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Abstract. We study a propositional variant of Hoare logic that can be
used for reasoning about programs that exhibit both angelic and demonic
nondeterminism. We work in an uninterpreted setting, where the mean-
ing of the atomic actions is specified axiomatically using hypotheses of a
certain form. Our logical formalism is entirely compositional and it sub-
sumes the non-compositional formalism of safety games on finite graphs.
We present sound and complete Hoare-style (partial-correctness) calculi
that are useful for establishing Hoare assertions, as well as for synthesiz-
ing implementations. The computational complexity of the Hoare theory
of dual nondeterminism is investigated using operational models, and it
is shown that the theory is complete for exponential time.

1 Introduction

One source of demonic nondeterminism in a program is its interaction with
the environment (e.g., user input, thread scheduling, etc.), which is not under
the control of the program. Even in the absence of such “real” nondeterminacy,
we may use demonic nondeterminism to represent abstraction and partial knowl-
edge of the state of a computation. Angelic nondeterminism, on the other hand,
is used to express nondeterminacy that is under the control of the program. For
example, we use angelic nondeterminism when implementation details are left
underspecified, but we control how they can be resolved in order to achieve the
desired result. The process of resolving these implementation details amounts to
synthesizing a fully specified program. The term dual nondeterminism is used
to refer to the combination of angelic and demonic nondeterminism.

In order to reason about dual nondeterminism, one first needs to have a se-
mantic model of how programs with angelic and demonic choices compute. One
semantic model that has been used extensively uses a class of mathematical ob-
jects that are called monotonic predicate transformers [1] (based on Dijkstra’s
predicate transformer semantics [4,11]). An equivalent denotational model that
is based on binary relations was introduced in [13] (up-closed multirelations) and
further investigated in [10]. These relations have an intuitive interpretation as
two-round games between the angel and the demon.
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We are interested here in verifying properties of programs that can be ex-
pressed as Hoare assertions [5], that is, formulas of the form {p}f{q}, where f
is the program text and p, q denote predicates on the state space, called precon-
dition and postcondition respectively. The formula {p}f{q} asserts, informally,
that starting from any state satisfying the precondition p, the angel has a strat-
egy so that whatever the demon does, the final state of the computation of f
(assuming termination) satisfies the postcondition q. This describes a notion of
partial correctness, because in the case of divergence (non-termination) the angel
wins vacuously. Our language for programs and preconditions/postconditions in-
volves abstract test symbols p, q, r, . . . and abstract action symbols a, b, . . . with
no fixed interpretation. We constrain their meaning with extra hypotheses: we
consider a finite set Φ of Boolean axioms for the tests, and a finite set Ψ of axioms
of the form {p}a{q} for the action letters. So, we typically assert implications of
the form Φ, Ψ ⇒ {p}f{q}, which we call simple Hoare implications. We want to
design a formal system that allows the derivation of the valid Hoare implications.
One important desideratum for such a formal system is to also provide us with
program text that corresponds to the winning strategy of the angel. Then, the
system can be used for the deductive synthesis of programs that satisfy their
Hoare specifications.

There has been previous work on deductive methods to reduce angelic nonde-
terminism and synthesize winning strategies for the angel. The work [2], which
is based on ideas of the refinement calculus [1,11], explores a total-correctness
Hoare-style calculus to reason about angelic nondeterminism. The analysis is in
the first-order interpreted setting, and no completeness or relative completeness
results are discussed.

Of particular relevance is the line of work that concerns two-player infinite
games played on finite graphs [14]. Such games are useful for analyzing (nonter-
minating) reactive programs. One of the players represents the “environment”,
and the other player is the “controller”. Computing the strategies that witness
the winning regions of the two players amounts to synthesizing an appropriate
implementation for the controller. The formalism of games on finite graphs is
very convenient for developing an algorithmic theory of synthesis. However, the
formalism is non-succinct and, additionally, it is inherently non-compositional.
An important class of properties for these games are the so called safety prop-
erties, which assert that something bad never happens. For such properties, we
see that a fully compositional formalism involving usual (terminating) programs
and partial-correctness properties suffices.

Our Contribution. We consider a propositionally abstracted language for pro-
grams with demonic and angelic choices. Our results are the following:
– We present a sound and unconditionally complete calculus for the weak

Hoare theory of dual nondeterminism (over the class of all interpretations).
We also consider a restricted class of interpretations, where the atomic ac-
tions are non-angelic, and we extend our calculus so that it is complete for
the Hoare theory of this smaller class (called strong Hoare theory). The
proofs of these results rely on the construction of free models.
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– We show that (for the free models) the denotational semantics is equivalent
to the intended operational semantics. Using this result, we prove that the
strong Hoare theory of dual nondeterminism is EXPTIME-complete.

– We consider an extension of our Hoare-style calculus with annotations that
denote the winning strategies of the angel. We thus obtain a sound and
complete deductive system for the synthesis of angelic strategies.

– Our formalism is shown to subsume that of safety games on finite graphs,
hence it provides a compositional method for reasoning about safety in re-
active systems. The language of dually nondeterministic program schemes is
exponentially more succinct than explicitly represented game graphs, and it
is arguably a more natural language for describing algorithms and protocols.

Due to lack of space all proofs will be given in a full version of the paper [9].

2 Preliminaries

In this section we give some preliminary definitions regarding while program
schemes with the additional construct � of demonic nondeterministic choice.
First, we present the syntax of these abstract while programs. Then, we give the
standard denotational semantics for them, which is based on binary relations.

We consider a two-sorted algebraic language. There is the sort of tests and
the sort of programs. The tests are built up from atomic tests and the constants
true and false, using the usual Boolean operations: ¬ (negation), ∧ (conjunction),
and ∨ (disjunction). We use the letters p, q, r, . . . to range over arbitrary tests.

The base programs are the atomic programs a, b, c, . . . (also called atomic ac-
tions), as well as the constants id (skip) and ⊥ (diverge). The programs are con-
structed using the operations ; (sequential composition), if (conditional), while
(iteration), and � (demonic nondeterministic choice). We write f, g, h, . . . to
range over arbitrary programs. So, the programs are given by the grammar:

f, g ::= actions a, b, . . . | id | ⊥ | f ; g | if p then f else g | while p do f | f � g.

We also write p[f, g] instead of if p then f else g, and wpf instead of while p do f .
We will present the standard denotational semantics of nondeterministic while

schemes. Every test is interpreted as a unary predicate on the state space, and
every program is interpreted as a binary relation on the state space.

Definition 1 (Nondeterministic Functions & Operations). For a set A,
we write ℘A for the powerset of A. For sets A and B, we say that a function of
type φ : A → ℘B is a nondeterministic function from A to B. We write φ : a �→ b
to mean that b ∈ φ(a). We think informally that such a function describes only
one kind of nondeterminism (for our purposes here, demonic nondeterminism).

The operations of (Kleisli) composition ; , conditional (−)[−,−], binary (non-
deterministic) choice +, arbitrary choice

∑
, identity 1, zero 0, and iteration

(wh − do−) are defined as follows:

φ;ψ � λx ∈ A.
⋃

y∈φ(x) ψ(y) : A → ℘C, for φ : A → ℘B, ψ : B → ℘C
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P[φ, ψ] �
(
φ ∩ (P × ℘B)

) ∪ (
ψ ∩ (∼P × ℘B)

)
, for φ, ψ : A → ℘B, P ⊆ A

φ+ ψ � λx ∈ A. φ(x) ∪ ψ(y) : A → ℘B, where φ, ψ : A → ℘B
∑

i φi � λx ∈ A.
⋃

i φi(x) : A → ℘B, where φi : A → ℘B

1A � λx ∈ A. {x} : A → ℘A and 0AB � λx ∈ A. ∅ : A → ℘B

whP doφ �
∑

n≥0 Wn : A → ℘A, where φ : A → ℘A and P ⊆ A

W0 � P[0AA, 1A] and Wn+1 � P[φ;Wn, 1A]

where ∼P = A \ P above denotes the complement of P w.r.t. A. From the
definition of the conditional, we see that P[φ, ψ](x) is equal to φ(x) when x ∈ P ,
and equal to ψ(x) when x /∈ P .

Definition 2 (Nondeterministic Interpretation). An interpretation of the
language of nondeterministic while program schemes consists of a nonempty set
S, called the state space, and an interpretation function R. For a program term
f , its interpretation R(f) : S → ℘S is a nondeterministic function on S.

The interpretation R(p) of a test p is a unary predicate on S, i.e., R(p) ⊆ S.
R specifies the meaning of every atomic test, and it extends as follows:

R(true) = S R(¬p) = ∼R(p) R(p ∧ q) = R(p) ∩R(q)

R(false) = ∅ R(p ∨ q) = R(p) ∪R(q)

where ∼ is the operation of complementation w.r.t. S, that is, ∼A = S \ A.
Moreover, the interpretation function R specifies the meaning R(a) : S → ℘S of
every atomic program. We extend the interpretation to all program terms:

R(id) = 1S R(f ; g) = R(f);R(g) R(p[f, g]) = R(p)[R(f), R(g)]

R(⊥) = 0SS R(f � g) = R(f) +R(g) R(wpf) = whR(p)doR(f)

Our definition agrees with the standard relational semantics of while schemes.

3 Angelic and Demonic Nondeterminism

We extend the syntax of nondeterministic while program schemes with the ad-
ditional construct � of angelic (nondeterministic) choice. So, the grammar for
the program terms now becomes:

f, g ::= actions a, b, . . . | id | ⊥ | f ; g | p[f, g] | wpf | f � g | f � g.

We call these program terms while game schemes, because they can be considered
to be descriptions of games between the angel (who controls the angelic choices)
and the demon (who controls the demonic choices). Informally, the angel tries
to satisfy the specification, while the demon attempts to falsify it.

We present a relational denotational semantics for while game schemes with
abstract atomic actions. A nonempty set S represents the abstract state space,
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and every test is interpreted as a unary predicate on the state space. Every
program term is interpreted as a binary relation from S to ℘S.

Consider such a binary relation f ⊆ S×℘S, which should be thought of as the
extension of a game program scheme. Informally, the pair (u,X) is supposed to
belong to f when the following holds: if the program starts at state u, then the
angel has a strategy so that whatever the demon does, the final state (supposing
that the program terminates) satisfies the predicate X .

The binary relation f ⊆ S×℘S encodes both the choices of the angel and the
demon, and it can be understood as a two-round game. The angel moves first,
and then the demon makes the final move. The options that are available to the
angel are given by multiple pairs (u,X1), (u,X2), and so on. So, when the game
starts at state u, the angel first chooses either X1, or X2, or any of the other
available options. Suppose that the angel first chooses Xi, where (u,Xi) is in f .
Then, during the second round, the demon chooses some final state v ∈ Xi.

When (u,X) is in f , we understand this as meaning that that the angel can
guarantee the predicate X when we start at u. So, we should expect that the
angel also guarantees any predicate that is weaker than X .

Definition 3 (Game Functions). For nonempty sets A and B, we say that
f ⊆ A× ℘B is a game function from A to B, denoted f : A � B, if it satifies:
1. The set f is closed upwards : (u,X) ∈ f and X ⊆ Y ⊆ B =⇒ (u, Y ) ∈ f .
2. For every u ∈ A there is some X ⊆ B with (u,X) ∈ f .
Given Condition (1), we can equivalently require that (u,B) ∈ f for every u ∈ A,
instead of having Condition (2).

Let f : A � B be a game function. The options of the angel at u ∈ A, which
we denote by f(u), is the set f(u) := {X ⊆ B | (u,X) ∈ f}. In other words,
f(u) is the set of all predicates that the angel can guarantee from u.

We say that a game function f : A � B is non-angelic if for every u ∈ A
there is some X ⊆ B so that f(u) = {Y ⊆ B | X ⊆ Y }. It is easy to see that this
X ⊆ B is unique, because the equality {Y ⊆ B | X1 ⊆ Y } = {Y ⊆ B | X2 ⊆ Y }
implies that X1 = X2. Essentially, the definition says that the angel always
has exactly one minimal choice: for every u ∈ A there is exactly one minimal
predicate X that the angel can guarantee.

Definition 4 (Lifting & Non-angelic Game Functions). When f : A � B
is a non-angelic game function, there is essentially only demonic nondeterminism.
So, the same information can be provided by a nondeterministic function A →
℘B. Indeed, we see easily that f : A � B is non-angelic iff there exists some
function φ : A → ℘B so that f = liftφ, where

liftφ � {(u, Y ) | u ∈ A, φ(u) ⊆ Y } : A � B

defines the lifting operation lift. The definition says that for every u ∈ A and
Y ⊆ B: (u, Y ) ∈ liftφ iff φ(u) ⊆ Y .
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Definition 5 (Operations on Game Functions). We define a binary com-
position operation for game functions, whose typing rule and definition are:

f : A � B g : B � C

f ; g : A � C

(u, Z) ∈ (f ; g) ⇔ there is Y ⊆ B s.t. (u, Y ) ∈ f ,

and (v, Z) ∈ g for every v ∈ Y .

The (semantic) conditional operation is given as follows:

P[f, g] �
(
f ∩ (P × ℘B)

) ∪ (
g ∩ (∼P × ℘B)

)
, for f, g : A � B and P ⊆ A,

where ∼P = A\P is the complement of P w.r.t. A. The angelic choice operation
� for game functions is defined by:

f � g � f ∪ g, where f, g : A � B.

As expected, the angelic choice operation increases the options available to the
angel. Now, we define the demonic choice operation � for game functions as:

f � g � {(u,X ∪ Y ) | (u,X) ∈ f, (u, Y ) ∈ g}, where f, g : A � B.

So, demonic choice increases the options of the demon. The above definition is
equivalent to f � g = f ∩ g. The identity function �A : A � A is defined by

�A � {(u,X) | u ∈ A and u ∈ X}.
So, �A is the smallest game function that contains (u, {u}) for every u ∈ A.
Informally, this definition says that on input u, the angel guarantees output u
in the identity game. The diverging game function �AB : A � B is given by

�AB � {(u,X) | u ∈ A and X ⊆ B} = A× ℘B.

The intuition for the definition of �AB is that when the program diverges, the
demon cannot lead the game to an error state, therefore the angel can guarantee
anything. This describes a notion of partial correctness. Finally, the (semantic)
while operation (wh − do−) has the following typing rule and definition:

P ⊆ A f : A � A

whP do f �
⋂

κ∈OrdWκ : A � A

W0 = P[�AA, �A]

Wκ+1 = P[f ;Wκ, �A]

Wλ =
⋂

κ<λ Wκ, limit ordinal λ

The sets W0 ⊇ W1 ⊇ W2 ⊇ · · · ⊇ Wκ ⊇ · · · form a decreasing chain. That is,
κ ≤ λ implies Wκ ⊇ Wλ, for any ordinals κ and λ.

We note that the above definition gives the while operation as a greatest
fixpoint. This is not surprising, because the semantics we consider is meant to be
useful for reasoning about safety properties. As we will see, this definition agrees
with the standard least fixpoint definition of while loops when there is only
one kind of nondeterminism (Lemma 6). More importantly, we will prove that
our definition is exactly right, becauses it agrees with the intended operational
semantics of dual nondeterminism (Proposition 28).
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Lemma 6 (lift Commutes with the Operations). Let φ and ψ be nonde-
terministic functions, and P be a predicate. Then, the following hold:

lift 0AB = �AB lift(φ;ψ) = (liftφ); (liftψ) lift(P[φ, ψ]) = P[ liftφ, liftψ]

lift 1A = �A lift(φ+ ψ) = (liftφ) � (liftψ) lift(whP doφ) = whP do (liftφ)

Essentially, the lemma says that the game function operations are a generaliza-
tion of the nondeterministic function operations.

For a nondeterministic function φ : A → ℘B and a game function f : A � B,
we say that φ implements f if liftφ ⊆ f . So, φ implements f when it resolves (in
some possible way) the angelic nondeterminism of f .

Definition 7 (Game Interpretation of Programs). As in the case of non-
deterministic program schemes (Definition 2), an interpretation of the language
of while game schemes consists of a nonempty state space S and an interpre-
tation function I. For a program term f , its interpretation I(f) : S � S is a
game function on S. The function I specifies the meaning of every atomic test,
and extends to all tests in the obvious way. Moreover, I specifies the meaning
I(a) : S � S of every atomic action. It extends as: I(id) = �S , I(⊥) = �SS , and

I(f ; g) = I(f); I(g) I(f � g) = I(f)� I(g) I(p[f, g]) = I(p)[I(f), I(g)]

I(f � g) = I(f)� I(g) I(wpf) = wh I(p)do I(f)

We say that the game interpretation I lifts the nondeterministic interpretation
R if they have the same state space, and additionally: (i) I(p) = R(p) for every
atomic test p, and (ii) I(a) = liftR(a) for every atomic program a. We also say
that I is the lifting of R.

4 Hoare Formulas and Their Meaning

In this section, we present formulas that are used to specify programs. The
basic formulas are called Hoare assertions, and we also consider assertions under
certain hypotheses of a simple form (Hoare implications).

Definition 8 (Tests and Entailment). Let I be an interpretation of tests.
For a test p and a state u ∈ S, we write I, u |= p when u ∈ I(p). We read this
as: “the state u satisfies p (under I)”. When I, u |= p for every state u ∈ S, we
say that I satisfies p, and we write I |= p. For a set Φ of tests, the interpretation
I satisfies Φ if it satisfies every test in Φ. We then write I |= Φ. Finally, we say
that Φ entails p, denoted Φ |= p, if I |= Φ implies I |= p for every I.

Definition 9 (Hoare Assertions). An expression {p}f{q}, where p and q are
tests and f is a program term, is called a Hoare assertion. The test p is called the
precondition and the test q is called the postcondition of the assertion. Informally,
the formula {p}f{q} says that when the program f starts at a state satisfying
the predicate p, then the angel has a strategy so that whatever the demon does,
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the final state (upon termination) satisfies the predicate q. The Hoare assertion
{p}a{q}, where a is an atomic program, is called a simple Hoare assertion. More
formally, consider an interpretation I. We say that I satisfies {p}f{q}, and we
write I |= {p}f{q}, when the following holds for every state u ∈ S: I, u |= p
implies that (u, I(q)) ∈ I(f).

Definition 10 (Simple Hoare Implications). Let Φ be a finite set of tests,
and Ψ be a finite set of simple Hoare assertions. We call the expression

Φ, Ψ ⇒ {p}f{q}

a simple Hoare implication. The tests in Φ and the simple assertions in Ψ are the
hypotheses of the implication, and the Hoare assertion {p}f{q} is the conclusion.

Let I be an interpretation of tests and actions. We say that I satisfies the
implication Φ, Ψ ⇒ {p}f{q}, which we denote by I |= Φ, Ψ ⇒ {p}f{q}, when the
following holds: If the interpretation I satisfies every test in Φ and every assertion
in Ψ , then I satisfies the assertion {p}f{q}. An implication Φ, Ψ ⇒ {p}f{q} is
valid, denoted Φ, Ψ |= {p}f{q}, if every interpretation satisfies it. The set of all
valid Hoare implications forms the weak Hoare theory of while game schemes.

Definition 11 (Boolean Atoms & Φ-consistency). Suppose that we have
fixed a finite set of atomic tests. For an atomic test p, the expressions p and
¬p are called literals for p (positive and negative respectively). Fix an enumer-
ation p1, p2, . . . , pk of the atomic tests. A Boolean atom (or simply atom) is an
expression 	1	2 · · · 	k, where every 	i is a literal for pi. We use lowercase letters
α, β, γ, . . . from the beginning of the Greek alphabet to range over atoms. An
atom is essentially a conjunction of literals, and it can also be thought of as
a propositional truth assignment. We write α ≤ p to mean that the atom α
satisfies the test p. We denote by At the set of all atoms.

Assume that Φ is a finite set of tests. We say that an atom α is Φ-consistent
if α ≤ p for every test p in Φ. We write AtΦ for the set of all Φ-consistent atoms.

Definition 12 (The Free Test Interpretation). Let Φ be a finite set of
tests. We define the interpretation IΦ on tests, which is called the free test
interpretation w.r.t. Φ. The state space is the set AtΦ of Φ-consistent atoms,
and every test is interpreted as a unary predicate on AtΦ. For an atomic test
p, define IΦ(p) := {α ∈ AtΦ | α ≤ p} to be the set of Φ-consistent atoms that
satisfy p.

An easy induction on the structure of tests proves that for every (atomic or
composite) test p, IΦ(p) is equal to the set of Φ-consistent atoms that satisfy p.

Note 13 (Complete Boolean Calculus). We assume that we have a com-
plete Boolean calculus, with which we derive judgments Φ � p, where Φ is a
finite set of tests and p is a test. This means that the statements Φ |= p, IΦ |= p,
IΦ(p) = AtΦ, and Φ � p are all equivalent. Moreover, IΦ(p) ⊆ IΦ(q) iff Φ � p → q.
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5 A Hoare Calculus for While Game Schemes

In this section we propose a Hoare-style calculus (Table 1), which is used for
deriving simple Hoare implications that involve while game schemes. As we will
show, the calculus of Table 1 is sound and complete for the weak Hoare theory
of while game schemes. Establishing soundness is a relatively straightforward
result. The most interesting part is the soundness of the (loop) rule for while
loops. The observation is that the loop invariant defines a “safe region” of the
game, and the angel has a strategy to keep a play within this region.

Table 1. Game Hoare Logic: A sound and complete Hoare-style calculus for while
program schemes with angelic and demonic nondeterministic choice

{p}a{q} in Ψ
(hyp)

Φ, Ψ � {p}a{q} (skip)
Φ, Ψ � {p}id{p} (dvrg)

Φ, Ψ � {p}⊥{q}
Φ, Ψ � {p}f{q}
Φ, Ψ � {q}g{r}

(seq)
Φ, Ψ � {p}f ; g{r}

Φ, Ψ � {q ∧ p}f{r}
Φ, Ψ � {q ∧ ¬p}g{r}

(cond)
Φ, Ψ � {q}if p then f else g{r}

Φ, Ψ � {r ∧ p}f{r}
(loop)

Φ, Ψ � {r}while p do f{r ∧ ¬p}
Φ, Ψ � {p}fi{q}

(angi)Φ, Ψ � {p}f1 � f2{q}
Φ, Ψ � {p}f{q} Φ, Ψ � {p}g{q}

(dem)
Φ, Ψ � {p}f � g{q}

Φ � p′ → p Φ, Ψ � {p}f{q} Φ � q → q′
(weak)

Φ, Ψ � {p′}f{q′}
Φ, Ψ � {p1}f{q} Φ, Ψ � {p2}f{q}

(join)
Φ, Ψ � {p1 ∨ p2}f{q}

Φ, Ψ � {false}f{q} (join0)

Φ, Ψ � {p}f{true} (meet0)

Theorem 14 (Soundness). The Hoare calculus of Table 1 is sound.

5.1 First Completeness Theorem: Weak Hoare Theory

We will now prove the completeness of the Hoare calculus of Table 1 with respect
to the class of all interpretations. This means that we consider arbitrary inter-
pretations of the atomic programs a, b, . . . as game functions. So, the deductive
system of Table 1 is complete for the weak Hoare theory of while game schemes.
Note that this is an unconditional completeness result (no extra assumptions),
not a relative completeness theorem [3].

Definition 15 (The Free Game Interpretation). Let Φ be a finite set of
tests, and Ψ be a finite set of simple Hoare assertions. We define the free game
interpretation IΦΨ (w.r.t. Φ and Ψ) to have AtΦ as state space, and to interpret
the tests as IΦ (the free test interpretation w.r.t. Φ, see Definition 12) does.
Moreover, the interpretation IΦΨ (a) : AtΦ � AtΦ of the atomic action a is given
by: for every Φ-consistent atom α,
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– (α,AtΦ) ∈ IΦΨ (a), and for every subset X � AtΦ,
– (α,X) ∈ IΦΨ (a) iff there exists {p}a{q} ∈ Ψ s.t. α ≤ p and IΦ(q) ⊆ X .

Lemma 16. Let Φ be a finite set of tests, and Ψ be a finite set of simple Hoare
assertions. The free game interpretation IΦΨ satisfies all formulas in Φ and Ψ .

Theorem 17 (Completeness). Let Φ be a finite set of tests, and Ψ be a finite
set of simple Hoare assertions. For every program term f and every Φ-consistent
atom α, (α,X) ∈ IΦΨ (f) implies that Φ, Ψ � {α}f{∨X}.
Corollary 18 (Completeness). Let Φ be a finite set of tests, and Ψ be a finite
set of simple Hoare assertions. For every program f , the following are equivalent:
(1) Φ, Ψ |= {p}f{q}.
(2) For every Φ-consistent α ≤ p, the pair (α, IΦ(q)) is in IΦΨ (f).
(3) Φ, Ψ � {p}f{q}.
Corollary 18 gives us a decision procedure for the weak Hoare theory of dual

nondeterminism. Given a Hoare implication Φ, Ψ ⇒ {p}f{q}, we simply have to
compute the free interpretation IΦΨ (f) ⊆ AtΦ × ℘AtΦ, which is a finite object.
Observe that IΦΨ (f) is of doubly exponential size. We will see later that, with
some more work, we can devise a faster algorithm of exponential complexity.

5.2 Second Completeness Theorem: Strong Hoare Theory

The completeness theorem of Section 5.1 concerns the theory generated by the
class of all interpretations, that is, when the atomic programs are allowed to
be interpreted as any game function. However, for most realistic applications
the atomic actions a, b, . . . correspond to computational operations (e.g., vari-
able assignments x := t, etc.) that involve no angelic nondeterministic choice.
This leads us to consider a strictly smaller class of interpretations, and thus the
question is raised of whether this smaller class has the same Hoare theory.

Definition 19 (Validity Over a Class of Interpretations). We fix a lan-
guage with atomic tests and atomic actions. Let C be a class of interpretations of
the atomic symbols (extending to all tests and programs in the usual way). We
say that a Hoare implication Φ, Ψ ⇒ {p}f{q} is valid in C (or C-valid) if every
interpretation I in C satisfies the implication. We then write Φ, Ψ |=C {p}f{q}.
The set of all C-validities is called the Hoare theory of C.

Let All be the class of all interpretations. Observe that an implication is valid
iff it is valid in All . Now, let Dem ⊆ All be the strict subclass of interpretations
where the atomic actions are interpreted as non-angelic game functions.

Lemma 20 (Soundness). The rule (meet) of Table 2, where a is an atomic
action, is sound for the class Dem of interpretations.

Lemma 20 also establishes that the Hoare theory of Dem is different from the
Hoare theory of All . Strictly more implications hold, when we restrict attention
to the interpretations of Dem. For example, consider the set of hypotheses Ψ ,
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Table 2. A rule that is sound when the atomic actions are interpretated as non-angelic
game functions. That is, (meet) is sound for the class Dem.

Φ, Ψ � {p}a{q1} Φ, Ψ � {p}a{q2}
(a-meet)

Φ, Ψ � {p}a{q1 ∧ q2}

which consists of the two simple assertions {p}a{q} and {p}a{r}, where p, q, r
are distinct atomic tests. Observe that the implication Ψ ⇒ {p}a{q ∧ r} is valid
in Dem (by Lemma 20), but it is not valid in All (by virtue of Corollary 18).

Definition 21 (The Free Non-angelic Interpretation). Let Φ be a finite
set of tests, and Ψ be a finite set of simple Hoare assertions. For an atomic action
a, define the nondeterministic interpretation RΦΨ (a) : AtΦ → ℘AtΦ as

RΦΨ (a)(α) � {β ∈ AtΦ | for every {p}a{q} ∈ Ψ with α ≤ p, we have β ≤ q}.
We define the free non-angelic interpretation JΦΨ (w.r.t. Φ and Ψ) to have AtΦ
as state space, and to interpret the tests as IΦ (the free test interpretation w.r.t.
Φ, see Definition 12) does. Moreover, the interpretation JΦΨ (a) : AtΦ � AtΦ of
the atomic action a is given by JΦΨ (a) := liftRΦΨ (a).

Lemma 22. Let Φ be a finite set of tests, and Ψ be a finite set of simple Hoare
assertions. The free non-angelic interpretation JΦΨ satisfies both Φ and Ψ .

Recall that we used the symbol � in Section 5 to denote provability in the
Hoare-style system of Table 1. Now, we will use the symbol �d to denote prov-
ability in the Hoare-style system that extends the calculus of Table 1 with the
additional rule (meet) shown in Table 2.

Theorem 23 (Completeness). Let Φ be a finite set of tests, and Ψ be a finite
set of simple Hoare assertions. For every program term f and every Φ-consistent
atom α, (α, Y ) ∈ JΦΨ (f) implies that Φ, Ψ �d {α}f{∨Y }.
Corollary 24 (Completeness). Let Φ and Ψ be finite sets of tests and simple
Hoare assertions respectively. For every program f , the following are equivalent:
(1) Φ, Ψ |=Dem {p}f{q}.
(2) For every Φ-consistent α ≤ p, the pair (α, IΦ(q)) is in JΦΨ (f).
(3) Φ, Ψ �d {p}f{q}.
The results of this section imply that the Hoare theory of the class Dem, which

we also call the strong Hoare theory of while game schemes, can be reduced to the
weak Hoare theory of the class All . Let Φ, Ψ ⇒ {p}f{q} be an arbitrary Hoare
implication. W.l.o.g. the axioms in Ψ are of the form {α}a{q}, where α is an
atom and a is an atomic action. Now, define Ψ ′ to be the set of hypotheses that
results from Ψ by replacing the axioms {α}a{qi} involving α, a by a single axiom
{α}a{∧i qi}. The crucial observation is that the interpretation JΦΨ is the same
as IΦΨ ′ . Using our two completeness results of Corollary 18 and Corollary 24, it
follows that Φ, Ψ �d {p}f{q} iff Φ, Ψ ′ � {p}f{q}.
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6 Operational Model and Complexity

In this section we investigate the computational complexity of the strong Hoare
theory of while game schemes. We prove that this theory is complete for ex-
ponential time. In order to obtain the EXPTIME upper bound, we consider a
standard operational model that corresponds to the free game interpretation.
We establish that our denotational semantics coincides in a precise sense to the
operational semantics. The operational model is a safety game on a finite graph,
and we can decide validity by computing the winning regions of the players. The
lower bound of EXPTIME-hardness is obtained with a reduction from alternating
Turing machines with polynomially bounded tapes.

First, we restrict slightly the syntax of programterms by eliminating the diverg-
ing ⊥ program, and by forbidding compositions (f ; g);h that associate to the left.
These are not really limitations, because⊥ is semantically equivalent to the infinite
loop while true do id, and (f ; g);h is equivalent to f ; (g;h). We define the syntactic
categories factor and term with the following grammars:

factor e ::= a | id | p[f, g] | wpf | f � g | f � g terms f, g ::= e | e; f

A term according to the above definition is a nonempty list of factors. We write
@ for the concatenation of terms: e@g = e; g and (e; f)@g = e; (f@g).

Definition 25 (Closure & the → Relation on Terms). We define the clo-
sure function C(·) that sends a term to a finite set of terms.

C(a) = {a, id} C(wpf) = {wpf, id} ∪ C(f)@wpf C(e; f) = C(e)@f ∪ C(f)

C(id) = {id} C(f ⊕ g) = {f ⊕ g} ∪ C(f) ∪ C(g)

where (−⊕−) is any of the constructors (−�−), (−�−), or p[−,−]. We define
the relation → on terms as follows:

a → id wpf → f@wpf, id f ⊕ g → f, g id;h → h

a;h → h wpf ;h → f@(wpf);h, id;h (f ⊕ g);h → f@h, g@h

We write →∗ for the reflexive transitive closure of →. The definition of → says,
in particular, that id has no successor. The while loop wpf has exactly two
successors, namely f@wpf and id.

Lemma 26 (Closure & Reachability). Let f be a program term. The car-
dinality of C(f) is linear in the size |f | of f , in fact, |C(f)| ≤ 2|f |. Moreover,
C(f) is equal to the set {f ′ | f →∗ f ′} of terms that are reachable from f via
→.

Definition 27 (Operational Model). Fix a finite set Φ of tests, and a finite
set Ψ of simple Hoare assertions. W.l.o.g. we assume that Ψ contains exactly one
assertion {α}a{q} for every atomic program a and every Φ-consistent atom α.
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Table 3. The operational model that corresponds to the free game interpretation IΦΨ

(α, a) → (IΦ(q), id), where {α}a{q} ∈ Ψ

(α, a;h) → (IΦ(q), id;h), where {α}a{q} ∈ Ψ

(α, id) →
(α, p[f, g]) → (α, f), if α ≤ p

(α, p[f, g]) → (α, g), if α ≤ ¬p
(α,wpf) → (α, f@wpf), if α ≤ p

(α,wpf) → (α, id), if α ≤ ¬p
(α, f � g) → (α, f), (α, g)

(α, f � g) → (α, f), (α, g)

(α, id; h) → (α, h)

(α, p[f, g];h) → (a, f@h), if α ≤ p

(α, p[f, g];h) → (a, g@h), if α ≤ ¬p
(α, (wpf);h) → (α, f@(wpf);h), if α ≤ p

(α, (wpf);h) → (α, id; h), if α ≤ ¬p
(α, (f � g);h) → (α, f@h), (α, g@h)

(α, (f � g);h) → (α, f@h), (α, g@h)

(X, f) → (α, f), where α ∈ X ⊆ AtΦ

Let f be a program term, and E ⊆ AtΦ be a set of error atoms. We define the
operational model for Φ, Ψ, f, E, denoted GΦΨ (f, E), to be the safety game

GΦΨ (f, E) = (V, V0, V1,→, E × {id}),
where V = (AtΦ ×C(f))∪⋃

{α}a{q}∈Ψ (IΦ(q)×C(f)) and the transition relation
→ is defined in Table 3.
– The 0-vertices V0 ⊆ V consist of the pairs of the form (α, f � g), as well as

(α, a) and (α, a;h) for atomic program a.
– The 1-vertices V1 ⊆ V consist of the pairs (α, f � g), as well as (X, f) where

X ⊆ AtΦ is equal to some IΦ(q) with {α}a{q} ∈ Ψ .
The terminal vertices are the pairs (α, id), and the error vertices are E × {id}.

Proposition 28 (Operational & Denotational Semantics). Let Φ be a
finite set of tests, Ψ be a finite set of simple Hoare assertions, f be a program
term, α ∈ AtΦ, and X ⊆ AtΦ. Then, (α,X) ∈ IΦΨ (f) iff Player 0 has a winning
strategy from the vertex (α, f) in the safety game GΦΨ (f,∼X), where ∼X =
AtΦ \X .

Theorem 29 (Complexity Upper & Lower Bound). The strong Hoare
theory (over the class Dem) of while game schemes is EXPTIME-complete.

It is an immediate corollary of the above theorem that the weak Hoare theory
(over the class All) can also be decided in exponential time.

7 A Complete Hoare-Style Calculus for Synthesis

We introduce in Table 4 a Hoare-style calculus which can be used for the deduc-
tive synthesis of �-free programs that satisfy a Hoare specification. It is based
on the complete calculus for the Hoare theory of the class Dem, which contains
interpretations assigning non-angelic game functions (Def. 3) to the atomic pro-
grams (Table 1 with extra rule of a-meet of Table 2). The main differences are:
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Table 4. A sound and complete Hoare-style calculus for the synthesis of programs

{p}a{q} in Ψ
(hyp)

Φ, Ψ � a : {p}a{q} (skip)
Φ, Ψ � id : {p}id{p} (dvrg)

Φ, Ψ � ⊥ : {p}⊥{q}
Φ, Ψ � φ : {p}f{q}
Φ, Ψ � ψ : {q}g{r}

(seq)
Φ, Ψ � φ;ψ : {p}f ; g{r}

Φ, Ψ � φ : {q ∧ p}f{r}
Φ, Ψ � ψ : {q ∧ ¬p}g{r}

(cond)
Φ, Ψ � p[φ,ψ] : {q}if p then f else g{r}

Φ, Ψ � φ : {r ∧ p}f{r}
(loop)

Φ, Ψ � wpφ : {r}while p do f{r ∧ ¬p}
Φ, Ψ � φ : {p}fi{q}

(angi)Φ, Ψ � φ : {p}f1 � f2{q}
Φ, Ψ � φ : {p}f{q} Φ, Ψ � ψ : {p}g{q}

(dem)
Φ, Ψ � φ � ψ : {p}f � g{q}

Φ � p′ → p Φ, Ψ � φ : {p}f{q} Φ � q → q′
(weak)

Φ, Ψ � φ : {p′}f{q′}
Φ, Ψ � φ1 : {p1}f{q} Φ, Ψ � φ2 : {p2}f{q}

(join)
Φ, Ψ � p1[φ1, φ2] : {p1 ∨ p2}f{q}

(a-join0)
Φ, Ψ � a : {false}a{q}

Φ, Ψ � a : {p}a{q1} Φ, Ψ � a : {p}a{q2}
(a-meet)

Φ, Ψ � a : {p}a{q1 ∧ q2}
(a-meet0)

Φ, Ψ � a : {p}a{true}
Φ, Ψ � φ : {p1}f{q}
Φ, Ψ � φ : {p2}f{q}

(join′)
Φ, Ψ � φ : {p1 ∨ p2}f{q}

Φ, Ψ � φ1 : {p ∧ r}f{q}
Φ, Ψ � φ2 : {p ∧ ¬r}f{q}

(join′′)
Φ, Ψ � r[φ1, φ2] : {p}f{q}

(i) The rules join0 and meet0 (of Table 1) have been weakened into the rules
a-join0 and a-meet0 (this is inconsequential).

(ii) Every conclusion {p}f{q} is decorated with a �-free program term φ, which
satisfies the specification {p}φ{q} and implements a winning strategy for
the angel in the safety game described by the assertion {p}f{q}.

Another difference that deserves mention is the introduction in Table 4 of two
new variants (join′) and (join′′) of the rule (join). These rules are not necessary
for completeness and they can be omitted without breaking our theorems, but
they are useful from a practical viewpoint. The new rules (join′) and (join′′) are
sound, and they allow useful shortcuts in the synthesis of �-free programs.

Theorem 30 (Soundness). Suppose that a judgment Φ, Ψ � φ : {p}f{q} is
derivable using the Hoare-style calculus of Table 4. The following hold:
1. Every game interpretation I in Dem satisfies the formula Φ, Ψ ⇒ {p}f{q}.
2. Every nondeterministic interpretation R satisfies Φ, Ψ ⇒ {p}φ{q}.
3. Let R be a nondeterministic interpretation, and I be the game interpretation

that lifts R (see Definition 7). Then, liftR(φ) ⊆ I(f).
Part (3) of the theorem says that R(φ) implements I(f) when I lifts R.

Theorem 31 (Completeness). Let Φ and Ψ be finite sets of tests and simple
Hoare assertions respectively, and f be a program s.t. Φ, Ψ |=Dem {p}f{q}. Then,
there exists a �-free program φ such that Φ, Ψ � φ : {p}f{q}.
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Finally, we will see that solving safety games on finite graphs can be reduced
to deciding the Dem-validity of a Hoare implication involving a while game
scheme that simulates the safety game. This reduction thus gives us a com-
positional deductive way of designing winning strategies for safety games. Let
G = (V0, V1, R,E) be a safety game. For every vertex u ∈ V = V0∪V1, introduce
an atomic test pu, which asserts that the token is currently on the vertex u. We
take Φ to contain the axioms

∨
u∈V pu and ¬(pu∧pv) for all u, v ∈ V with u �= v.

The axioms of Φ say that the token is on exactly one vertex. So, we can identify
the set AtΦ of Φ-consistent atoms with the set {pu | u ∈ V }. For every vertex
u ∈ V , we introduce an atomic action u!, which moves the token to the vertex u.
So, we take Ψ to contain the axioms {true}u!{pu} for every u ∈ V . To emphasize
that Φ and Ψ depend on G, let us denote them by ΦG and ΨG respectively. For
an arbitrary vertex u ∈ V , define the program term (take transition from u) to
be equal to

⊔
v∈uR v! if u ∈ V0, and equal to

�
v∈uR v! if u ∈ V1. Now, we put

fG = while (
∨{pu | u ∈ V \ E}) do

if pu then (take transition from u)
· · ·

else if pw then (take transition from w)

which describes how the safety game is played. A play stops as soon as an error
vertex is encountered.

Theorem 32 (Safety Games). Let G = (V0, V1, R,E) be a finite safety game.
Player 0 has a winning strategy from u ∈ V0 ∪ V1 iff ΦG, ΨG � {pu}fG{false}.

8 Discussion and Conclusion

At a technical level, the present work is closely related to the line of work on the
propositional fragment of Hoare logic, called Propositional Hoare Logic or PHL
[6]. In [8,7], a propositional variant of Hoare logic for mutually recursive pro-
grams is investigated. The present work differs from both [6,8] in considering the
combination of angelic and demonic nondeterminism, which presents significant
new challenges for obtaining completeness and decision procedures.

An extension of Propositional Dynamic Logic, called Game Logic [12], is also
relevant to our work. We note that there are no completeness results for full
Game Logic, and that the theory we consider is not a fragment of Game Logic.
Even though hypotheses-free Hoare assertions {p}f{q} can be encoded in Dy-
namic Logic as partial correctness formulas p → [f ]q, there is no direct mech-
anism for encoding the hypotheses of an implication Φ, Ψ ⇒ {p}f{q} (which
would correspond to some kind of global consequence relation in Dynamic Logic).

We have considered here the weak (over the class All) and the strong (over the
class Dem) Hoare theories of dual nondeterminism, and we have obtained sound
and unconditionally complete Hoare-style calculi for both of them. We have also
shown that they can be both be decided in exponential time, and that the strong
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Hoare theory is EXPTIME-hard. Finally, we have extended our proof system so
that it constructs program terms for the strategies of the angel, thus obtaining
a sound and complete calculus for synthesis.
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