
LTSmin: High-Performance

Language-Independent Model Checking

Gijs Kant1,�, Alfons Laarman1,2,§, Jeroen Meijer1, Jaco van de Pol1

Stefan Blom1,‡, and Tom van Dijk1,‖

1 Formal Methods and Tools, University of Twente, The Netherlands
2 Formal Methods in Systems Engineering, Vienna University of Technology, Austria

Abstract. In recent years, the LTSminmodel checker has been extended
with support for several new modelling languages, including probabilis-
tic (Mapa) and timed systems (Uppaal). Also, connecting additional
language front-ends or ad-hoc state-space generators to LTSmin was sim-
plified using custom C-code. From symbolic and distributed reachability
analysis and minimisation, LTSmin’s functionality has developed into a
model checker withmulti-core algorithms for on-the-flyLTL checkingwith
partial-order reduction, andmulti-core symbolic checking for themodal μ-
calculus, based on the multi-core decision diagram package Sylvan.

In LTSmin, the modelling languages and the model checking algo-
rithms are connected through a Partitioned Next-State Interface (Pins),
that allows to abstract away from language details in the implementation
of the analysis algorithms and on-the-fly optimisations. In the current pa-
per, we present an overview of the toolset and its recent changes, and we
demonstrate its performance and versatility in two case studies.

1 Introduction

The LTSmin model checker has a modular architecture which allows a number
of modelling language front-ends to be connected to various analysis algorithms,
through a common interface. It provides both symbolic and explicit-state analysis
algorithms for many different languages, enabling multiple ways to attack verifica-
tion problems. This connecting interface is called Partitioned Next-State Interface
(Pins), the basis of which consists of a state-vector definition, an initial state, a par-
titioned successor function (NextState), and labelling functions.Pins defines an
implicit state space, abstracting away from modelling language details.

The main difference with other language interfaces, such as the Open/Cæsar
interface [21] of CADP [22] and theCESMI interface ofDiVinE [3], is the structure
that Pins exposes by exporting dependencies between the partitioned successor
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Fig. 1. LTSmin’s Pins architecture

function and the variables in the state vector in the form of dependency matrices.
Our approach is also dissimilar fromNuSMV’s [9], where the transition relation is
specifieddirectly, imposing restrictions on the language. In the past,we have shown
that thesedependencies enable symbolic reachabilityusingBDDs/MDDswithmul-
tiple orders of magnitude performance improvement [7,8] as well as (explicit-state)
distributed reachability with state compression [6].

Recently, we extended Pins with separate read and write dependency matrices,
special state labels for guards, and guard/transitiondependencymatrices. This ex-
tended interface, which we call Pins+, enables further performance improvements
for the symbolic tools [40] and on-the-fly partial-order reduction (POR) [32] for the
explicit-state tools. Pins+ will be presented in Section 2.

LTSmin offers extensive analysis of implicit state spaces through Pins: reacha-
bility analysis, including deadlock detection, action detection and invariant/asser-
tion checking, but since recently also verification of Linear Time (LTL) and modal
μ-calculus properties. The toolset and its architecture have been previously pre-
sented in, e.g., [7], [5] and [8]. This article covers the changes since then. An up-to-
date overviewofLTSmin is in Figure 1; this paper focuses on the pink (dark) boxes.
The toolset is open source.1

The languages supportedbyLTSminare listed inTable 1, includingnewly added
support for probabilistic (Mapa) and timed systems (Uppaal) and for boolean
equation systems with data types (Pbes). New is also the possibility to add a new
language front-end by providing a dynamically loaded .so-library implementing
the Pins interface. These additions will be presented in Section 3.

Table 1. Languages supported by LTSmin

Uppaal Timed automata.
Mapa Process algebra for Markov automata from the Scoop tool.
Dve The modelling language of the DiVinE model checker.
Promela The modelling language of the Spin model checker.
mCRL2 Process algebra.
Pbes Parameterised Boolean Equation Systems.
Etf Built-in symbolic format.

1 Source code available at: https://github.com/utwente-fmt/ltsmin

https://github.com/utwente-fmt/ltsmin
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In the explicit-state tools, new multi-core algorithms provide scalable LTL
checkingwith PORand state compression. The symbolic tools have been extended
with the multi-core decision diagram (DD) packages Sylvan and LDDmc, en-
abling multi-core symbolic analysis algorithms by parallelising their DD opera-
tions. A symbolic parity game solver has been added, enabling multi-core symbolic
μ-calculus checking. These additions will be described in Section 4 and 5.

2 ThePins-Architecture ofLTSmin

The starting point of our approach is a generalised implicitmodel of systems, called
the Partioned Next-State Interface (Pins). An overview of Pins functions is in
Table 2. The functions InitialState,NextState and StateLabel are manda-
tory, as well as the state vector length N , the number of transition groupsK, and
the names and types of labels, slots and actions. Together, these give rise to a tran-
sition system, see Section 2.1.

On top of this basic Pins interface, we distinguish several axes of extensions,
A1 till A∞, which together form the extended Pins+ interface. These extensions
allow to expose enough structure, in the form of information about dependency re-
lations, to enable high-performance algorithms. The first axis of such information
is provided by the functions labelled A1: the read and write dependency matrices
(see [40]). LTSmin’s POR layer (see Section 4.3) requires guards, exported as spe-
cial state labels, and the GuardMatrix, StateLabelM and DoNotAccord
dependency matrices – the functions labelled A2. The definitions of the dependen-
cies and guards are given in Section 2.2.

The simulation relation over states provided by the CoveredBy function, la-
belled A3, allows powerful subsumption abstraction [14] in our algorithms. Timed
language formalisms allow such abstractions as described in Section 3.2. In the fu-
ture, a symmetry-reduction layer, a la [17], could implementCoveredBy.

Other namedmatrices, canbe added to the genericGetMatrix function,which
we label A∞. This is used to increase POR’s precision and facilitate statistical sys-
tems such as withMapa (see Section 3.1).

We writeMatrix(x) as shorthand for {y | (x, y) ∈ Matrix}.

Table 2. Functions in Pins+ are divided along multiple axes

Level Function Type Description

B0 InitialState SP Initial state.
B0 NextStatei SP → ℘(A × SP) Successors and action label for group i.
B0 StateLabel SP × L → N State label.

A1 ReadMatrix B
K×N Read dependency matrix (Definition 2).

A1 WriteMatrix B
K×N Write dependency matrix (Definition 3).

A2 GuardMatrix B
K×G Guard/transition group matrix (Definition 5).

A2 StateLabelM B
G×N State label dependency matrix (Definition 4).

A2 DoNotAccord B
K×K Matrix for non-commutativity of groups [32].

A3 CoveredBy SP × SP → B State covering function.

A∞ GetMatrixName B
X×Y Predefined X × Y matrix named Name.
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2.1 Partitioned Transition Systems

In Pins, states are vectors ofN values. We write 〈s1, . . . , sN 〉, for vector variables,
or simply s for the state vector. Each position j in the vector (1 ≤ j ≤ N) is called
a slot and has a unique identifier and a type, which are used in the language front-
ends to specify conditions andupdates.TheNextState function,which computes
the successors of a state, is partitioned inK disjunctive transition groups, such that
NextState(s) =

⋃
1≤i≤K NextStatei(s). We have action labels a ∈ A and a

set ofM state labelsL. Amodel, available throughPins, gives rise to aPartitioned
Transition System (PTS).

Definition 1. A PTS is a structure P =
〈
SP ,→P , s0, L

〉
, where

– SP = S1 × · · · × SN is the set of states s ∈ SP , which are vectors of N values,
– →P =

⋃K
i=1 →i is the labelled transition relation, which is a union of the K

transition groups→i ⊆ SP ×A× SP (for 1 ≤ i ≤ K),
– s0 =

〈
s01, . . . , s

0
N

〉 ∈ SP is the initial state, and
– L : SP × L → N is a state labelling function.

We write s
a−→i t when (s, a, t) ∈ →i for 1 ≤ i ≤ K, and s

a−→P t when (s, a, t) ∈
→P . Considering L as binary state labels, L(s) denotes the set of labels that hold in
state s, i.e. we define L(s) := {� | L(s, �) �= 0}.

When theLTL layer is used, the outputPTS is interpreted as aBüchi automaton,
where accepting states are marked using a special state label. When using the μ-
calculus layer or thePbes front-end, the outputPTS is interpreted as a parity game,
where two state labels encode the player and the priority. When using the Mapa
front-end, the output is aMarkov automaton, where transitions are decoratedwith
labels, representing hyperedges with rates. For all these interpretations, the same
Pins interface is used.

2.2 Dependencies and Guards

The partitioning of the state vector into slots and of the transition relations into
transition groups, enables to specify the dependencies between the two, i.e., which
transition groups touch which slots of the vector.

Previously, we used a single notion of dependency; now we distinguish read,
write and label dependencies [32, 40]. The read and write dependencies allow to
project state vectors to relevant slots only, improving performance of both caching,
state compression and the symbolic tools. Label dependencies enable POR. The
following definitions apply to each PTS P =

〈
SP ,→P , s0, L

〉
.

Definition 2 (Read independence). Transition group i is read-independent
from state slot j, if for all s, t ∈ SP with s →i t, we have:

∀rj∃r′j ∈ Sj : 〈s1, . . . , rj , . . . , sN 〉 →i

〈
t1, . . . , r

′
j , . . . , tN

〉 ∧ r′j ∈ {rj , tj} ,

i.e., whatever value rj we plug in, the transition is still possible, the values tk (k �= j)
do not depend on the value of rj , and the value of state slot j is either copied (r

′
j = rj)

or overwritten (r′j = tj).
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Definition 3 (Write independence). Transition group i is write-independent
from state slot j, if:

∀s, t ∈ SP : 〈s1, . . . , sj , . . . , sN 〉 →i 〈t1, . . . , tj , . . . , tN 〉 ⇒ (sj = tj) ,

i.e., state slot j is never modified in transition group i.

Definition 4 (Label independence). Label l ∈ L is independent from state slot
j, if:

∀s ∈ SP , tj ∈ Sj : L(〈s1, . . . , sj , . . . , sN〉 , l) = L(〈s1, . . . , tj, . . . , sN 〉 , l) .

Definition 5 (Guards). Transition guards are represented as a subset of labels
G ⊆ L. With each transition group we associate a set of guards. The guards associ-
ated with group i, denoted G(i), are evaluated conjunctively, i.e., transition group i
is only enabled in state s if all guards g ∈ G(i) hold: if s →i t then G(i) ⊆ L(s).

We have provided semantic requirements for read, write and label independence
relations. The language front-end must provide these dependency matrices. It can
approximate dependencies using static analysis, for instance by checking occur-
rence of variables in expressions. Note that it is always safe to assume that group-
s/labels do depend on a state slot.

3 Language Front-Ends

LTSmin already supported the languages mCRL2 [11], DiVinE [3], and Spin’s
Promela [26] (through SpinS [4]). Since recently, alsoMapa,Uppaal andPbes
are available, as well as the ability to load a model from a binary .so-file, all of
which will be discussed in the current section.

3.1 MAPA:Markov Automata Process Algebra

For verification of quantitative aspects of systems, we supportMapa:Markov Au-
tomata Process Algebra. MA’s are automata with non-deterministic choice, proba-
bilistic choice and stochastic rates, generalising LTS, PA, MDP and CTMC. The
Scoop tool [43] offers state-space generation forMapa specifications, applying sev-
eral reduction techniques. It is part of theMaMa toolchain [25] for the quantitative
analysis of Markov automata. LTSmin has been extended with aMapa language
module based on Scoop, allowing for high-performance state space generation for
Mapa specifications. This language module uses Pins+ A∞ to add an inhibit ma-
trix and a confluence matrix. The maximum progress assumption in the semantics
of Markov automata forbids taking stochastic rate transitions when some action-
labelled transition is enabled. This has been implemented using a inhibit matrix :
when the higher priority transition is enabled, other transitions are inhibited. The
distributed and symbolic tools of LTSmin have been extended to handle inhibit
matrices forMapa. The distributed tool also includes confluence reduction.
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3.2 Uppaal: Timed Automata

The langague frontend for Uppaal timed automata is based on Opaal [12]. The
C-code generated byOpaal implements thePins+A3 interface. Timed automata
require symbolic states to handle time, for which Opaal relies on the difference
bounds matrices from the DBM-library. This is supported by Pins, by dedicating
two reserved state slots for a pointer to a symbolic time abstraction.

Subsumption abstraction can prune large parts of the PTS on-the-fly. LTSmin
checks if two states subsume each other (s 
 t) via the CoveredBy-relation
in Pins+, which is implemented by a call to the DBM-library. The reduced state
space only consists of 
-maximal states. Since 
 is a simulation relation [14], the
reducedPTS is a valid abstraction of the originalPTS.The reachability algorithms
in the multi-core tool perform this abstraction (opaal2lts-mc -u2). To maintain

-maximal states, the pointers to the DBMs are stored in a separate locklessmulti-
map [12].

A new LTL model checking algorithm with subsumption [36] is also supported,
by extending the multi-core cndfs algorithm (see Section 5.1).

3.3 PBES: Parameterized Boolean Equation Systems

Parameterised Boolean Equation Systems (Pbess) extend Boolean equations
with nested fixed points and data parameters [24, 39]. Several verification tasks
are mapped to Pbess by the mCRL2 and CADP toolsets, such as model check-
ing modal μ-calculus properties and equivalence checking. ThemCRL2 toolset of-
fers various tools for manipulating and solvingPbess.LTSmin now provides high-
performance generation of parity games fromPbess [29], by viewing them asPTSs
with special labels for players and priorities. The Pbes language module is avail-
able via the pbes2lts-* tools. The generated parity games can be solved by the
means described in Section 5.

3.4 C-Code via the Dlopen Interface

The UNIX/POSIX dlopen-interface allows to specify a model or a language directly
in C. We show an example of how this can be done for the Sokoban game board in
Figure 2. The goal of sokoban is for the player (@) to move all boxes ($)

#####

#.$@#
#####

Fig. 2.
Example
board

in the room to destination locations (.)without hittingwalls (#). This
behaviour is implemented in the functionnext state inListing 1. For
each place in the board, we reserve one slot in the state vector. We
add a state label goal, to distinguish states where the game is fin-
ished. Finally, an initial state function is defined, and functions
returning dependencymatrices. These need to be set using the GBset*
functions in Listing 2. Setting the name of the plugin is also required.
sokoboard.c is then compiled as shared library:
gcc -shared -o sokoboard.so dlopen-impl.o sokoboard.o.
To analyse the reachability of the goal label, call, e.g., the multi-core tool:
pins2lts-mc sokoboard.so --invariant="!goal" --trace=solution.gcf.



698 G. Kant et al.

Listing 1. sokoboard.c

void next_state(int group, int* src,
void (*callback)(int* dst, int action))

{ int dst[3]; int action;
memcpy(dst, src, 3);
if (group == 0
&& src[1] == EMPTY && src[2] == MAN)

{ dst[1] = MAN; dst[2] = EMPTY;
action = WALK_LEFT;
callback(dst, action);

}
else if (group == 1
&& src[1] == MAN && src[2] == EMPTY)

{ dst[1] = EMPTY; dst[2] = MAN;
action = WALK_RIGHT;
callback(dst, action);

}
else if (group == 2 && src[0] == EMPTY
&& src[1] == BOX && src[2] == MAN)

{ dst[0] = BOX; dst[1] = MAN;
dst[2] = EMPTY; action = PUSH_LEFT;
callback(dst, action);

}
}

int state_label(int* src, int label)
{return label == LABEL_GOAL && src[0] == BOX;}

int* initial_state()
{ return {EMPTY, BOX, MAN}; }

int* read_matrix()
{ return {{0,1,1}, {0,1,1}, {1,1,1}}; }

int* write_matrix()
{ return {{0,1,1}, {0,1,1}, {1,1,1}}; }

int* label_matrix()
{ return {{1,0,0}}; }

Listing 2. dlopen-impl.c

#include <ltsmin/pins.h>
#include <ltsmin/dlopen-api.h>
#include <sokoboard.h>
char pins_plugin_name[] = "sokoban";
void pins_model_init(model_t m)
{ GBsetInitialState(m, initial_state());
GBsetNextStateLong(m, next_state);
GBsetStateLabelLong(m, state_label);
GBsetDMInfoRead(m, read_matrix());
GBsetDMInfoMustWrite(m, write_matrix());
GBsetStateLabelInfo(m, label_matrix());

}

4 Intermediate Layers

Between language front-ends and the model checking back-ends, pins2pins-
wrappers provide performance optimisations, state space reductions, and support
for verification of LTL and μ-calculus properties. The caching layer reduces the
number of next-state calls to the language module by storing the projected results
of previous calls. The regrouping layer provides variable reordering, useful for the
symbolic analysis tool, and reduces overhead by merging transition groups. The
current section describes recent innovations in the intermediate layers, which are
all language-independent and agnostic of the underlyingmodel checking algorithm.

4.1 The LTL Layer

LTSmin supports Linear Time Logic (LTL) formulae defined by the grammar:

λ ::= true | false | v==n | !λ | []λ | <>λ | Xλ | λ&&λ | λ||λ | λ->λ | λ<->λ | λUλ | λRλ
The negated formula is translated to a Büchi automaton using ltl2ba [23]. The
product of the PTS and the Büchi automaton is computed on-the-fly, i.e., the layer
does not perform reachability in advance. Instead, it wraps the NextState func-
tion of a languagemodule in its ownNextState function, which synchronises the
translated Büchi automaton on the state labels or slot values of successor states
(the expression v == n can refer to a label or a slot named v). The synchronised
successors are then passed to the analysis algorithm. A label added by the layer
allows the algorithm to distinguish Büchi accepting states. On-the-fly accepting
cycle detection algorithms are described in Section 5.1.
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4.2 The µ-calculus Layer

The modal μ-calculus layer supports formulae defined by the grammar:

ϕ ::= true | false | {v = e} | !{v = e} | ϕ && ϕ | ϕ || ϕ | Z | σZ . ϕ | [α]ϕ | <α>ϕ ,

where v is a state variable, e is a value, σ ∈ {mu, nu} is a minimal (mu) or maximal
(nu) fixpoint operator, and α is an action label.

The μ-calculusPins2Pins layer reads a modal μ-calculus propertyϕ from a file,
provided using the --mucalc option, and generates a parity game, which is the
product P × ϕ of the formula and a system P that is explored through Pins. Like
theBüchi automaton, this game is generated on-the-fly.The explicit-state tools can
write the parity game to a filewhich can be converted to a format that is readable by
the tools pgsolver [20] and pbespgsolve (frommCRL2). The symbolic tools can
write the game to a file, which can be solved by the new LTSmin tool spgsolver.
The symbolic tools also have an alternative implementation for μ-calculus model
checking (available through the --mu option), which is a fixpoint algorithmapplied
to the system after reachability. This implementation also supports CTL* through
the translation in [13] (the --ctl-star option).

4.3 The Partial-Order Reduction Layer

Partial-Order Reduction (POR, [30, 44]) greatly reduces a PTS by pruning irrele-
vant interleavings.LTSmin implementsPORasan intermediate layer (cf.Figure 1).
ThisPOR layer (--por)wraps the next-state function of any languagemodule, and
provides a reduced state space to any analysis tool by replacing it with an on-the-fly
reduction function: PorState(s) ⊆ NextState(s).

We rephrased the stubborn set method [44] in terms of guards [32] to achieve
language independence. For any state, a set of (enabled or disabled) stubborn tran-
sitions is computed, and PorState(s) corresponds to the enabled stubborn tran-
sitions. The stubborn set should (1) contain at least one enabled transition if one
exists; (2) contain all non-commuting transitions for the enabled selected transi-
tions; and (3) contain a necessary-enabling set of transitions for the disabled se-
lected transitions.

To compute stubborn sets,LTSmin needs structural model information via the
Pins+ A2 interface. For effective POR, we extended Pins transitions with guards
(Definition 5). In particular, a languagemodulemust declarewhen transitions com-
mute, and the dependencies of guards (Definition 4). The former is declared with
theDoNotAccord : BK×K-matrix. It should satisfy:

Definition 6 (Do-not-accord). Transition groups i and j are according, if

∀s, si, sj ∈ s : s →i si ∧ s →j sj ⇒ ∃t ∈ s : si →j t ∧ sj →i t

Otherwise, they must be declared conflicting in the DoNotAccordmatrix.

Next, the POR layer derives an enabling relation from the provided depen-
dency information. A transition i can only enable guard g, if i writes to a vari-
able that g depends on: EnableMatrixK×G ≡ {(i, g) | WriteMatrix(i) ∩
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StateLabelM(g) �= ∅}. A set of necessary-enabling transitions for a disabled
transition j can then be found by selecting one disabled guard g of j and taking
all transitions that may enable g: EnableMatrix(g).

Optionally, these notions can be further refined by the language module for
more reduction, by providing additionalPins+A∞ matrices. For example, the lan-
guagemodule can compute a detailedEnableMatrix by static analysis on assign-
ment expressions and guards, or a DisableMatrix and a co-enabled-matrix
on guards to leverage the power of necessary disabling sets [32].

LTSmin contains heuristics to compute small stubborn sets efficiently. The user
can select a fast heuristic search (--por=heur) or the subset-minimal deletion al-
gorithm (--por=del). POR preserves at least all deadlock states. The multi-core
algorithms inLTSmin preserves all liveness properties, but this requires additional
interaction with the LTL layer (to know the visible state properties) and the anal-
ysis algorithm (to avoid the so-called ignoring problem, see Section 5.1).

The POR layer is incompatible with the symbolic analysis tool, since after
partial-order reduction all locality and dependence information is lost. The dis-
tributed analysis tool currently only supports POR for deadlock detection.

5 Algorithmic Back-Ends

LTSmin has distributed [6],multi-core [12,19,35,37], and symbolic [16] back-ends.
Furthermore, connectors to the model-based testing tool JTorx, are available as
the*2torx tools, and to theCADPtoolset, through theOpen/Cæsar interface, as
the *-open tools. Since its early origins,LTSminhas a sequential (ltsmin-reduce)
and a distributed (ltsmin-reduce-dist) reduction tool. Both provide strong and
branching bisimulationminimisation, while the sequential tool also supports diver-
gence sensitivity, cycle elimination and minimisation modulo lumping. In the cur-
rent section, we highlight the multi-core algorithms for explicit-state and symbolic
model checking, and the symbolic parity game solver.

5.1 Multi-core Reachability, POR and LTL Checking

Since [37], LTSmin’s multi-core tools were extended beyond reachability analysis,
while improving state compression.

At the basis of our multi-core algorithms is still a lockless hash or tree table
(--state=table/tree) for shared state storage coupled with a dynamic load bal-
ancer [33, 34]. However, state compression has been enhanced by extending the
treewith a concurrentCleary compacthash table [10,45] (--state=cleary-tree),
regularly yielding compressed sizes of 4 bytes per state [35, Tab. 11.4] without com-
promising completeness. Incremental tree compression [35, Sec. 3.3.4] uses the
WriteMatrix from Pins+ to limit the number of hash computations, ensuring
scalability and performance similar to that of plain hash tables [34].

LTSmin’s state storage provides ample flexibility for different search orders, en-
abling LTL verification by traditional linear-time algorithms, in particular nested
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depth-first search (NDFS). The cndfs algorithm (--strategy=cndfs) runs mul-
tiple semi-independent DFS searches which are carefully synchronised in the back-
track [19]. dfsfifo (--strategy=dfsfifo) combines this with breadth-first search
to find livelocks, an important subet of LTL [31]. The latter algorithm avoids the
ignoring problem in POR [18], but the combination of POR and full LTL was until
recently not possible in multi-core LTSmin.

The ignoring problem occurs when POR consistently prunes the same relevant
action infinitely often [18]. It can be solved by fully exploring one state s along each
cycle in the PTS (PorState(s) := NextState(s)). The problem of detecting cy-
cles while constructing the PTS on-the-fly is usually solved with DFS [18], which
is hard to parallelise [2]. Exploiting the DFS-based parallel algorithms, this prob-
lem is efficiently solved with a new parallel cycle proviso [38] (--proviso=cndfs).
Cycles are exchanged with the POR layer via Pins.

We have shown before [4,31] that our multi-core reachability approach exhibits
almost ideal scalability up to 48 cores, even for very fastNextState implementa-
tions, like SpinS. cndfs outperforms [4, 19] other algorithms for multi-core LTL
model checking [1, 27]. For further information on multi-core algorithms and data
structures, see [35].

5.2 Multi-core Decision Diagrams

The symbolic back-end of LTSmin has been improved in several ways. First, it
has been extended with the multi-core decision diagram packages Sylvan and
LDDmc [16] (--vset=sylvan/lddmc). Second, two parallel reachability algo-
rithms have been added, based on the task-based parallelism frameworkLace [15,
16].Third, the distinction between read and write dependencies inPins+ improves
the symbolic algorithms by reducing the size of transitions relations [40].

5.3 Symbolic Parity Game Solving

We implementedZielonka’s recursive algorithm [46] using decisiondiagrams,which
is available in the symbolic tools (--pg-solve) or stand-alone in spgsolver. The
tool solves symbolic parity games, generated by the symbolic tool, and returns
whether the game has a winning strategy for player 0. When the game has been
generated using the μ-calculus layer, this answer corresponds to whether P |= ϕ.

6 Case Studies

The following two case studies demonstrate the use of having both explicit-state
and symbolic approaches to attack problems. The second case also demonstrates
the power of μ-calculus model checking for solving games.2

2 Installation instructions and case-study data:
https://github.com/utwente-fmt/ltsmin-tacas2015. We used LTSmin v2.1 on
AMD Opterons with Ubuntu 14.04.

https://github.com/utwente-fmt/ltsmin-tacas2015
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6.1 Attacking the RERSChallenge

LTSmin participated in the RERS [28, 42] challenges of 2012, 2013 [41] and 2014,
winning several first prizes. The flexibility of LTSmin allowed us to address the
RERS challenge problems from different angles.We will discuss three ways to con-
nectLTSmin to the challenge problems.We also demonstrate howLTSmin’s back-
end tools check for assertion errors and temporal properties.

Each RERS problem consists of a large C-program, encoding a system of Event-
Condition-Action rules. The program operates in an infinite loop modifying the
global state. In each iteration, the programgets an input froma small alphabet and
checks for assertion errors. If the condition of one of the rules is met, it generates
an output symbol and changes the state for the next iteration.

Linking LTSmin to RERS Programs. In the first approach, a RERS C-program
is translated to a modelling language that is already supported by LTSmin. We
took this approach in 2012, by translating RERS programs to Promela and to
mCRL2. The translations are rather straightforward, since the ECA-rules can be
readily reverse-engineered from the C-programs.

A fundamentally different approach is to create a new language module for (a
subclass of) C-programs. This was our approach in 2013 and 2014. In 2013, we just
wrapped the body of the main-loop into a single, monolithic next-state function,
compiled in a separate binary (.so file). This is a robust solution, since the original
code is run during model checking.

This monolithic approach worked fine for multi-core model checking. However,
it leads to a lack of “locality”: there is only one transition, which reads andwrites all
state variables. In order to apply symbolic model checking, our 2014 approach was
to adapt the C-languagemodule, by providing a separate transition group for each
ECA rule, checking its conditions and applying the state change. Edge labels are
added, to indicate the input and output values and the assertion violations. In this
partitionedview, every transitiongrouponly touches a couple of variables, enabling
symbolicmodel checking.WithSylvan linked toLTSmin, RERS2014was the first
large case to which we applied multi-core symbolic model checking.

Using LTSmin to Check Properties. We show here how LTSmin can be used to
check properties of Problem2.c from theRERS challenge 2014.The originalC-code
is optimized and transformed as indicated above.We assume that the transformed
code is compiled and available in a shared object Problem.so.

In the following dialogue, we request the symbolic model checker to find all ac-
tions with prefix error. Flag --no-exit avoids that LTSmin exits after finding
the first error.We also request to store concrete error traces in a subdirectory and
print one of them in human readable format. LTSmin quickly finds 23 errors.

> pins2lts-sym Problem.so --action=error --trace=Error/ --no-exit

pins2lts-sym: writing to file: Error/error_6.gcf

pins2lts-sym: writing to file: Error/error_8.gcf

^C

> ltsmin-printtrace Error/error_6.gcf | grep action | cut -f3 -d=

"input_3" "output_20" ... "input_3" "output_26" "error_6"
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Actually, the state space of this example is very big and LTSmin keeps search-
ing for more errors. In order to do an exhaustive search, we throw more power, by
using the parallel BFS strategy and Sylvan’s (enlarged) multi-core multi-way de-
cision diagrams [16]. We also request static variable reordering, to keep the MDDs
small.With --when,we request timing information. The following experiments are
run on a 48-core machine with 132 GBRAM. The parallel symbolic model checker
of LTSmin computes the full state space within 2 minutes. All 1.75 billion states,
divided over 480 BFS levels, are stored in about 1 million MDD nodes.

> pins2lts-sym Problem.so --order=par-prev --regroup=gs --when \

--vset=lddmc --lddmc-tablesize=30 --lddmc-cachesize=28

pins2lts-sym: Using 48 CPUs

pins2lts-sym, 28.076: level 90 is finished

pins2lts-sym, 113.768: level 480 is finished

pins2lts-sym: ... 1750528171 (~1.75e+09) states, 1158486 BDD nodes

Alternatively, wemay decide to switch to the explicit-statemulti-core reachabil-
ity engine [33]. We request a strict breadth-first strategy, to facilitate comparison
with the symbolic run. To squeeze the maximum out of our machine, we combine
recursive tree compression [34] with Cleary’s compact hashing [10, 45]. Within a
minute we learn that there are no new errors up to depth 90.LTSmin is able to tra-
verse the full state space exhaustivelywithin 5minutes, generating over 1.75 billion
states and 2.4 billion transitions.

> pins2lts-mc Problem.so --strategy=sbfs --state=cleary-tree --when

pins2lts-mc(23/48), 46.067: ~90 levels ~125829120 states ~191380560 trans

pins2lts-mc( 0/48), 296.759: Explored 1750528171 states 2445589869 trans

The explicit multi-core tool can also check LTL properties, using multi-core
NDFS (cndfs, [19]). The LTL formula refers to integer variables in the original
C-program a94 and a95.With --ltl-semantics=ltsminwe insist on checking in-
finite paths only, i.e., we don’t consider traces that end in an assertion error. The
violated trace can be printed as above, and will end in a lasso.

> pins2lts-mc Problem.so --ltl=’a94==9 U a95==12’ \

--strategy=cndfs --ltl-semantics=ltsmin --trace=Error/ltl.gcf

pins2lts-mc( 0/48): Accepting cycle FOUND at depth 11!

pins2lts-mc( 3/48): Writing trace to ltl.gcf

6.2 Solving Connect Four

We explore the Connect Four game, originally played on a 7×6 board between two
players:yellow and red, which is available in the examples directory ofmCRL2. For
the first run, we reduced the board size to 5×4, for which the model has 7,039,582
states.
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(b) Separated

Fig. 3. Matrix

The matrix is in Fig. 3a. LTS generation using lps2lts

(mCRL2) takes 157 seconds and 540 MB. Using 64 cores,
multi-core LTSmin takes 68 seconds and 63 MB. But sym-
bolic LTSmin needs 80 seconds.

This is causedby themonolithic summands in the specifica-
tion (the dense rows in Figure 3a), representing the winning
condition.We split the condition in separate parts and let the
game continue after a winning move has been done. The ma-
trix of the problem becomes more sparse, see Figure 3b. Note
that the four r’s in a row correspond to the four winning tiles.
The symbolic tool now generates a different state space of the
same game (5,464,758 states) in one second. mCRL2 takes
167 seconds for this version. The exploration time ofLTSmin
for a 6×5 board is 2.6 seconds, for 9.78× 109 states in 41,239
MDD nodes.

Next, we generate a PBES with mCRL2, to encode the μ-
calculus property (in file yellow wins.mcl) that player Yel-
low has a winning strategy, and solve it with LTSmin:

mu X . [Wins(Red)]false && <Move>(<Wins(Yellow)>true || [Move]X)

> lps2pbes -s -f yellow_wins.mcl four5x4.lps four5x4.pbes

> pbes2lts-sym --mcrl2=-rjitty --regroup=gs --pg-solve \

--vset=lddmc --order=par-prev four5x4.pbes

For the 5×4-board mCRL2 takes 199 seconds, but the symbolic tool of LTSmin
8 seconds, to compute that the starting player has no winning strategy.

7 Discussion

There are several toolsets that take a similar approach, supporting a generic inter-
face, or offer similar, multi-core or symbolic, analysis algorithms. The table below
provides a brief qualitative comparison of the available types of algorithms and the
supported logics. The last column indicates whether multiple input languages are
supported, and if so, through which interface.

The Pins interface is the main differentiator of LTSmin. It is sufficiently gen-
eral to support a wide range of modelling languages. At the same time, the depen-
dencymatrices provide sufficient structuralmodel information to exploit locality in

Toolset m
ul
ti-
co
re

di
st
rib
ut
ed

sy
m
bo
lic

μ-
ca
lcu

lu
s

LT
L

PO
R

co
nfl
ue
nc
e

Language

LTSmin yes yes yes yes yes yes yes any (Pins)
mCRL2 [11] no no no yes no no yes fixed

CADP [22] no yes no yes* no no yes any (Open/C)
DiVinE [3] yes yes no no yes yes no any (CESMI)
Spin yes yes no no yes yes no fixed

NuSMV [9] no no yes no yes no no fixed

* CADP supports μ-calculus formulae up to alternation depth 2.
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the analysis algorithms. As a consequence, LTSmin is the only language-agnostic
model checker that supports on-the-fly symbolic verification and full LTL model
checking with POR. Due to the modular architecture, the user can freely choose a
verification strategy depending on the problem at hand.
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Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011. LNCS,
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