k

≤ 2n|M |
(2n − α)k

− (α + k|M |(α − 1))(1 + 3α
2n−3α )

(2n − α)k
+

3αk+1

(2n − α)k(2n − 3α)

≤ 2nα

(2n − α)k
+

3αk+1

(2n − α)k(2n − 3α)

So, in both cases,

Aα ≤ k.2nα

(2n − α)k
+ 12

αk+1

(2n − 3α)(2n − α)k
,

�	
From this lemma and 12,

hα+1

h̃α+1

≥ hα

h̃α

(
1 − k.2nα

(2n − α)k
− 12

αk+1

(2n − 3α)(2n − α)k

)
.

Since h1 = h̃1, we get:

hq

h̃q

≥
(

1 − k2nq

(2n − q)k
− 12

qk+1

(2n − 3q)(2n − q)k

)q

≥ 1 − kq2.2n

(2n − q)k
− 12

qk+2

(2n − 3q)(2n − q)k
.

Thus, with Corollary 8, we have proven that, when q < 2n

12 :

Advcpa
f1⊕...⊕fk

≤ kq2.2n

(2n − q)k
+ 12

qk+2

(2n − 3q)(2n − q)k
(14)

≤ kq2

2(k−1)n(1 − k q
2n )

+ 12
qk+2

2(k+1)n(1 − (k + 3) q
2n )

. (15)

Hence we get the following result:
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Table 1. Comparison of the bounds on the advantage from 3 techniques

Technique Upper bound for Advcpa
f1⊕...⊕fk

Order of magnitude

S. Lucks 2−k(n−1) ∑
0≤i<q

ik O
(

qk+1

2k(n−1)

)

H kq2

2(k−1)n(1−k q
2n )

+ 12 qk+2

2(k+1)n(1−(k+3) q
2n )

O
(

qk+2

2(k+1)n

)

Hσ 2

(
q2

2(2k−1)n(1− q
2n )2k + 2kq2k+2

2(2k+1)n(1− 6kq
2n )

)1/3

O

((
k q2k+2

2(2k+1)n

)1/3
)

Table 2. Upper bound plotted versus the logarithm of q

Table 3. Upper bound plotted versus the logarithm of q: comparison between H and Hσ

Theorem 3 (Upper Bound for the Advantage with the Standard H
Technique). Let k ≥ 3 and q < 2n

12 . The advantage to distinguish, with q
queries, the XOR of k bijections from a function f ∈R Fn satisfies:

Advcpa
f1⊕...⊕fk

≤ kq2

2(k−1)n(1 − k q
2n )

+ 12
qk+2

2(k+1)n(1 − (k + 3) q
2n )

.
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Since k ≥ 3, the first term is negligible when q � 2n. This theorem shows that
the XOR of k bijections is indistinguishable when q � 2

k+1
k+2n. This upper bound

on q is worse than the previous one, but if q � 2
k+2
k+4n (i.e. for small values of q)

this new upper bound on the advantage is actually better.

5 Conclusion

This table regroups our results and the previous one from S. Lucks in [9], with
order of magnitudes for these bounds beyond the birthday bound
(Tables 1, 2 and 3):

The upper bound we got with the coefficients H technique is smaller than the
one from [9] by a factor q

2n . The one we proved with the coefficients Hσ technique

allows us to have Advcpa
f1⊕...⊕fk

� 1 when q � 2
2k+1
2k+2n instead of q � 2

k
k+1n

for [9]. For example with k = 3 we have proven that Advcpa
f1⊕...⊕fk

� 1 when
q � 2

7
8n instead of q � 2

3
4n. However, when q is fixed and k increases, the upper

bound from the H technique becomes better than the one from Hσ. This graph
shows the evolution of the order of magnitude of these three upper bounds in
function of the logarithm of q, with k = 5 and n = 40:

Here is a more accurate view of the region where the curves from H and Hσ

intersect:
This illustrates that, depending on the value of q, our best bound can be

the one from Sect. 3 or the one from Sect. 4. Moreover, the curve from [9] does
not appear in this second graph because its values were much higher than ours
(around 6 · 10−4 whereas the bounds from this article are around 4 · 10−7 in this
graph). This shows why the two techniques studied in this paper are both useful.

References

1. Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transforma-
tions. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 307–320.
Springer, Heidelberg (1996)

2. Bellare, M., Impagliazzo, R.: A Tool for Obtaining Tighter Security Analyses of
Pseudorandom Function Based Constructions, with Applications to PRP to PRF
Conversion. ePrint Archive 1999/024: Listing for 1999 (1999)

3. Bellare, M., Krovetz, T., Rogaway, P.: Luby-rackoff backwards: increasing security
by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998)

4. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

5. Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 370. Springer, Heidelberg
(1998)

6. Levin, L.: One way functions and pseudorandom generators. Combinatorica 7(4),
357–363 (1987)

7. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)



302 B. Cogliati et al.

8. Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 189–203. Springer, Heidelberg (1996)

9. Lucks, S.: The sum of PRPs is a secure PRF. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000)

10. Mandal, A., Patarin, J., Nachef, V.: Indifferentiability beyond the birthday bound
for the XOR of two public random permutations. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 69–81. Springer, Heidelberg (2010)

11. Naor, M., Reingold, O.: On the construction of pseudo-random permutations:
Luby-Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

12. Patarin, J.: A proof of security in O(2n) for the XOR of two random permutation.
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer,
Heidelberg (2008)

13. Patarin, J.: Generic Attacks for the XOR of k Random Permutations. Available
on eprint (2008)

14. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)

15. Patarin, J.: Security in O(2n) for the XOR of Two Random Permutations - Proof
with the standard H technique - Available on eprint (2013)


	The Indistinguishability of the XOR of k Permutations
	1 Introduction
	2 Preliminaries
	3 Security Bound from the H Technique
	3.1 Linking the Advantage to a Combinatorial Problem
	3.2 Study of V[hq]
	3.3 First Evaluation of 
	3.4 Relation Between the Advantage and 
	3.5 First Approximation of 

	4 Security Bound from the Standard H Technique
	4.1 First Approximation
	4.2 Second Approximation

	5 Conclusion
	References


