
SAM: The Static Analysis Module

of the MAVERIC Mobile App Security
Verification Platform

Alessandro Armando1,2, Gianluca Bocci3, Giantonio Chiarelli3,
Gabriele Costa1, Gabriele De Maglie1, Rocco Mammoliti3, and Alessio Merlo1

1 DIBRIS, University of Genova, Italy
name.surname@unige.it

2 Bruno Kessler Foundation, Trento, Italy
armando@fbk.eu

3 Poste Italiane, Roma, Italy
{boccigi2,chiare96,mammoliti.rocco}@posteitaliane.it

Abstract. The tremendous success of the mobile application paradigm
is due to the ease with which new applications are uploaded by devel-
opers, distributed through the application markets (e.g. Google Play),
and finally installed by the users. Yet, the very same model is causing
serious security concerns, since users have no or little means to ascer-
tain the trustworthiness of the applications they install on their devices.
To protect their customers, Poste Italiane has defined the Mobile Ap-
plication Verification Cluster (MAVERIC), a process for the systematic
security analysis of third-party mobile apps that leverage the online ser-
vices provided by the company (e.g. home banking, parcel tracking). We
present SAM, a toolkit that supports this process by automating a num-
ber of operations including reverse engineering, privilege analysis, and
automatic verification of security properties. We introduce the function-
alities of SAM through a demonstration of the platform applied to real
Android applications.

1 Introduction

Mobile devices are becoming the main access point for many security-critical
online services (e.g., e-Banking). Handling valuable resources and data, they
are appealing targets for security attacks. In this context, mobile applications
represent a major threat. Smartphones retrieve and install software packages
from unknown, possibly malicious sources. However, most of the modern mobile
operating systems try to regulate the software distribution, therefore mitigating
the associated risk, by means of trusted repositories, called application stores,
e.g., Google Play and Apple Store. Major service providers, including Poste
Italiane, participate in this ecosystem both directly, i.e., by publishing their
Apps, and indirectly, i.e., through third-party apps that access web services
offered by Poste Italiane. The ability to tell apart benign applications from
malicious or flawed ones is therefore a primary goal for Poste Italiane. In fact,

c© Springer-Verlag Berlin Heidelberg 2015
C. Baier and C. Tinelli (Eds.): TACAS 2015, LNCS 9035, pp. 225–230, 2015.
DOI: 10.1007/978-3-662-46681-0_19



226 A. Armando et al.

the latter malicious or flawed application run on the customer’s mobile devices
may severely affect the security of the transactions as well as the privacy of
the customer. To tackle the challenge Poste Italiane is developing the Mobile
Application Verification Cluster (MAVERIC), a unified verification framework
that provides automated support to a number of key activities ranging from
mobile app verification to legal analysis. Security experts at the Poste Italiane
Computer Emergency Response Team (CERT) are already using MAVERIC to
systematically assess the security of the Poste Italiane mobile apps ecosystem.

In this paper we introduce the Static Analysis Module (SAM), a core compo-
nent of the MAVERIC architecture. SAM integrates some state-of-the-art static
analysis techniques for mobile application packages (APKs) and produces a de-
tailed security assessment report containing statistics, properties of the analyzed
application, and a number of additional artefacts.

The paper is structured as follows. Section 2 presents the architecture of the
SAM, Section 3 describes the components of the module and Section 4 provides
a brief overview of the MAVERIC web application. Finally, Section 5 concludes
the paper.

2 MAVERIC and SAM

Static software analysis is a complex and multifaceted task. In most cases, static
analysis methods have a precise scope. For instance, malware detection [6] aims
at discovering whether an application carries malicious code. Instead, code re-
view [7] applies to software sources for finding flaws in implementations. As they
target different aspects and resources, the available static analysis techniques
are often complementary and can be combined to extend their potential to new
emerging scenarios. SAM integrates different static analysis approaches to sup-
port the automatic assessment of Android applications.

The architecture of MAVERIC is depicted in Fig. 1. MAVERIC leverages
AppVet [9] to orchestrate a number of fully automated security analysis tech-
niques. AppVet is open-source web service developed by NIST that supports
the integration of mobile application analysis tools. It must be noted that Ap-
pVet supports basic logging and data management functionalities, but it does
not include any analysis component. MAVERIC extends AppVet with several
new modules and tools. Among them, SAM implements a set of components
supporting the systematic security assessment of Android applications. In the
near future, MAVERIC will be extended with further modules targeting other
aspects of the security analysis of mobile applications such as the dynamic and
legal analyses. Below, we briefly introduce the SAM sub-modules and their role.

Reverse Engineering. It gets the APK file containing the Android app and
retrieves general information about the APK and its content (i.e., devel-
oper, version, release date, etc.). Moreover, it rebuilds the source code and
computes metrics and statistics on it.

Permission Checking. It infers permission requests and usage from both the
manifest file and the application code.



The SAM of the MAVERIC Mobile App Security Verification Platform 227

Fig. 1. Architecture of the MAVERIC platform

Code Review. It verifies whether the APK code contains some common vul-
nerabilities by comparing it with a list of known ones.

Malware Analysis. It processes the APK looking for malware components and
known, malicious patterns.

Application Verification. It checks whether the APK complies with a secu-
rity policy (specified by the analyst).

The results of the analysis are provided back to the analysts in the form of
artefacts (e.g. analysis reports). In the next section, we detail the SAM sub-
modules and we report their development status.

3 Static Analysis Techniques

In this section we present the techniques supported by SAM.

Reverse Engineering. The reverse engineering module relies on few tools for
APK inspection and Java bytecode decompilation. Used software include An-
droguard (https://code.google.com/p/androguard/), APKTool (https://
code.google.com/p/android-apktool/), DEX2JAR (https://code.google.
com/p/dex2jar/) and CFR (http://www.benf.org/other/cfr/). This module
recreates the resources that the developer used to build the APK. They include
source code, configuration files and other resources (multimedia contents, binary
data, etc.).

The extracted code is processed for finding whether the application uses native
libraries, dynamic class loading or code reflection. Although not always danger-
ous, these features might cause a security breach. For instance, native code can
evade VM security checks (as it is directly executed by the OS).

For each class file, the reverse engineering module returns the size in KB, the
number of methods and fields. Also, it assigns an obfuscation score o ∈ [0, 1]

https://code.google.com/p/androguard/
https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/
https://code.google.com/p/dex2jar/
https://code.google.com/p/dex2jar/
http://www.benf.org/other/cfr/


228 A. Armando et al.

heuristically computed. Intuitively, o indicates the ease to perform a manual
inspection of the app code, e.g., o = 1 stands for heavily obfuscated code. The
heuristic function considers syntactic properties like length and variation of vari-
able, method and class names.

Permission Checking. The permission checking module retrieves and pro-
cesses the sets of permissions requested (R) and used (U) by the APK. The ele-
ments of R and U are listed along with their protection level (obtained from the
API specification, see http://developer.android.com/training/articles/

security-tips.html). The protection level ranges over {SignatureOrSystem,
System, Dangerous, Normal}. Typically, higher values, e.g., SignatureOrSystem,
denote permissions needed to access valuable resources or critical functionalities.

The module also computes the relation between U and R. Ideally, applications
should statically declare exactly all the permissions they need at runtime, i.e.,
U = R. Instead, if R \U �= ∅ some permissions are requested but not used. This
means that the application is somehow over-privileged. Although not necessarily
dangerous, this case is in contrast with the least privilege principle [5]. Finally,
if U \R �= ∅ some permissions used by the code are not declared. This condition
can lead to runtime issues. As a matter of fact, when an unprivileged piece of
code attempts an access, a security error is fired. The application carrying these
instructions1, is terminated with a security exception. Although the permissions
could be obtained dynamically, e.g., granted by a another app, the application
is behaving differently from what is declared in its manifest.

Malware Analysis. Malware detection has a long standing tradition and sev-
eral approaches exist. A common technique is the signature-based detection, con-
sisting in a comparison between application fingerprints against large databases
of known malware [8]. Other methods include analysis of program semantics [3]
and runtime behavioural checking [10]. These techniques consider different per-
spectives and can be applied to a single APK for obtaining a multi-dimensional
malware profile. The malware analysis module can interact with third-party on-
line malware detection services to do this. For instance, VirusTotal (https://
www.virustotal.com/) is a state-of-the-art web application orchestrating sev-
eral malware analysis tools and listing their output. Other, similar services are
NVISO ApkScan (http://apkscan.nviso.be/) and MARBLE Scan (http://
www.marblesecurity.com/).

Application Verification. The application verification module exploits model
checking [4] to verify that an APK complies with a policy defined as a temporal
property. The module proceeds by extracting a model of the app and verifying
whether it satisfies the policy or not. Models are generated by extracting control
flow graphs and by translating them into labeled transition systems. Policies
are specified through a specification language called ConSpec [1], i.e., a pol-
icy language already exploited in both verification and monitoring frameworks.
ConSpec uses a Java-like syntax for defining an abstract security controller.

1 Notice that if such code is unreachable, the application includes unneeded elements
which is often suspect.

http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/training/articles/security-tips.html
https://www.virustotal.com/
https://www.virustotal.com/
http://apkscan.nviso.be/
http://www.marblesecurity.com/
http://www.marblesecurity.com/


The SAM of the MAVERIC Mobile App Security Verification Platform 229

The controller consists of a sequence of event-guarded rules. When one of the
events takes place, the controller changes its state (defined through a set of
variables) according to a statement associated to the rule. Model checking is
carried out by Spin (http://spinroot.com/), a state-of-the-art model checker.
A similar application verification approach was used in [2] where a prototype im-
plementation analysed hundreds of Android applications against a BYOD policy
of the US Government.

Secure Code Review. Code review aims at discovering known vulnerabili-
ties and dangerous code patterns. A source of such patterns is provided by the
OWASP top ten (available at https://www.owasp.org/). Although some of the
reported vulnerabilities cannot be detected by only considering a mobile applica-
tion, e.g., M1: Weak Server Side Controls, part of them are localized in the APK
code. For instance, M2: Insecure Data Storage describes how certain APIs can
be misused by applications storing critical data in the file system. The dangerous
behaviour can be encoded and verified with techniques analogous to those used
for application verification (see above). For the time being, four of the OWASP
top ten vulnerabilities have been encoded in ConSpec and are checked against
the target applications.

4 MAVERIC Web Application

The MAVERIC platform is available at https://130.251.1.32:80/maveric.
Anonymous users can log in through the credentials username: guest and
password: guest. After user authentication, the application shows the main
screen as depicted in Figure 2.

Fig. 2. The main screen of the MAVERIC web application

From the main screen, users can read the existing reports (accessible from the
right panel after selecting an entry from the list). Moreover, users can submit
new APKs for the analysis. After submitting a new app, the web application
displays the progress of the analyses. When one of the sub-modules terminates,
its report is accessible through the Result link next to the module name.

http://spinroot.com/
https://www.owasp.org/
https://130.251.1.32:80/maveric


230 A. Armando et al.

5 Conclusion

This paper presented SAM, the static analysis module of the MAVERIC plat-
form. SAM provides security analysts with several functionalities for the security
assessment of mobile applications. We described each of the components partici-
pating in the module and showed how they contribute to the integrated analysis
process. Although it is still under development, SAM can be already applied to
the security analysis of mobile code.

References

1. Aktug, I., Naliuka, K.: ConSpec – A formal language for policy specification. Sci-
ence of Computer Programming 74(1-2), 2–12 (2008) Special Issue on Security and
Trust

2. Armando, A., Costa, G., Merlo, A., Verderame, L.: Enabling BYOD Through Se-
cure Meta-market. In: Proceedings of the 2014 ACM Conference on Security and
Privacy in Wireless & Mobile Networks, WiSec 2014, pp. 219–230. ACM, New York
(2014)

3. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-Aware
Malware Detection. In: Proceedings of the 2005 IEEE Symposium on Security and
Privacy, SP 2005, pp. 32–46. IEEE Computer Society, Washington, DC (2005)

4. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986)

5. Denning, P.J.: Fault tolerant operating systems. ACM Comput. Surv. 8(4),
359–389 (1976)

6. Idika, M.: A Survey of Malware Detection Techniques. Technical report, Purdue
University (February 2007)

7. McGraw, G.: Automated Code Review Tools for Security. Computer 41(12),
108–111 (2008)

8. McGraw, G., Morrisett, G.: Attacking malicious code: A report to the infosec
research council. IEEE Softw. 17(5), 33–41 (2000)

9. Quirolgico, S., Voas, J., Kuhn, R.: Vetting Mobile Apps. IT Professional 13(4),
9–11 (2011)

10. Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., Zhou, S.:
Specification-based Anomaly Detection: A New Approach for Detecting Network
Intrusions. In: Proceedings of the 9th ACM Conference on Computer and Com-
munications Security, CCS 2002, pp. 265–274. ACM, New York (2002)


	SAM: The Static Analysis Module of the MAVERIC Mobile App Security Verification Platform
	1 Introduction
	2 MAVERIC and SAM
	3 Static Analysis Techniques
	4 MAVERIC Web Application
	5 Conclusion




