
Software Verification and Verifiable Witnesses
(Report on SV-COMP 2015)

Dirk Beyer

University of Passau, Germany

Abstract. SV-COMP 2015 marks the start of a new epoch of software
verification: In the 4th Competition on Software Verification, software ver-
ifiers produced for each reported property violation a machine-readable
error witness in a common exchange format (so far restricted to reacha-
bility properties of sequential programs without recursion). Error paths
were reported previously, but always in different, incompatible formats,
often insufficient to reproduce the identified bug, and thus, useless to the
user. The common exchange format and the support by a large set of ver-
ification tools that use the format will make a big difference: One verifier
can re-verify the witnesses produced by another verifier, visual error-path
navigation tools can be developed, and here in the competition, we use
witness checking to make sure that a verifier that claimed a found bug,
had really found a valid error path. The other two changes to SV-COMP
that we made this time were (a) the addition of the new property, a set of
verification tasks, and ranking category for termination verification, and
(b) the addition of two new categories for reachability analysis: Arrays
and Floats. SV-COMP 2015, the fourth edition of the thorough compara-
tive evaluation of fully-automatic software verifiers, reports effectiveness
and efficiency results of the state of the art in software verification. The
competition used 5 803 verification tasks, more than double the number
of SV-COMP’14. Most impressively, the number of participating verifiers
increased from 15 to 22 verification systems, including 13 new entries.

1 Introduction
The Competition on Software Verification (SV-COMP) 1 is a service to the ver-
ification community that consists of two parts: (a) the collection of verification
tasks that the community of researchers in the area of software verification finds
interesting and challenging, and (b) the systematic comparative evaluation of the
relevant state-of-the-art tool implementations for automatic software verification
with respect to effectiveness and efficiency.
Repository of Verification Tasks. The benchmark repository of SV-COMP 2 serves
as collection of verification tasks that represent the current interest and abilities of
tools for software verification. For the purpose of the competition, all verification
tasks that are suitable for the competition are arranged into categories, accord-
ing to the characteristics of the programs and the properties to be verified. The
1 http://sv-comp.sosy-lab.org
2 https://svn.sosy-lab.org/software/sv-benchmarks/trunk

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 401–416, 2015.
DOI: 10.1007/978-3-662-46681-0_31

http://sv-comp.sosy-lab.org
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/

402 D. Beyer

assignment is discussed in the community, implemented by the competition chair,
and finally approved by the competition jury. For the 2015 edition of SV-COMP,
a total of 13 categories were defined, selected from verification tasks written in the
programming language C. The SV-COMP repository also contains tasks written
in Java 3 and as Horn clauses 4, but those were not used in SV-COMP.

Comparative Experimental Evaluation. This report concentrates on describing
the rules, definitions, results, and on providing other interesting information
about the setup and execution of the competition experiments. The main objec-
tives that the community and organizer would like to achieve by running yearly
competitions are the following:
1. provide an overview of the state of the art in software-verification technology

and increase visibility of the most recent software verifiers,
2. establish a repository of software-verification tasks that can freely and pub-

licly be used as standard benchmark suite for evaluating verification software,
3. establish standards that make it possible to compare different verification

tools including a property language and formats for the results, and
4. accelerate the transfer of new verification technology to industrial practice.

The competition serves Objective (1) very well, which is witnessed by the past
competition sessions at TACAS being among the best-attended ETAPS sessions,
and by the large number of participating verification teams. Objective (2) is also
served well: the repository was rapidly growing in the last years and reached a
considerable size; many publications on algorithms for software verification base
the experimental evaluation on the established verification benchmarks from the
SV-COMP repository, and thus, it becomes a standard for evaluating new algo-
rithms to use the SV-COMP collection. SV-COMP 2015 was a big step forward
with respect to Objective (3). It was requested since long that verification
witnesses should be given in a common format and can be accepted only if
re-validated automatically by an independent witness checker. We have worked
towards verifiable witnesses with success, but there is a lot of work left to be
done. Whether or not SV-COMP serves well towards Objective (4) cannot be
evaluated here.

Related Competitions. There are two other competitions in the field of software
verification in general: RERS 5 and VerifyThis 6. In difference to the RERS Chal-
lenges, SV-COMP is an experimental evaluation that is performed on dedicated
machines, which provide the same limited amount of resources to each verifica-
tion tool. In difference to the VerifyThis Competitions, SV-COMP focuses on
evaluating tools for fully-automatic verification of program source code in a stan-
dard programming language. A more comprehensive list of other competitions
was given in the previous report [3].

3 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/java
4 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses
5 http://rers-challenge.org
6 http://etaps2015.verifythis.org

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/java/
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/
http://rers-challenge.org
http://etaps2015.verifythis.org

Software Verification and Verifiable Witnesses 403

2 Procedure

The procedure for the competition organization was the same as in previous
editions of SV-COMP [1,2,3], consisting of the three phases (1) benchmark sub-
mission (collect and classify new verification tasks), (2) training (teams inspect
verification tasks and train their verifiers), and (3) evaluation (verification runs
with all competition candidates and review of the system descriptions by the
competition jury). Again, SV-COMP was an open competition, i.e., the verifi-
cation tasks were known before the participating verifiers were submitted, such
that there were no surprises and developers were able to train the verifiers. All
systems and their descriptions have been archived on the SV-COMP web site
and stamped for identification with SHA hash values. All teams received the
preliminary results of their verifier for approval, before the results were publicly
announced. This time, there was no demonstration category.

3 Definitions, Formats, and Rules

The specification of the various properties was streamlined last year, such that it
was easy to extend the property language to express reachability using function
calls instead of C labels in the source code of the verification tasks, which elimi-
nates completely the need of C labels in the verification tasks. Most importantly,
we introduced a syntax for error witnesses (more details are given below). The
definition of verification task was not changed (taken from [3]).

Verification Tasks. A verification task consists of a C program and a property.
A verification run is a non-interactive execution of a competition candidate on
a single verification task, in order to check whether the following statement is
correct: “The program satisfies the property.” The result of a verification run is
a triple (answer, witness, time). answer is one of the following outcomes:

TRUE: The property is satisfied (i.e., no path that violates the property exists).
FALSE: The property is violated (i.e., there exists a path that violates the

property) and a counterexample path is produced and reported as witness.
UNKNOWN: The tool cannot decide the problem, or terminates abnormally,

or exhausts the computing resources time or memory (i.e., the competition
candidate does not succeed in computing an
answer TRUE or FALSE).

witness is explained below in an own sub-section. time is measured as consumed
CPU time until the verifier terminates, including the consumed CPU time of all
processes that the verifier started [4]. If the wall time was larger than the CPU
time, then the time is set to the wall time. If time is equal to or larger than
the time limit (15 min), then the verifier is terminated and the answer is set to
‘timeout’ (and interpreted as UNKNOWN).

The verification tasks were partitioned into twelve separate categories and
one category Overall that contains all verification tasks. The categories, their
defining category-set files, and the contained programs are explained under
Verification Tasks on the competition web site.

http://sv-comp.sosy-lab.org/2015/benchmarks.php

404 D. Beyer

Table 1. Formulas used in the competition, together with their interpretation

Formula Interpretation
G ! call(foo()) A call to function foo is not reachable on any finite execution of

the program.
G valid-free All memory deallocations are valid (counterexample: invalid free).

More precisely: There exists no finite execution of the program
on which an invalid memory deallocation occurs.

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program on which an invalid pointer dereference occurs.

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists
no finite execution of the program on which the program lost
track of some previously allocated memory.

F end All program executions are finite and end on proposition end
(counterexample: infinite loop). More precisely: There exists
no execution of the program on which the program never
terminates.

Properties. The specification to be verified is stored in a file that is given
as parameter to the verifier. In the repository, the specifications are available
as .prp files in the respective directories of the benchmark categories.

The definition init(main()) gives the initial states of the program by a call of
function main (with no parameters). The definition LTL(f) specifies that formula
f holds at every initial state of the program. The LTL (linear-time temporal logic)
operator G f means that f globally holds (i.e., everywhere during the program
execution), and the operator F f means that f eventually holds (i.e., at some
point during the program execution). The proposition call(foo) is true if a call
to the function foo is reached, and the proposition end is true if the program
execution terminates (e.g., return of function main, program exit, abort).
Call Unreachability. The reachability property perror is encoded in the program
source code using a call to function __VERIFIER_error(), expressed using the
following specification (the interpretation of the LTL formula is given in Table 1):

CHECK(init(main()), LTL(G ! call(__VERIFIER_error())))

Memory Safety. The memory-safety property pmemsafety (only used in one cat-
egory) consists of three partial properties and is expressed using the following
specification (interpretation of formulas given in Table 1):

CHECK(init(main()), LTL(G valid-free))
CHECK(init(main()), LTL(G valid-deref))
CHECK(init(main()), LTL(G valid-memtrack))

The verification result FALSE for the property pmemsafety is re-
quired to include the violated partial property: FALSE(p), with
p ∈ {pvalid−free, pvalid−deref, pvalid−memtrack}, means that the (partial) prop-
erty p is violated. According to the requirements for verification tasks, all

Software Verification and Verifiable Witnesses 405

programs in category MemorySafety violate at most one (partial) property
p ∈ {pvalid−free, pvalid−deref , pvalid−memtrack}. Per convention, functions malloc
and alloca are assumed to always return a valid pointer, i.e., the memory
allocation never fails, and function free always deallocates the memory and
makes the pointer invalid for further dereferences. Further assumptions are
explained under Definitions and Rules on the competition web site.
Program Termination. The termination property ptermination (only used in one
category) is based on the proposition end and expressed using the following
specification (interpretation in Table 1):

CHECK(init(main()), LTL(F end))

Verifiable Witnesses. For the first time in the history of software verification
(of real-world, C programs),7 we defined a formal, machine-readable format for
error witnesses and required the verifiers to produce automatically-verifiable wit-
nesses for the counterexample path that is part of the result triple as witness.
This new rule was applied to the categories with reachability properties and veri-
fication tasks of sequential programs without recursion. If an error path required
recursive function calls or heap operations, the witness was not checked.

We represent witnesses as automata. Formally, a witness automaton consists of
states and transitions, where each transition is annotated with data that can be
used to match program executions. A data annotation can be (a) a token number
(position in the token stream that the parser receives), (b) an assumption (for
example, the assumption a = 1; means that program variable a has value 1),
(c) a line number and a file name, (d) a function call or return, and (e) a piece
of source-code syntax. More details are given on a web page.8

A witness checker is a software verifier that analyzes the synchronized product
of the program with the witness automaton, where transitions are synchronized
using program operations and transition annotations. This means that the wit-
ness automaton observes the program paths that the verifier wants to explore: if
the operation on the program path does not match the transition of the witness
automaton, then the verifier is forbidden to explore that path further; if the
operation on the program path matches, then the witness automaton and the
program proceed to the next state, possibly restricting the program’s state such
that the assumptions given in the data annotation are satisfied.

In SV-COMP, the time limit for a validation run was set to 10 % of the CPU
time for a verification run, i.e., the witness checker was limited to 90 s. If the
witness checker did not succeed in the given amount of time, then most likely the
witness was not concrete enough (time for validation can be a quality indicator).

7 There was research already on reusing previously computed error paths, but by the same tool
and in particular, using tool-specific formats: for example, Esbmc was extended to reproduce
errors via instantiated code [21], and CPAchecker was used to re-check previously computed
error paths by interpreting them as automata that control the state-space search [5]. The
competition on termination uses CPF: http://cl-informatik.uibk.ac.at/software/cpf .

8 http://sv-comp.sosy-lab.org/2015/witnesses

http://sv-comp.sosy-lab.org/2015/rules.php
http://cl-informatik.uibk.ac.at/software/cpf
http://sv-comp.sosy-lab.org/2015/witnesses

406 D. Beyer

Table 2. Scoring schema for SV-COMP 2015 (penalties increased, cf. [3])

Reported result Points Description
UNKNOWN 0 Failure to compute verification result
FALSE correct +1 Violation of property in program was correctly found
FALSE incorrect −6 Violation reported but property holds (false alarm)
TRUE correct +2 Correct program reported to satisfy property
TRUE incorrect −12 Incorrect program reported as correct (wrong proofs)

Machine-readable witnesses in a common exchange format have the following
advantages for the competition:

– Witness Validation: The answer FALSE is only accepted if the witness can
be validated by an automatic witness checker.

– Witness Inspection: If a verifier found an error in a verification task that was
previously assumed to have expected outcome TRUE, the witness that was
produced could immediately be validated with two different verifiers (one
explicit-value-based and one SAT-based).

Outside the competition, the following examples are among the many useful
applications of witnesses in a common format:

– Witness Database: Witnesses can be stored in databases as later source of
information.

– Bug Report: Witnesses can be a useful attachment for bug reports, in order
to precisely report to the developers what the erroneous behavior is.

– Bug Confirmation: To gain more confidence that a bug is indeed present, the
error witness can be re-confirmed with a different verifier, perhaps using a
completely different technology.

– Re-Verification: If the result FALSE was established, the error witness can
later be reused to re-establish the verification result with much less resources,
for example, if the program source code is slightly changed and the developer
is interested if the same bug still exists in a later version of the program [5].

Evaluation by Scores and Run Time. The scoring schema was changed in
order to increase the penalty for wrong results (in comparison to the previous
edition of the competition by a factor of 1.5). The overview is given in Table 2.
The ranking is decided based on the sum of points and for equal sum of points
according to success run time, which is the total CPU time over all verification
tasks for which the verifier reported a correct verification result. Opting-out
from Categories and Computation of Score for Meta Categories were defined as
in SV-COMP 2013 [2]. The Competition Jury consists again of the chair and one
member of each participating team. Team representatives of the jury are listed
in Table 3.

Software Verification and Verifiable Witnesses 407

Table 3. Competition candidates with their system-description references and repre-
senting jury members

Competition candidate Ref. Jury member Affiliation
AProVE [23] Thomas Ströder RWTH Aachen, Germany
Beagle Dexi Wang Tsinghua U, China
Blast [22] Vadim Mutilin ISPRAS, Russia
Cascade [26] Wei Wang New York U, USA
Cbmc [15] Michael Tautschnig Queen Mary U London, UK
CPAchecker [8] Matthias Dangl U Passau, Germany
CPArec [7] Ming-Hsien Tsai Academia Sinica, Taiwan
Esbmc [17] Jeremy Morse U Bristol, UK
Forest [9] Pablo Sanchez U Cantabria, Spain
Forester [13] Ondřej Lengál Brno UT, Czech Republic
FuncTion [25] Caterina Urban ENS Paris, France
HipTnt+ [16] Ton-Chanh Le NUS, Singapore
Lazy-CSeq [14] Gennaro Parlato U Southampton, UK
Map2Check Herbert O. Rocha FUA, Brazil
MU-CSeq [24] Bernd Fischer Stellenbosch U, South Africa
Perentie [6] Franck Cassez Macquarie U/NICTA, Australia
PredatorHP [18] Tomáš Vojnar Brno UT, Czech Republic
SeaHorn [10] Arie Gurfinkel SEI, USA
Smack+Corral [11] Zvonimir Rakamarić U Utah, USA
UltiAutomizer [12] Matthias Heizmann U Freiburg, Germany
UltiKojak [20] Alexander Nutz U Freiburg, Germany
Unb-Lazy-CSeq [19] Salvatore La Torre U Salerno, Italy

4 Results and Discussion
The results of the competition experiments represent the state of the art in fully-
automatic and publicly-available software-verification tools. The report shows
the improvements of the last year, in terms of effectiveness (number of verifica-
tion tasks that can be solved, correctness of the results, as accumulated in the
score) and efficiency (resource consumption in terms of CPU time). The results
that are presented in this article were approved by the participating teams.

Participating Verifiers. Table 3 provides an overview of the participating
competition candidates and Table 4 lists the features and technologies that are
used in the verification tools.

Technical Resources. The technical setup for running the experiments was
similar to last year [3], except that we used eight, newer machines. All verifica-
tion runs were natively executed on dedicated unloaded compute servers with a
3.4 GHz 64-bit Quad-Core CPU (Intel i7-4770) and a GNU/Linux operating sys-
tem (x86_64-linux). The machines had 33 GB of RAM, of which exactly 15 GB
(memory limit) were made available to the verifiers. The run-time limit for each
verification run was 15 min of CPU time. The run-time limit for each witness
check was set to 1.5 min of CPU time. The tables report the run time in seconds
of CPU time; all measured values are rounded to two significant digits.

408 D. Beyer

Table 4. Technologies and features that the verification tools offer

Verifier C
E
G

A
R

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

S
ym

b
ol

ic
E
xe

cu
ti

on

B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

k-
In

d
u
ct

io
n

P
ro

p
er

ty
-D

ir
ec

te
d

R
ea

ch
ab

il
it
y

E
xp

li
ci

t-
V

al
u
e

A
n
al

ys
is

N
u
m

er
ic

al
In

te
rv

al
A

n
al

ys
is

S
h
ap

e
A

n
al

ys
is

S
ep

ar
at

io
n

L
og

ic

B
it

-P
re

ci
se

A
n
al

ys
is

A
R

G
-B

as
ed

A
n
al

ys
is

L
az

y
A

b
st

ra
ct

io
n

In
te

rp
ol

at
io

n

A
u
to

m
at

a-
B

as
ed

A
n
al

ys
is

C
on

cu
rr

en
cy

S
u
p
p
or

t

R
an

ki
n
g

F
u
n
ct

io
n
s

AProVE ✓ ✓ ✓ ✓ ✓

Beagle ✓ ✓ ✓

Blast ✓ ✓ ✓ ✓ ✓ ✓

Cascade ✓ ✓ ✓

Cbmc ✓ ✓ ✓ ✓

CPAchecker ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPArec ✓ ✓ ✓ ✓ ✓

Esbmc ✓ ✓ ✓ ✓

Forest ✓ ✓ ✓

Forester ✓ ✓

FuncTion ✓ ✓

HipTnt+ ✓ ✓

Lazy-CSeq ✓ ✓ ✓

Map2Check ✓ ✓

MU-CSeq ✓ ✓ ✓

Perentie ✓ ✓ ✓ ✓ ✓

PredatorHP ✓

SeaHorn ✓ ✓ ✓ ✓ ✓ ✓

Smack+Corral ✓ ✓ ✓

UltiAutomizer ✓ ✓ ✓ ✓ ✓ ✓

UltiKojak ✓ ✓ ✓ ✓ ✓

Unb-Lazy-CSeq ✓ ✓ ✓ ✓ ✓ ✓

Software Verification and Verifiable Witnesses 409

Table 5. Quantitative overview over all results Part 1 (score / CPU time)

Verifier
Repr. jury member A

rr
ay

s
14

5
po

in
ts

86
ta

sk
s

B
it
V
ec

to
rs

83
po

in
ts

47
ta

sk
s

C
on

cu
rr

en
t

1
22

2
po

in
ts

1
00

3
ta

sk
s

C
on

tr
F
lo
w

3
12

2
po

in
ts

1
92

7
ta

sk
s

D
ev

ic
eD

ri
v.

3
09

7
po

in
ts

1
65

0
ta

sk
s

F
lo
at

s
14

0
po

in
ts

81
ta

sk
s

H
ea

p
M

an
ip

.
13

5
po

in
ts

80
ta

sk
s

AProVE

T. Ströder, Germany

Beagle 4
D. Wang, China 58 s

Blast 983 2 736
V. Mutilin, Russia 33 000 s 11 000 s

Cascade 52 537 70
W. Wang, USA 16 000 s 43 000 s 6 000 s

Cbmc -134 68 1 039 158 2 293 129 100
M. Tautschnig, UK 2 500 s 1 800 s 78 000 s 570 000 s 380 000 s 15 000 s 13 000 s

CPAchecker 2 58 0 2 317 2 572 78 96
M. Dangl, Germany 62 s 870 s 0 s 47 000 s 39 000 s 5 000 s 930 s

CPArec

M.-H. Tsai, Taiwan

Esbmc -206 69 1 014 1 968 2 281 -12 79
J. Morse, UK 5.5 s 470 s 13 000 s 59 000 s 36 000 s 5 300 s 37 s

Forest

P. Sanchez, Spain

Forester 32
O. Lengál, Czechia 1.8 s

FuncTion

C. Urban, France

HipTnt+
T.-C. Le, Singapore

Lazy-CSeq 1 222
G. Parlato, UK 5 600 s

Map2Check

H. O. Rocha, Brazil

MU-CSeq 1 222
B. Fischer, ZA 16 000 s

Perentie

F. Cassez, Australia

PredatorHP 111
T. Vojnar, Czechia 140 s

SeaHorn 0 -80 -8 973 2 169 2 657 -164 -37
A. Gurfinkel, USA 0.61 s 550 s 42 s 30 000 s 16 000 s 5.9 s 14 s

Smack+Corral 48 1 691 2 507 109
Z. Rakamarić, USA 400 s 78 000 s 72 000 s 820 s

UltiAutomizer 2 5 1 887 274 84
M. Heizmann, Germany 6.4 s 170 s 54 000 s 850 s 460 s

UltiKojak 2 -62 872 82 84
A. Nutz, Germany 5.9 s 120 s 10 000 s 270 s 420 s

Unb-Lazy-CSeq 984
S. La Torre, Italy 36 000 s

410 D. Beyer

Table 6. Quantitative overview over all results Part 2 (score / CPU time)

Verifier
Repr. jury member M

em
S
af
et

y
36

1
po

in
ts

20
5

ta
sk

s

R
ec

u
rs
iv
e

40
po

in
ts

24
ta

sk
s

S
eq

u
en

ti
al

36
4

po
in

ts
26

1
ta

sk
s

S
im

p
le

68
po

in
ts

46
ta

sk
s

T
er

m
in

at
io
n

74
2

po
in

ts
39

3
ta

sk
s

O
ve

ra
ll

9
56

2
po

in
ts

5
80

3
ta

sk
s

AProVE 610
T. Ströder, Germany 5 400 s

Beagle 6
D. Wang, China 22 s

Blast 32
V. Mutilin, Russia 4 200 s

Cascade 200
W. Wang, USA 82 000 s

Cbmc -433 0 -171 51 1 731
M. Tautschnig, UK 14 000 s 10 000 s 39 000 s 16 000 s 1 100 000 s

CPAchecker 326 16 130 54 0 4 889
M. Dangl, Germany 5 700 s 31 s 11 000 s 4 000 s 0 s 110 000 s

CPArec 18
M.-H. Tsai, Taiwan 140 s

Esbmc 193 29 -2 161
J. Morse, UK 9 600 s 990 s 130 000 s

Forest

P. Sanchez, Spain

Forester 22
O. Lengál, Czechia 25 s

FuncTion 350
C. Urban, France 61 s

HipTnt+ 545
T.-C. Le, Singapore 300 s

Lazy-CSeq

G. Parlato, UK

Map2Check 28
H. O. Rocha, Brazil 2 100 s

MU-CSeq

B. Fischer, ZA

Perentie

F. Cassez, Australia

PredatorHP 221
T. Vojnar, Czechia 460 s

SeaHorn 0 -88 -59 65 0 -6 228
A. Gurfinkel, USA 0 s 2.3 s 5 800 s 1 400 s 0 s 53 000 s

Smack+Corral 27 51
Z. Rakamarić, USA 2 300 s 5 100 s

UltiAutomizer 95 25 15 0 565 2 301
M. Heizmann, Germany 13 000 s 310 s 8 600 s 1 800 s 8 600 s 87 000 s

UltiKojak 66 10 -10 3 231
A. Nutz, Germany 4 800 s 220 s 7 000 s 140 s 23 000 s

Unb-Lazy-CSeq

S. La Torre, Italy

Software Verification and Verifiable Witnesses 411

Table 7. Overview of the top-three verifiers for each category (CPU time in s)

Rank Candidate Score CPU Solved False Wrong
Time Tasks Alarms Proofs

Arrays
1 Smack+Corral 48 400 51 7 1
2 UltiKojak 2 5.9 1
3 UltiAutomizer 2 6.4 1

BitVectors
1 Esbmc 69 470 45 1
2 Cbmc 68 1 800 44 1
3 CPAchecker 58 870 40 1

Concurrency
1 Lazy-CSeq 1222 5 600 1003
2 MU-CSeq 1 222 16 000 1003
3 Cbmc 1 039 78 000 848 1 1

ControlFlow
1 CPAchecker 2317 47 000 1302 2 2
2 SeaHorn 2 169 30 000 1014 5 2
3 Esbmc 1 968 59 000 1212 36

DeviceDrivers64
1 Blast 2736 11 000 1 481 5 9
2 SeaHorn 2 657 16 000 1 440 3 12
3 CPAchecker 2 572 39 000 1 390 17 4

Floats
1 Cbmc 129 15 000 74
2 CPAchecker 78 5 100 54 2
3 Esbmc −12 5 300 27 7 2

HeapManipulation
1 PredatorHP 111 140 68
2 Smack+Corral 109 820 76 3
3 Cbmc 100 13 000 69 2

MemorySafety
1 CPAchecker 326 5 700 199 4
2 PredatorHP 221 460 134 1
3 Cascade 200 82 000 154 2 5

Recursive
1 Smack+Corral 27 2 300 23 1
2 UltiAutomizer 25 310 16
3 CPArec 18 140 12

SequentializedConcurrency
1 Esbmc 193 9 600 144 2
2 CPAchecker 130 11 000 113 1
3 UltiAutomizer 15 8 600 51 9

Simple
1 SeaHorn 65 1 400 44
2 CPAchecker 54 4 000 32
3 Smack+Corral 51 5 100 43 2

Termination
1 AProVE 610 5 400 305
2 UltiAutomizer 565 8 600 304 1
3 HipTnt+ 545 300 290

Overall
1 CPAchecker 4889 110 000 3 211 29 7
2 UltiAutomizer 2 301 87 000 1 453 21 3
3 Cbmc 1 731 1 100 000 4 056 77 453

412 D. Beyer

One complete competition run (each candidate on all selected categories ac-
cording to the opt-outs) consisted of 49 855 verification runs and 4 151 witness
checks. The consumed total CPU time for one competition run required a total
of 119 days of CPU time for the verifiers and 1 day for the witness checker. Each
tool was executed at least twice, in order to make sure the results are accurate
and not contradicting in any sense. Not counted in the above measures on the
dedicated competition machines are the preparation runs that were required to
find out if the verifiers are successfully installed and running. Other machines
with a slightly different specification were used for those test runs while the eight
dedicated machines were occupied by the official competition runs.

Quantitative Results. Tables 5 and 6 present a quantitative overview over
all tools and all categories (Forest and Perentie participated only in subcate-
gory Loops). The format of the table is similar to those of previous SV-COMP
editions [3]: The tools are listed in alphabetical order; every table cell for competi-
tion results lists the score in the first row and the CPU time for successful runs in
the second row. We indicated the top-three candidates by formatting their score
in bold face and in larger font size. An empty table cell means that the verifier
opted-out from the respective category. For the calculation of the score and for
the ranking, the scoring schema in Table 2 was applied, the scores for the meta
categories Overall and ControlFlow (consisting of several sub-categories) were
computed using normalized scores as defined in the report for SV-COMP’13 [2].

Table 7 reports the top-three verifiers for each category. The run time (col-
umn ‘CPU Time’) refers to successfully solved verification tasks (column ‘Solved
Tasks’). The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of
verification tasks for which the tool reported wrong results: reporting an error
path but the property holds (false positive) and claiming that the program fulfills
the property although it actually contains a bug (false negative), respectively.

Score-Based Quantile Functions for Quality Assessment. Score-based
quantile functions [2] are helpful for visualizing results of comparative evalua-
tions. The competition web page 9 includes such a plot for each category; Fig. 1
illustrates only the category Overall (all verification tasks). Six verifiers partici-
pated in category Overall, for which the quantile plot shows the overall perfor-
mance over all categories (scores for meta categories are normalized [2]).

Overall Quality Measured in Scores (Right End of Graph). CPAchecker is the
winner of this category: the x-coordinate of the right-most data point represents
the highest total score (and thus, the total value) of the completed verification
work (cf. Table 7; right-most x-coordinates match the score values in the table).

Amount of Incorrect Verification Work (Left End of Graph). The left-most data
points of the quantile functions represent the total negative score of a verifier (x-
coordinate), i.e., amount of incorrect and misleading verification work. Verifiers
should start with a score close to zero; UltiAutomizer and CPAchecker are
best in this aspect (also the right-most columns of category Overall in Table 7

9 http://sv-comp.sosy-lab.org/2015/results

http://sv-comp.sosy-lab.org/2015/results

Software Verification and Verifiable Witnesses 413

 1

 10

 100

 1000
Ti

m
e

in
 s

CBMC
CPAchecker

ESBMC
SeaHorn

UAutomizer
UKojak

-10000 -8000 -6000 -4000 -2000 0 2000 4000
Accumulated score

Fig. 1. Quantile functions for category Overall. We plot all data points (x, y) such
that the maximum run time of the n fastest correct verification runs is y and x is the
accumulated score of all incorrect results and those n correct results. A logarithmic
scale is used for the time range from 1 s to 1000 s, and a linear scale is used for the
time range between 0 s and 1 s.

report this: only 21 and 29 false alarms, respectively, and only 3 and 7 wrong
proofs, for a total of 5 803 verification tasks).
Amount of Correct Verification Work (Length of Graph). The length of the graph
indicates the amount of correct results: for example, Cbmc and Esbmc both
produce a large amount of correct results.
Characteristics of the Verification Tools. The plot visualizations also help under-
standing how the verifiers work internally: (1) The y-coordinate of the left-most
data point refers to the ‘easiest’ verification task for the verifier. We can see
that verifiers that are based on a Java virtual machine need some start-up time
(CPAchecker, UltiAutomizer, and UltiKojak). (2) The y-coordinate of the
right-most data point refers to the successfully solved verification task that the
verifier spent most time on (this is mostly just below the time limit). We can read
the ranking of verifiers in this category from right to left. (3) The area below a
graph is proportional to the accumulated CPU time for successfully solved tasks.
We can identify the most resource-efficient verifiers by looking at the right-most
graphs and those closest to the x-axis. (4) Also the shape of the graph can give in-
teresting insights: From Cbmc’s horizontal line just below the time limit at 850 s,
we can see that this bounded model checker returns a result just before the time
limit is reached. The quantile plot for CPAchecker shows an interesting bend at
60 s of run time, where the verifier suddenly switches gears: it gives up with one
strategy (without abstraction) performs an internal restart and proceeds using
another strategy (with abstraction and CEGAR-based refinement).

414 D. Beyer

Robustness, Soundness, and Completeness. The best tools of each cate-
gory show that state-of-the-art verification technology is quite advanced already:
Table 7 (last two columns) reports a low number of wrong verification results,
with a few exceptions. Cbmc and Esbmc are the two verifiers that produce the
most wrong safety proofs (missed bugs): both of them are bounded model check-
ers. In three categories, the top-three verifiers did not report any wrong proof.

Verifiable Witnesses. One of the objectives of program verification is to provide
a witness for the verification result. This was an open problem of verification tech-
nology: there was no commonly supported witness format yet, and the verifiers
were not producing accurate witnesses that could be automatically assessed for
validity. SV-COMP 2015 changed this (restricted to error witnesses for now): all
verifiers that participated in categories that required witness validation supported
the common exchange format for error witnesses, and produced error paths in that
format. We used a witness checker to validate the obtained error paths.

5 Conclusion
The 4th edition of the Competition on Software Verification was successful in
several respects: (1) We introduced verifiable witnesses (the verifiers produced
error paths in a common exchange format, which made it possible to validate
a given error path by using a separate witness checker). (2) We had a record
number of 22 participating verification tools from 13 countries. (3) The reposi-
tory of verification tasks was extended by two new categories: Arrays and Floats.
(4) The properties to be verified were extended by a liveness property: Termina-
tion. (5) The total number of verification tasks in the competition run was dou-
bled (compared to SV-COMP’14) to a total of 5 803 verification tasks. Besides
the above-mentioned success measures, SV-COMP serves as a yearly overview
of the state of the art in software verification, and witnesses an enormous pace
of development of new theory, data structures and algorithms, and tool imple-
mentations that analyze real C code. As in previous years, the organizer and the
jury made sure that the competition follows the high quality standards of the
TACAS conference, in particular to respect the important principles of fairness,
community support, transparency, and technical accuracy.

Acknowledgement. We thank K. Friedberger for his support during the eval-
uation phase and for his work on the benchmarking infrastructure, the competi-
tion jury for making sure that the competition is well-grounded in the community,
and the teams for making SV-COMP possible through their participation.

References
1. Beyer, D.: Competition on software verification (SV-COMP). In: Flanagan, C.,

König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012)

2. Beyer, D.: Second competition on software verification. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 594–609. Springer, Heidelberg (2013)

Software Verification and Verifiable Witnesses 415

3. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg (2014)

4. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement (2015)
(unpublished manuscript)

5. Beyer, D., Wendler, P.: Reuse of verification results: Conditional model checking,
precision reuse, and verification witnesses. In: Bartocci, E., Ramakrishnan, C.R.
(eds.) SPIN 2013. LNCS, vol. 7976, pp. 1–17. Springer, Heidelberg (2013)

6. Cassez, F., Matsuoka, T., Pierzchalski, E., Smyth, N.: Perentie: Modular trace
refinement and selective value tracking (Competition contribution). In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 438–441. Springer, Heidelberg
(2015)

7. Chen, Y.-F., Hsieh, C., Tsai, M.-H., Wang, B.-Y., Wang, F.: CPArec: Verifying re-
cursive programs via source-to-source program transformation (Competition contri-
bution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 425–427.
Springer, Heidelberg (2015)

8. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive pro-
grams and floating-point arithmetic. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 422–424. Springer, Heidelberg (2015)

9. Gonzalez-de-Aledo, P., Sanchez, P.: FramewORk for embedded system verificaTion
(Competition contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 428–430. Springer, Heidelberg (2015)

10. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: A framework for verifying C pro-
grams (Competition contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 446–449. Springer, Heidelberg (2015)

11. Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.:
SMACK+Corral: A modular verifier (Competition contribution). In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 450–453. Springer, Heidel-
berg (2015)

12. Heizmann, M., Dietsch, D., Leike, J., Musa, B., Podelski, A.: Ultimate Automizer
with Array Interpolation (Competition contribution). In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 454–456. Springer, Heidelberg (2015)

13. Holík, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forester:
Shape analysis using tree automata large (Competition contribution). In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 431–434. Springer, Heidelberg
(2015)

14. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A
lazy sequentialization tool for C (Competition contribution). In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 398–401. Springer, Hei-
delberg (2014)

15. Kroening, D., Tautschnig, M.: CBMC: C bounded model checker (Competition
contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS,
vol. 8413, pp. 389–391. Springer, Heidelberg (2014)

16. Le, T.C., Qin, S., Chin, W.-N.: Termination and non-termination specification
inference In: PLDI 2015. ACM (2015) (unpublished manuscript)

17. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22 (Com-
petition contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 405–407. Springer, Heidelberg (2014)

18. Muller, P., Peringer, P., Vojnar, T.: Predator hunting party (Competition contribu-
tion). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 442–445.
Springer, Heidelberg (2015)

416 D. Beyer

19. Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Unbounded Lazy-CSeq: A lazy
sequentialization tool for C programs with unbounded context switches (Competi-
tion contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 460–462. Springer, Heidelberg (2015)

20. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: Ultimate Kojak (Competition
Contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
457–459. Springer, Heidelberg (2015)

21. Rocha, H., Barreto, R., Cordeiro, L., Neto, A.D.: Understanding programming bugs
in ANSI-C software using bounded model checking counter-examples. In: Derrick,
J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 128–
142. Springer, Heidelberg (2012)

22. Shved, P., Mandrykin, M., Mutilin, V.: Predicate analysis with Blast 2.7 (Com-
petition contribution). In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 525–527. Springer, Heidelberg (2012)

23. Ströder, T., Aschermann, C., Frohn, F., Hensel, J., Giesl, J.: AProVE: Termination
and memory safety of C programs (Competition contribution). In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 416–418. Springer, Heidelberg (2015)

24. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-CSeq 0.3: Se-
quentialization by read-implicit and coarse-grained memory unwindings (Competi-
tion contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 435–437. Springer, Heidelberg (2015)

25. Urban, C.: FuncTion: An abstract domain functor for termination (Competition
contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
463–465. Springer, Heidelberg (2015)

26. Wang, W., Barrett, C.: Cascade (Competition contribution). In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 419–421. Springer, Heidelberg (2015)

	Software Verification and Verifiable Witnesses
	1 Introduction
	2 Procedure
	3 Definitions, Formats, and Rules
	4 Results and Discussion
	5 Conclusion

