Step-Indexed Logical Relations for Probability

Ales Bizjak and Lars Birkedal

Aarhus University
{abizjak,birkedal}@cs.au.dk

Abstract. It is well-known that constructing models of higher-order
probabilistic programming languages is challenging. We show how to
construct step-indexed logical relations for a probabilistic extension of
a higher-order programming language with impredicative polymorphism
and recursive types. We show that the resulting logical relation is sound
and complete with respect to the contextual preorder and, moreover,
that it is convenient for reasoning about concrete program equivalences.
Finally, we extend the language with dynamically allocated first-order
references and show how to extend the logical relation to this language.
We show that the resulting relation remains useful for reasoning about
examples involving both state and probabilistic choice.

1 Introduction

It is well known that it is challenging to develop techniques for reasoning about
programs written in probabilistic higher-order programming languages. A prob-
abilistic program evaluates to a distribution of values, as opposed to a set of
values in the case of nondeterminism or a single value in the case of determinis-
tic computation. Probability distributions form a monad. This observation has
been used as a basis for several denotational domain-theoretic models of proba-
bilistic languages and also as a guide for designing probabilistic languages with
monadic types [15,21,20]. Game semantics has also been used to give models
of probabilistic programming languages [9,12] and a fully abstract model using
coherence spaces for PCF with probabilistic choice was recently presented [13].

The majority of models of probabilistic programming languages have been
developed using denotational semantics. However, Johann et.al. [14] developed
operationally-based logical relations for a polymorphic programming language
with effects. Two of the effects they considered were probabilistic choice and
global ground store. However, as pointed out by the authors [14], extending their
construction to local store and, in particular, higher-order local store, is likely to
be problematic. Recently, operationally-based bisimulation techniques have been
extended to probabilistic extensions of PCF [7,8]. The operational semantics of
probabilistic higher-order programming languages has been investigated in [16].

Step-indexed logical relations [2,3] have proved to be a successful method for
proving contextual approximation and equivalence for programming languages
with a wide range of features, including computational effects.

In this paper we show how to extend the method of step-indexed logical rela-
tions to reason about contextual approximation and equivalence of probabilistic

© Springer-Verlag Berlin Heidelberg 2015
A. Pitts (Ed.): FOSSACS 2015, LNCS 9034, pp. 279-294, 2015.
DOI: 10.1007/978-3-662-46678-0 18

280 A. Bizjak and L. Birkedal

higher-order programs. To define the logical relation we employ biorthogonal-
ity [17,19] and step-indexing. Biorthogonality is used to ensure completeness of
the logical relation with respect to contextual equivalence, but it also makes it
possible to keep the value relations simple, see Fig. 1. Moreover, the definition
using biorthogonality makes it possible to “externalize” the reasoning in many
cases when proving example equivalences. By this we mean that the reasoning
reduces to algebraic manipulations of probabilities. This way, the quantitative
aspects do not complicate the reasoning much, compared to the usual reason-
ing with step-indexed logical relations. To define the biorthogonal lifting we use
two notions of observation; the termination probability and its stratified version
approximating it. We define these and prove the required properties in Section 3.

We develop our step-indexed logical relations for the call-by-value language
F#®_ This is system F with recursive types, extended with a single probabilistic
choice primitive rand . The primitive rand takes a natural number n and reduces
with uniform probability to one of 1,2, ..., n. Thus rand n represents the uniform
probability distribution on the set {1,2,...,n}. We choose to add rand instead
of just a single coin flip primitive to make the examples easier to write.

To show that the model is useful we use it to prove some example equivalences
in Section 5. We show two examples based on parametricity. In the first example,
we characterize elements of the universal type Va.ae — «. In a deterministic lan-
guage, and even in a language with nondeterministic choice, the only interesting
element of this type is the identity function. However, since in a probabilistic
language we not only observe the end result, but also the likelihood with which
it is returned, it turns out that there are many more elements. Concretely, we
show that the elements of the type Va.a — «a that are of the form Aa.\z.e,
correspond precisely to left-computable real numbers in the interval [0, 1]. In the
second example we show a free theorem involving functions on lists. We show
additional equivalences in the Appendix, including the correctness of von Neu-
mann’s procedure for generating a fair sequence of coin tosses from an unfair
coin, and equivalences from the recent papers using bisimulations [7,8].

We add dynamically allocated references to the language and extend the log-
ical relation to the new language in Section 6. For simplicity we only sketch how
to extend the construction with first-order state. This already suggests that an
extension with general references can be done in the usual way for step-indexed
logical relations. We conclude the section by proving a representation indepen-
dence result involving both state and probabilistic choice.

All the references to the Appendix in this paper refer to appendix in the online
long version [6].

2 The Language F*©

The language is a standard pure functional language with recursive, univer-
sal and existential types with an additional choice primitive rand. The base
types include the type of natural numbers nat with some primitive operations.

Step-Indexed Logical Relations for Probability 281

The grammar of terms e is

ex=x| ()| rande|n|if; e thene; else es |Pe|Se| (e1,e2) | proj, e
| A\z.e | e1ez | inl e | inr e | match (e, z1.e1,22.€2) | A.e | e]]
| packe | unpack e; as « in ey | folde | unfolde
We write n for the numeral representing the natural number n and S and P are

the successor and predecessor functions, respectively. For convenience, numerals
start at 1. Given a numeral n, the term rand n evaluates to one of the numerals

1,...,n with uniform probability. There are no types in the syntax of terms,
e.g., instead of Aa.e and e 7 we have A.e and e[]. This is for convenience only.
We write «, 3, ... for type variables and x,y, ... for term variables. The no-

tation 7[7/&] denotes the simultaneous capture-avoiding substitution of types 7
for the free type variables @ in the type 7; e[0/Z] denotes simultaneous capture-
avoiding substitution of values ¢ for the free term variables Z in the term e.

We write Stk for the set of evaluation contexts given by the call-by-value
reduction strategy. Given two evaluation contexts E, E’ we define their compo-
sition F o E’ by induction on E in the natural way. Given an evaluation context
E and expression e we write Fle] for the term obtained by plugging e into E. For
any two evaluation contexts E' and E’ and a term e we have E[E’[e]] = (EoE’)[e].

For a type variable context A, the judgment A F 7 expresses that the free
type variables in 7 are included in A. The typing judgments are entirely standard
with the addition of the typing of rand which is given by the rule

A| Tk e:nat
A|Itrande:nat’

The complete set of typing rules are in the Appendix. We write T(A) for the
set of types well-formed in context A, and ¥ for the set of closed types 7. We
write Val (1) and Tm (7) for the sets of closed values and terms of type T,
respectively. We write Val and Tm for the set of all' closed values and closed
terms, respectively. Stk (1) denotes the set of T-accepting evaluation contexts,
i.e., evaluation contexts F, such that given any closed term e of type 7, E[e] is
a typeable term. Stk denotes the set of all evaluation contexts.

For a typing context I' = x1:71, ..., Tn:Ty With 71,...,7, € T, let Subst(I")
denote the set of type-respecting value substitutions, i.e. for all i, y(x;) €
Val (7;). In particular, if A | I'e: 7 then @ | @ - ey : 76 for any 6 € T4 and
~v € Subst(I'9), and the type system satisfies standard properties of progress
and preservation and a canonical forms lemma.

The operational semantics of the language is a standard call-by-value seman-
tics but weighted with p € [0, 1] which denotes the likelihood of that reduction.

We write < for the one-step reduction relation. All the usual 3 reductions have

weight equal to 1 and the reduction from randn is
1

randn ~5 k for k € {1,2,...,n}.

! In particular, we do not require them to be typeable.

282 A. Bizjak and L. Birkedal

The rest of the rules are given in Fig. 5 in the Appendix. The operational seman-
tics thus gives rise to a Markov chain with closed terms as states. In particular
for each term e we have Ze, leLer P <1

3 Observations and Biorthogonality

We will use biorthogonality to define the logical relation. This section provides
the necessary observation predicates used in the definition of the biorthogonal
lifting of value relations to expression relations. Because of the use of biorthogo-
nality the value relations (see Fig. 1) remain as simple as for a language without
probabilistic choice. The new quantitative aspects only appear in the definition
of the biorthogonal lifting (T T-closure) defined in Section 4. Two kinds of ob-
servations are used. The probability of termination, 3% (e), which is the actual
probability that e terminates, and its approximation, the stratified termination
probability ‘132 (e), where k € N denotes, intuitively, the number of computation
steps. The stratified termination probability provides the link between steps in
the operational semantics and the indexing in the definition of the interpretation
of types.

The probability of termination, Jp¥ (), is a function of type Tm — Z where
7 is the unit interval [0, 1]. Since Z is a pointed w-cpo for the usual order, so is
the space of all functions Tm — Z with pointwise ordering. We define ¥ (-) as
a fixed point of the continuous function @ on this w-cpo: Let F = Tm — Z and
define @ : F — F as

1 if e € Val
P(f)(e) = Z p-f(e') otherwise

e~>e

Note that if e is stuck then @(f)(e) = 0 since the empty sum is 0.

The function @ is monotone and preserves suprema of w-chains. The proof is
straightforward and can be found in the Appendix. Thus @ has a least fixed point
in F and we denote this fixed point by B (), i.e., BY (e) = sup,,c., D"(L)(€).

To define the stratified observations we need the notion of a path. Given terms
e and € a path 7 from e to €/, written 7 : e ~* €, is a sequence e 25 e; 23 e, 23

- %% ¢’ The weight 20 (m) of a path 7 is the product of the weights of reductions
in 7. We write R for the set of all paths and - for their concatenation (when
defined). For a non-empty path = € R we write ¢ (7) for its last expression.

We call reductions of the form unfold (foldv) S unfold-fold reductions and
1

reductions of the form randn ~% k choice reductions. If none of the reductions
in a path 7 is a choice reduction we call 7w choice-free and similarly if none of
the reductions in 7 is an unfold-fold reductions we call 7 unfold-fold free.

We define the following types of multi-step reductions which we use in the
definition of the logical relation.

— ¢ =% ¢ if there is a choice-free path from e to e’

Step-Indexed Logical Relations for Probability 283

£, . .
— e == ¢ if there is an unfold-fold free path from e to e’
cuff ,. cf uff
—e=cife= ¢ and e = €.

The following useful lemma states that all but choice reductions preserve the
probability of termination. As a consequence, we will see that all but choice
reductions preserve equivalence.

Lemma 3.1. Let e,e’ € Tm and e =, ¢! Then P (e) =Y ().

The proof proceeds on the length of the reduction path with the strengthened
induction hypothesis stating that the probabilities of termination of all elements
on the path are the same. To define the stratified probability of termination that
approximates ¥ (-) we need an auxiliary notion.

Definition 3.2. For a closed expression e € Tm we define Red (e) as the
(unique) set of paths containing exactly one unfold-fold or choice reduction
and ending with such a reduction. More precisely, we define the function Red :
Tm — P (R) as the least function satisfying

{6«1» e’} if e = E[unfold (foldwv)]
{e % EK] |p=}ke{l,2,...,n}} ife= E[randn]
REd(e): { 1 / . 1 %ﬁ; /
(ewe)~7r|7r€Red(e)} ife~>¢€ ande e
0 otherwise

where we order the power set P (R) by subset inclusion.

Using Red (-) we define a monotone map ¥ : F — F that preserves w-chains.

1 ifEIveVal,egv
v (f)(e) = Z W (m)- f(€(r)) otherwise

mERed(e)

and then define ‘132 (e) = w¥(L)(e). The intended meaning of ‘Bg (e) is the
probability that e terminates within k& unfold-fold and choice reductions. Since
¥ is monotone we have that ‘Bﬁ (e) < ‘Bﬁﬂ (e) for any k and e.

The following lemma is the reason for counting only certain reductions, cf.[10].
It allows us to stay at the same step-index even when taking steps in the op-
erational semantics. As a consequence we will get a more extensional logical
relation. The proof is by case analysis and can be found in the Appendix.

Lemma 3.3. Lete,¢’ € Tm. Ife A e then for all k, ‘]32 (e) = ‘]32 (e).

The following is immediate from the definition of the chain {‘Bg (e)}k and
=0
the fact that rand n reduces with uniform probability.
Lemma 3.4. Lete be a closed term. Ife % ¢ and the reduction is an unfold-fold
reduction then ‘Bgﬂ (e) = ‘Bg (e'). If the reduction from e is a choice reduction,

then ‘Bgﬂ (e) = |Re¢11(e)\ ZﬂeRed(e) ‘Bﬁ (¢ (m)).

284 A. Bizjak and L. Birkedal

The following proposition is needed to prove adequacy of the logical relation
with respect to contextual equivalence. It is analogous to the property used to
prove adequacy of step-indexed logical relations for deterministic and nondeter-
ministic languages. Consider the case of may-equivalence. To prove adequacy in
this case (cf. [4, Theorem 4.8]) we use the fact that if e may-terminates, then
there is a natural number n such that e terminates in n steps. This property
does not hold in the probabilistic case, but the property analogous to it that is
sufficient to prove adequacy still holds.

Proposition 3.5. For each e € Tm we have PV (e) < supj,, (‘132 (e)).

Proof. We only give a sketch; the full proof can be found in the Appendix. We
use Scott induction on the set S = {f € F | Ve, f(e) < supye, <‘B£ (e)) } It is

easy to see that S is closed under limits of w-chains and that L € S so we only
need to show that S is closed under @. We can do this by considering the kinds
of reductions from e when considering ®(f)(e) for f € S.

4 Logical, CIU and Contextual Approximation Relations

The contextual and CIU (closed instantiations of uses [18]) approximations are
defined in a way analogous to the one for deterministic programming languages.
We require some auxiliary notions. A type-indexed relation R is a set of tuples
(A, Ie,e’,7) such that AFINand AFTand A|I'Fe:7and A|T'Fe 7.
We write A | I'FeR e : 7 for (A, Iee,7)€R.

Definition 4.1 (Precongruence). A type-indezed relation R is reflexive if
A|TFe:7implies A|T'FeRe:7. It is transitive if A | I'FeR e : 7 and
A|TFe Re":7 implies A|T'FeRe”: 7. It is compatible if it is closed
under the term forming rules, e.g.,?

AlNzmbeRe i m A|T'eRe :nat
A|TFXreR A€ i1 =T A| Tk rande R rande’ : nat

A precongruence is a reflerive, transitive and compatible type-indexed relation.

The compatibility rules guarantee that a compatible relation is sufficiently
big, i.e., at least reflexive. In contrast, the notion of adequacy, which relates the
operational semantics with the relation, guarantees that it is not too big. In the
deterministic case, a relation R is adequate if when e R e’ are two related closed
terms, then if e terminates so does e’. Here we need to compare probabilities of
termination instead, since these are our observations.

Definition 4.2. A type-indexed relation R is adequate if for all e, e’ such that
g|oFeRe T we have Pt (e) < P ().

2 We only show a few rules, the rest are analogous and can be found in the Appendix.

Step-Indexed Logical Relations for Probability 285

The contextual approximation relation, written A | I' e ,Scm e’ : 7, is defined
as the largest adequate precongruence and the CIU approzimation relation, writ-
ten A | I'+e <9V ¢ . 7, is defined using evaluation contexts in the usual
way, e.g. [18], using B (-) for observations. The fact that the largest adequate
precongruence exists is proved as in [18].

Logical Relation. We now define the step-indexed logical relation. We present
the construction in the elementary way with explicit indexing instead of using a
logic with guarded recursion as in [10] to remain self-contained.

Interpretations of types will be defined as decreasing sequences of relations
on typeable values. For closed types T and o we define the sets VRel (7,0),
SRel(7,0) and TRel(7,0) to be the sets of decreasing sequences of relations
on typeable values, evaluation contexts and expressions respectively. The types 7
and o denote the types of the left-hand side and the right-hand side respectively,
ie. if (v,u) € p(n) for ¢ € VRel (7, o) then v has type 7 and u has type 0. The
order relation < on these sets is defined pointwise, e.g. for ¢, € VRel(7,0)
we write ¢ < 9 if Vn € N, p(n) C 1(n). We implicitly use the inclusion from
VRel(7,0) to TRel(7,0). The reason for having relations on values and terms
of different types on the left and right-hand sides is so we are able to prove
parametricity properties in Section 5.

We define maps !, : VRel(r,0) — SRel(r,0) and %, : SRel(r,0) —
TRel (7,0). We usually omit the type indices when they can be inferred from
the context. The maps are defined as follows
rTo(n) = {(B,B) | ¥k <n,¥(v, ') € r(k), B} (El]) < B¢ (B'W))}

T,0

and & (n) = {(e, ¢') | vk < n,Y(E, E') € r(k), B (Ele]) < B (Ef[eq)} . Note
that we only count steps evaluating the left term in defining » T and r+. We write

T =T for their composition from VRel (1,0) to TRel (7, 0). The function
-T is order-reversing and - " is order-preserving and inflationary.

Lemma 4.3. Let 7,0 be closed types and r,s € VRel(7,0). Thenr <r'" and
ifr <sthens' <r'" andr' <s'l.

For a type-variable context A we define VRel (A) using VRel (-, -) as

VRel (A) = {(p1,02,0:) | 1,92 € T2, Va € A, ¢, (a) € VRel (¢1(a), p2(a)) }

where the first two components give syntactic types for the left and right hand
sides of the relation and the third component is a relation between those types.

The interpretation of types, [- I -] is by induction on the judgement A F 7. For
ajudgment A - 7and ¢ € VRel (A) we have [A 7] (¢) € VRel (p1(7), p2(7))
where the ¢; and @2 are the first two components of ¢ and ¢;(7) denotes
substitution. Moreover [-] is non-ezpansive in the sense that [A F 7] (¢)(n) can
depend only on the values of ¢, (a)(k) for k < n, see [5] for this metric view of
step-indexing. The interpretation of types is defined in Fig. 1. Observe that the
value relations are as simple as for a language without probabilistic choice. The
crucial difference is hidden in the T T-closure of value relations.

286 A. Bizjak and L. Birkedal

[AFnat] (¢)(n) = {(k,k) | k € N,k >0}
[AFT = 0] (p)(n) = {(Az.e,Ay.e) | Vi< nV(v,0') € [AF 7] (9)(),
(Az.e)v, (Ay.e) ') € [AF o] (p) " (i)}
[AF Vo] (9)(n) = {(Ae, A€) | Vo,0' € T,Vr € VRel (0,0"),
(e;¢) € [Aakr](plam) (n)}
[AF 3a.7] (¢)(n) = {(packv,packv’) | 30,0’ € T,3r € VRel(0,0"),
(v, 0) € [A k7] (pla 7)) (n)}
[A F po.t] (9)(0) = Val (p1(pa.1)) x Val (p2(pc.1))
[AF po.t] (¢)(n+1) = {(foldv, fold) ’
(v,) € [A k7] (plam [AF pour] (9)]) (n)}

Fig. 1. Interpretation of types. The cases for sum and product types are in Appendix.

Context extension lemmas. To prove soundness and completeness we need lem-
mas stating how extending evaluation contexts preserves relatedness. We only
show the case for rand. The rest are similarly simple.

Lemma 4.4. Let n € N. If (E,E') € [A+ nat] (¢)' (n) are related evaluation
contexts then (E o (rand[]), E' o (rand [])) € [A + nat] (¢) ' (n).

Proof. Let n € Nand (v,v") € [AF 7] (¢)(n). By construction we have v = v' =
m for some m € N, m > 1. Let k < n. If £ = 0 the result is immediate, so assume
k = ¢+ 1. Using Lemma 3.4 we have ‘Bg (Elrandm]) = ! S, ‘B? (E[i]) and
using the assumption (E,E’) € [A+ nat](¢)' (n), the fact that k& < n and
monotonicity in the step-index the latter term is less than ! > B¢ (E'[i])
which by definition of ¥ (-) is equal to Pt (E'[rand m)).

We define the logical approximation relation for open terms given the inter-
pretations of types in Fig. 1. We define A | I'+ e <" ¢/ : 7 to mean

Vn € N,Vy € VRel (A),V(v,7) € [AF '] (p)(n), (ey,e'v) € [AF 7] L,OTI—(’I?,)

Here [A | I'] is the obvious extension of interpretation of types to interpretation
of contexts which relates substitutions, mapping variables to values. We have

Proposition 4.5 (Fundamental Property). The logical approzimation rela-
tion <" is compatible. In particular it is reflezive.

Proof. The proof is a simple consequence of the context extension lemmas. We
show the case for rand. We have to show that A | I' - e <! ¢/ : nat implies
A| T+ rande < rand ¢ : nat. Let n € N, ¢ € VRel(A) and (7,7) €
[AF T (p)(n). Let f = ey and f' = e’’'. Then our assumption gives us (f, f’) €
[A F nat] (cp)Tr(n) and we are to show (rand f,rand f’) € [A I nat] (go)Tr(n)
Let j < n and (E,E') € [At+ nat] () (j). Then from Lemma 4.4 we have
(E o (rand[)), E' o (rand[])) € [A F nat] (¢) ' (j) which suffices by the definition
of the orthogonality relation and the assumption (f, f') € [A F nat] (go)Tr(n)

Step-Indexed Logical Relations for Probability 287

We now want to relate logical, CIU and contextual approximation relations.

Corollary 4.6. Logical approzimation relation 5“’9 s adequate.

Proof. Assume @ | @ F e <! ¢/ : 7. We are to show that ¥ (e) < P (¢).
Straight from the definition we have Vn € N, (e,¢’) € [@ F 7] " (n). The empty
evaluation context is always related to itself (at any type). This implies Vn €
N, B (e) < PBY (¢/) which further implies (since the right-hand side is indepen-
dent of n) that sup,c,, (B (¢)) < BY (¢/). Using Proposition 3.5 we thus have
P (e) < sup,e., (B (e)) <PV (¢') concluding the proof.

We now have that the logical relation is adequate and compatible. This does
not immediately imply that it is contained in the contextual approximation
relation, since we do not know that it is transitive. However we have the following
lemma where by transitive closure we mean that for each A, I' and 7 we take
the transitive closure of the relation {(e,e’) | A | I' - e <9 ¢ . 7). This is
another type-indexed relation.

Lemma 4.7. The transitive closure of 5“’9 s compatible and adequate.

Proof. Transitive closure of an adequate relation is adequate. Similarly the tran-
sitive closure of a compatible and reflexive relation (in the sense of Definition 4.1)
is again compatible (and reflexive).

Theorem 4.8 (CIU Theorem). The relations <'9, <V and < coincide.

Proof. Tt is standard (e.g. [18]) that < is included in <Y, We show that the
logical approximation relation is contained in the CIU approximation relation
in the standard way for biorthogonal step-indexed logical relations. To see that
<! s included in <" we have by Lemma 4.7 that the transitive closure of <™
is an adequate precongruence, thus included in <°**. And <" is included in the
transitive closure of Slog . Corollary A.13 in the appendix completes the cycle of
inclusions.

Using the logical relation and Theorem 4.8 we can prove some extensionality
properties. The proofs are standard and can be found in the Appendix.

Lemma 4.9 (Functional Extensionality for Values). Suppose 7,0 € T(A)
and let f and f' be two values of type T — o in context A | I'. If for all
u € Val (1) we have A | T'F fu <™ flu:o then A|THf <™ 'm0,

The extensionality for expressions, as opposed to only walues, of function type
does not hold in general due to the presence of choice reductions. See Remark 5.2
for an example. We also have extensionality for values of universal types.

Lemma 4.10 (Extensionality for the Universal Type). Let 7 € T(A,)
be a type. Let f, ' be two values of type Va7 in context A | I'. If for all closed
types o we have A | T+ f[] < f'[] : [o/a] then A | T+ f < f:Va.r.

288 A. Bizjak and L. Birkedal

5 Examples

We now use our logical relation to prove some example equivalences. We show
two examples involving polymorphism. In the Appendix we show additional
examples. In particular we show the correctness of von Neumann’s procedure for
generating a fair sequence of coin tosses from an unfair coin. That example in
particular shows how the use of biorthogonality allows us to “externalize” the
reasoning to arithmetic manipulations.

We first define fix : Va,B.((a—=p) =*(a—F)) — (a—fF) be the term
AANfAz.05(f0lddy) zwheredsistheterm Ay.lety’ =unfoldyinf (Az.y' yx).
This is a call-by-value fixed-point combinator. We also write e; @ ey for the term
if) rand 2 then e; else e;. Note that the choice is made before evaluating e;’s.

We characterize inhabitants of a polymorphic type and show a free theorem.
For the former, we need to know which real numbers can be probabilities of
termination of programs. Recall that a real number r is left-computable if there
exists a computable increasing (not necessarily strictly) sequence {¢n}new of
rational numbers such that r = sup, ¢, ¢». In Appendix B we prove

Proposition 5.1. For any expression e, BV (e) is a left-computable real number
and for any left-computable real number r in the interval [0,1] there is a closed
term e, of type 1 — 1 such that LY (e, () = r.

Inhabitants of the Type Va.a — «. In this section we use further syntactic
sugar for sequencing. When e, ¢’ € Tm are closed terms we write e; ¢’ for (A .¢/) e,
i.e. first run e, ignore the result and then run e¢’. We will need the property that
for all terms e,e/ € Tm, P (e;¢') = B (e) - B¢ (¢’). The proof is by Scott
induction and can be found in the Appendix.

Using Proposition 5.1 we have for each left-computable real r in the interval
[0,1] an inhabitant ¢, of the type Va.ao — « given by AAz.e, (); x.

We now show that these are the only inhabitants of Va.aco — « of the form
AAz.e. Given such an inhabitant let r = B¥ (e[()/z]). We know from Proposi-
tion 5.1 that r is left-computable.

Given a value v of type 7 and n € N we define relations R(n) = {({),v)} and
S(n) = {(v,())}. Note that the relations are independent of n, i.e. R and S are
constant relations. By reflexivity of the logical relation and the relational actions
of types we have

vn, (el()/a],elv/a]) € R (n) and Vn,(e[v/a],e[()/2]) € ST (n) (1)

from which we conclude that B¥ (e[()/z]) = B (e[v/z]). We now show that v
and e[v/x] are CIU-equivalent. Let E € Stk (7) be an evaluation context. Let ¢ =
BV (E[v]). Define the evaluation context E' = —;e, (). Then (E,E’) € ST (n)
for all n which then means, using (1) and Proposition 3.5, that P (Ele[v/z]]) <
P (E'[e[()/x]]). We then have

P (el /a]]) = B (e[(/a)) - B (eg) = 7 - B (E[o])
and so BV (Elelv/a]]) < r-BY (E[v]).

Step-Indexed Logical Relations for Probability 289

Similarly we have (E', E) € RT(n) for all n which implies BV (E[e[v/x]]) >
BV (E'[e[()/x]]). We also have PV (E'[e[() /]]) = r - B* (E[v]).

So we have proved BV (Ele[v/x]]) = r-B¥ (E[v]) = B (e[v/z]) - BY (E[]). Tt
is easy to show by Scott induction, that BY (E[t.[|v]) = B (e, () - BY (E[v]).
We have thus shown that for any value v, the terms e[v/z] and BY (,[]v) are
CIU-equivalent. Using Theorem 4.8 and Lemmas 4.10 and 4.9 we conclude that
the terms Va.Az.e and ¢, are contextually equivalent.

Remark 5.2. Unfortunately we cannot so easily characterize general values of
the type Va.a — «, that is, those not of the form A.v for a value v. Consider
the term A.t1 @ ¢1. It is a straightforward calculation that for any evaluation

2 3
context E and value v, P (|:<t1 @tl)]) = f’ﬂﬂ([)=yt <E [tls2 UD
thus if A. t1 @t is equivalent to any A.t, it must be A

Let E be the evaluation context E = let f =-[in Tetz = = f{) in f ().
We compute LV (E [/1 ti1 @ m]) = 1;’ and Pt (E [A'tsz = 144 showing that
A. ty &t is not equlvalent to At 5.

This example also shows that extensmnahty for expressions, as opposed to
values, of function type does not hold. The reason is that probabilistic choice
is a computational effect and so it matters how many times we evaluate the
term and this is what the constructed evaluation context uses to distinguish the
terms.

A Free Theorem for Lists. Let 7 be a type and a not free in 7. We write [7] for
the type of lists pav.(147x @), nil for the empty list and cons : Va.a — [a] — [
for the other constructor cons = A.Az.\xs.fold (inr (x, xs)). The function map
of type Va.V5.(a =) — [a] — [B] is the function applying the given function
to all elements of the list in order. Additionally, we define composition of terms
f o g as the term Az.f(g(x)) (for x not free in f and g).

We will now show that any term m of type Va.V8.(a —) — [a] — [5] equiv-
alent to a term of the form A.A.\z.e satisfies m[|[] (f o g) = m][][]f omap[][] ¢
for all values f and all deterministic and terminating g. By this we mean that for
each value v in the domain of g, there exists a value u in the codomain of g, such
that gv = u. For instance, if g reduces without using choice reductions and
is terminating, then ¢ is deterministic. There are other functions that are also
deterministic and terminating, though, for instance Az.() @ (). In the Appendix
we show that these restrictions are not superfluous.

So let m be a closed term of type Va.VB.(a —) — [a] — [6] and suppose
further that m is equivalent to a term of the form A.A.Ax.e. Let 7,0,p € ¥ be
closed types and f € Val(oc — p) and g € Tm (7 — o) be a deterministic and
terminating function. Then

@ | @ ml(fog) =" mlf omap[]llg : [7] — [o].

290 A. Bizjak and L. Birkedal

We prove two approximations separately, starting with Scm. We use The-
orem 4.8 multiple times. We have o, 8 | @ F m[][] : (&« =) — [a] — [B]. Let
R = Xn.{(v,u) | gv =" u} be a member of VRel (7,0) and S € VRel (p, p) be
the constant identity relation on Val (p). Let ¢ map « to R and 8 to S. Propo-
sition 4.5 gives (m/[][], m[][]) € [(& = B8) = [a] = [F]] (cp)Tr(n) for all n € N.

We first claim that (fog, f) € [a = 8] (¢)(n) for all n € N. Since f is a value
and has a type, it must be of the form Azx.e for some = and e. Take j € N, related
values (v,u) € r(j), k < j and (E, E') € ST (k) two related evaluation contexts.
We then have BV (E'[f u]) = BV (E'[f(gv)]) by Theorem 4.8 and the definition
of relation R. Using the results about ‘Bg (-) and P (-) proved in Section C in
the Appendix this gives us

B (B <) W < > WPt (Ew)

7T:f(g(v))W w Trf(g(v))w w

and the last term is equal to B¢ (E'[f(gv)]) which is equal to Bt (E'[f u]).

From this we can conclude (m[][] (f o g),m[[| f) € [[e] = [8]] (¢) 7" (n) for
all n € N. Note that we have not yet used the fact that g is deterministic and
terminating. We do so now.

Let xs be a list of elements of type 7. Then induction on the length of xs,
using the assumption on g, we can derive that there exists a list ys of elements
of type o, such that map[][] g xs =" ys and (xs,ys) € [[a]] (¢)(n) for all n.

This gives us (m[)[] (f o g) zs,m[][] fys) € [[8]] (¢) " (n) for all n € N. Since
the relation S is the identity relation we have for all evaluation contexts E of a
suitable type, (E, E) € ST (n) for all n, which gives

m[|[} (f o) 2s< " ml][] fys="m(|] f (map[)[] g w5)="(m[][] f o map[][] g) s

where the last equality holds because S-reduction is an equivalence.
We now conclude by using the fact that m is (equivalent to) a term of the form
A.AXz.e and use Lemma 4.9 to conclude m/[][] (f o g) < m|[][] f omap(][] g.
For the other direction, we proceed analogously. The relation for 8 remains
the identity relation, and the relation for R for a is {(v,u) | v = gu}.

6 Extension to References

We now sketch the extension of F#® to include dynamically allocated refer-
ences. For simplicity we add ground store only, so we do not have to solve a
domain equation giving us the space of semantic types and worlds [1]. We show
an equivalence using state and probabilistic choice which shows that the addi-
tion of references to the language is orthogonal to the addition of probabilistic
choice. We conjecture that the extension with higher-order dynamically allocated
references can be done as in earlier work on step-indexed logical relations [11].

We extend the language by adding the type ref nat and extend the grammar
of terms with ¢ | refe | e; := ez | le with £ being locations.

Step-Indexed Logical Relations for Probability 291

To model allocation we need to index the interpretation of types by worlds.
To keep things simple a world w € W is partial bijection f on locations together
with, for each pair of locations (¢1,¢2) € f, a relation R on numerals. We write
(€1,¢2, R) € w when the partial bijection in w relates ¢; and ¢ and R is the
relation assigned to the pair (¢1,¢2). Technically, worlds are relations of type
Loc? x P ({n | n € N}) satisfying the conditions described above.

The operational semantics has to be extended to include heaps, which are
modeled as finite maps from locations to numerals. A pair of heaps (hq, h2) satis-
fies the world w, written (hy, he) € |w], when V(¢1, 2, R) € w, (h1(£1), ha(f2)) €
R. The interpretation of types is then extended to include worlds. The denotation

of a type is now an element of WW %" VRel (-, -) where the order on W is inclu-

sion. Let WRel(7,7') = W ™" VRel (7, 7'). We define [A F ref nat] (»)(n)
as \w. {(El, ls) | (l1,05,=) € w} where = is the equality relation on numerals.
The rest of the interpretation stays the same, apart from some quantification
over “future worlds” in the function case to maintain monotonicity. We also need
to change the definition of the T T-closure to use the world satisfaction relation.
For r € WRel (7,7') we define an indexed relation (indexed by worlds) r' as
T | V' > w, Yk < nyV(hy, he) € W], Vo1, v € r(w')(k),
T {Ee | B (1, Bloa])) < B (B, Bloa]) |

and analogously for -.

We now sketch a proof that two modules, each implementing a counter by us-
ing a single internal location, are contextually equivalent. The increment method
is special. When called, it chooses, uniformly, whether to increment the counter
or not. The two modules differ in the way they increment the counter. One mod-
ule increments the counter by 1, the other by 2. Concretely, we show that the
two counters pack (A —.ref 1, Ax.lz, Az.() ® (z := S!lx)) and pack (A — .ref 2,
Axlz div 2, Az.() @ (x := S (S!z))) are contextually equivalent at type Ja.(1 —
a) X (& = nat) x (o« — 1). We have used div for the division function on
numerals which can easily be implemented.

The interpretation of existentials [A F Ja.7] (¢)(n) now maps world w to

| 3o,0' €%,3r € WRel (0,0"),
{<Pa°k”’f’a°k“) | (v,0") € [A,a k7] (pla = r]) (w)(n) }

To prove the counters are contextually equivalent we show them directly re-
lated in the value relation. We choose the types o and ¢’ to be ref nat and the
relation 7 to be Aw. {({1,2) | (€1, 02,{(n,2-n) ’ n € N}) € w}. We now need
to check all three functions to be related at the value relation.

First, the allocation functions. We only show one approximation, the other is
completely analogous. Concretely, we show that for any n € N and any world w €
W we have (A — .ref 1, — .ref 2) € [1 — o] (r)(w)(n). Let n € Nand w € W.
Take w’ > w and related arguments v,v" at type 1. We know by construction
that v = v = () so we have to show that (ref 1,ref 2) € [a] (r) (w')(n).

292 A. Bizjak and L. Birkedal

Let w” > w' and j < n and take two related evaluation contexts (E, E') at
[a] ()" (w”)(§) and (h, k') € |w”]. Let £ € dom (h) and ¢ ¢ dom (h'). We have

B ((h, Blret 1)) = B} ((h [0 1], B[€]))

and S (1, B'[ret 2))) = BV (' ¢ > 2], F'[E]).

Let w"” be w” extended with (¢,¢',r). Then the extended heaps are in |w"’]
and w” > w”. Thus E and E’ are also related at w’”” by monotonicity. Similarly
we can prove that (£,¢) € [a] (r)(5)(w"”"). This then allows us to conclude
‘By ((h € 1], E[f])) <BY ((h'[¢/ = 2], E'[{"])) which concludes the proof.

Lookup is simple so we omit it. Update is more interesting. Let n € N
and w € W. Let ¢ and ¢ be related at [a] (r)(w)(n). We need to show that
(O (L:=81),0)® :=s(s1)) e 1] ()" (w)(n). Take w' > w, j <n and
(h,h") € |w']. Take related evaluation contexts E and E’ at w’ and j. We have

B (h BL) @ (€:=8100])=,%; (
PR E [@ (¢ = s51)]))=3PB* (
Since ¢ and ¢ are related at [o] (r)(w)(n) and w' > w and (h,h') € |w'| we
know that h(¢) = m and h'(¢') = 2- m for some m € N.

Thus B} ((h, E[(:= $10])) = B} ((h1, E[()])) where hy = h[f — m + 1]. Also
P (W, B0 = $SW])) = B ((ha, E'[()])) where hy = I [z/ 2 (m+ 1)]
The fact that hy and hg are still related concludes the proof.

The above proof shows that reasoning about examples involving state and
choice is possible and that the two features are largely orthogonal.

hE[O]) + 3B ((h, E[¢ =S 1))

(
(', E'[O]) + 3B (0, E' [0 = 881¢]))

7 Conclusion

We have constructed a step-indexed logical relation for a higher-order language
with probabilistic choice. In contrast to earlier work, our language also features
impredicative polymorphism and recursive types. We also show how to extend
our logical relation to a language with dynamically allocated local state. In
future work, we will explore whether the step-indexed technique can be used for
developing models of program logics for probabilistic computation that support
reasoning about more properties than just contextual equivalence. We are also
interested in including primitives for continuous probability distributions.

Acknowledgments. We thank Filip Sieczkowski, Kasper Svendsen and Thomas
Dinsdale-Young for discussions of various aspects of this work and the reviewers
for their comments.

This research was supported in part by the ModuRes Sapere Aude Advanced
Grant from The Danish Council for Independent Research for the Natural Sci-
ences (FNU) and in part by Microsoft Research through its PhD Scholarship
Programme.

Step-Indexed Logical Relations for Probability 293

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Ahmed, A.: Semantics of Types for Mutable State. Ph.D. thesis, Princeton Uni-
versity (2004)

Ahmed, A.: Step-indexed syntactic logical relations for recursive and quantified
types. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 69-83. Springer,
Heidelberg (2006)

Appel, A'W., McAllester, D.: An indexed model of recursive types for founda-
tional proof-carrying code. ACM Transactions on Programming Languages and
Systems 23(5) (2001)

Birkedal, L., Bizjak, A., Schwinghammer, J.: Step-indexed relational reasoning for
countable nondeterminism. Logical Methods in Computer Science 9(4) (2013)
Birkedal, L., Reus, B., Schwinghammer, J., Stovring, K., Thamsborg, J., Yang, H.:
Step-indexed kripke models over recursive worlds. In: Proceedings of the 38th Sym-
posium on Principles of Programming Languages, pp. 119-132. ACM (2011)

Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability.
arXiv:1501.02623 [cs.LO] (2015), long version of this paper

Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-
by-value A-calculi. In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410,
pp. 209-228. Springer, Heidelberg (2014)

Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-
order probabilistic functional programs. In: Proceedings of 41st Symposium on
Principles of Programming Languages, pp. 297-308. ACM (2014)

Danos, V., Harmer, R.S.: Probabilistic game semantics. ACM Transactions on
Computational Logic 3(3) (2002)

Dreyer, D., Ahmed, A., Birkedal, L.: Logical step-indexed logical relations. Logical
Methods in Computer Science 7(2) (2011)

Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control
effects on local relational reasoning. Journal of Functional Programming 22(4-5
special issue), 477-528 (2012)

Ehrhard, T., Pagani, M., Tasson, C.: The computational meaning of probabilis-
tic coherence spaces. In: Proceedings of the 26th IEEE Symposium on Logic in
Computer Science, pp. 87-96. IEEE (2011)

Ehrhard, T., Tasson, C., Pagani, M.: Probabilistic coherence spaces are fully ab-
stract for probabilistic pcf. In: Proceedings of 41st Symposium on Principles of
Programming Languages, pp. 309-320. ACM (2014)

Johann, P., Simpson, A., Voigtlander, J.: A generic operational metatheory for
algebraic effects. In: Proceedings of the 25th Annual IEEE Symposium on Logic
in Computer Science, pp. 209-218. IEEE (2010)

Jones, C., Plotkin, G.: A probabilistic powerdomain of evaluations. In: Proceedings
of the 4th Symposium on Logic in Computer Science, pp. 186-195. IEEE (1989)
Lago, U.D., Zorzi, M.: Probabilistic operational semantics for the lambda calculus.
RAIRO - Theoretical Informatics and Applications 46 (2012)

Pitts, A.M.: Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science 10(3) (2000)

Pitts, A.M.: Typed operational reasoning. In: Pierce, B.C. (ed.) Advanced Topics
in Types and Programming Languages, ch. 7. MIT Press (2005)

Pitts, A.M.: Step-indexed biorthogonality: a tutorial example. In: Ahmed, A.,
Benton, N., Birkedal, L., Hofmann, M. (eds.) Modelling, Controlling and Rea-
soning About State. No. 10351 in Dagstuhl Seminar Proceedings (2010)

294 A. Bizjak and L. Birkedal

20. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: Proceedings of the 29th Symposium on Principles of Programming
Languages, pp. 154-165. ACM (2002)

21. Saheb-Djahromi, N.: Cpo’s of measures for nondeterminism. Theoretical Computer
Science 12(1) (1980)

	Step-Indexed Logical Relations for Probability
	1 Introduction
	2 The Language Fμ,⊕
	3 Observations and Biorthogonality
	4 Logical, CIU and Contextual Approximation Relations
	5 Examples
	6 Extension to References
	7 Conclusion
	References

