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Abstract. We study which standard operators of probabilistic process calculi al-
low for compositional reasoning with respect to bisimulation metric semantics.
We argue that uniform continuity (generalizing the earlier proposed property of
non-expansiveness) captures the essential nature of compositional reasoning and
allows now also to reason compositionally about recursive processes. We charac-
terize the distance between probabilistic processes composed by standard process
algebra operators. Combining these results, we demonstrate how compositional
reasoning about systems specified by continuous process algebra operators allows
for metric assume-guarantee like performance validation.

1 Introduction

Probabilistic process algebras describe probabilistic concurrent communicating sys-
tems (probabilistic processes for short). In this paper we study compositional reasoning
over probabilistic processes, specified by terms of probabilistic process algebras.

Behavioral equivalences equate processes that are indistinguishable to any external
observer. The most prominent example is bisimulation equivalence [15], which provides
a well-established theory of the behavior of probabilistic nondeterministic transition
systems. However, bisimulation equivalence is too sensitive to the exact probabilities
of transitions. The slightest perturbation of the probabilities can destroy bisimilarity.
Bisimulation metric [3, 7, 8] provides a robust semantics for probabilistic processes.
It is the quantitative analogue to bisimulation equivalence and assigns to each pair of
processes a distance which measures the proximity of their quantitative properties. The
distances form a pseudometric1 where bisimilar processes are in distance 0.

In order to specify and verify systems in a compositional manner, it is necessary
that the behavioral semantics is compatible with all operators of the language that de-
scribe these systems. For behavioral equivalence semantics there is common agree-
ment that compositional reasoning requires that the considered behavioral equivalence
is a congruence wrt. all operators. On the other hand, for behavioral metric semantics
there are several proposals of properties that operators should satisfy in order to fa-
cilitate compositional reasoning. Most prominent examples are non-expansiveness [8]
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1 A bisimulation metric is in fact a pseudometric. For convenience we use the term bisimulation
metric instead of bisimulation pseudometric.

© Springer-Verlag Berlin Heidelberg 2015
A. Pitts (Ed.): FOSSACS 2015, LNCS 9034, pp. 230–245, 2015.
DOI: 10.1007/978-3-662-46678-0_15



Compositional Metric Reasoning with Probabilistic Process Calculi 231

and non-extensiveness [1]. We discuss these properties and propose uniform continuity
as the most natural property of process operators to facilitate compositional reasoning
wrt. behavioral metric semantics especially in presence of recursion. Uniform conti-
nuity generalizes non-extensiveness and non-expansiveness and captures the essential
nature of compositional reasoning wrt. behavioral metric semantics. A uniformly con-
tinuous binary process operator f ensures that for any non-zero bisimulation distance ε
(understood as the admissible tolerance from the operational behavior of the composed
process f (p1, p2)) there are non-zero bisimulation distances δ1 and δ2 (understood as
the admissible tolerances from the operational behavior of the processes p1 and p2) such
that the distance between the composed processes f (p1, p2) and f (p′1, p

′
2) is at most ε

whenever the component p′1 (resp. p′2) is in distance of at most δ1 from p1 (resp. at most
δ2 from p2). Our key contributions are as follows:

1. We develop for many non-recursive and recursive process operators used in various
probabilistic process algebras tight upper bounds on the distance between processes
combined by those operators (Sec. 3.2 and 4.2).

2. We show that non-recursive process operators, esp. (nondeterministic and proba-
bilistic variants of) sequential, alternative and parallel composition, allow for com-
positional reasoning wrt. the compositionality criteria of non-expansiveness and
hence also wrt. uniform continuity (Sec. 3).

3. We show that recursive process operators, e.g. (nondeterministic and probabilistic
variants of) Kleene-star iteration and π-calculus bang replication, allow for compo-
sitional reasoning wrt. the compositionality criterion of uniform continuity, but not
wrt. non-expansiveness and non-extensiveness (Sec. 4).

4. We demonstrate the usefulness of compositional reasoning using a network pro-
tocol build from uniformly continuous operators. In particular, we show how it is
possible to derive performance guarantees of the entire system from performance
assumptions about individual components. Conversely, we show how it is also pos-
sible to derive performance requirements on individual components from perfor-
mance requirements of the complete system (Sec. 5).

2 Preliminaries

We consider transition systems with process terms as states and a transition relation
inductively defined by means of SOS rules. Process terms are inductively defined by
the process combinators. The SOS rules are syntax-driven inference rules that define
the behavior of complex processes in terms of the behavior of their components.

Probabilistic Transition Systems. A signature is a structure Σ = (F, r), where F is a
countable set of operators, or process combinators, and r : F → N is a rank function,
which gives the arity of an operator. By f ∈ Σ we mean f ∈ F. We assume an infinite
set of process variables (or state variables)Vs disjoint from F. The set of process terms
(or state terms) over a signature Σ and a set V ⊆ Vs of variables, notation T(Σ,V), is
the least set satisfying: (i) V ⊆ T(Σ,V), and (ii) f (t1, . . . , tn) ∈ T(Σ,V) whenever f ∈ Σ,
t1, . . . , tn ∈ T(Σ,V) and n = r( f ). We will use n for r( f ) if it is clear from the context.
We write T(Σ) for T(Σ, ∅) (set of all closed process terms) and T(Σ) for T(Σ,Vs) (set of
all open process terms). We may refer to closed process terms as processes.
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Probabilistic transition systems extend transition systems by allowing for probabilis-
tic choices in the transitions. We consider probabilistic nondeterministic labelled transi-
tion systems [15]. The state space is defined as the set T(Σ) of all processes. Probability
distributions over this state space are mappings π : T(Σ) → [0, 1] with

∑
t∈T(Σ) π(t) = 1

that assign to each process t its respective probability π(t). By Δ(T(Σ)) we denote the
set of all probability distributions on T(Σ). We let π, π′ range over Δ(T(Σ)).

Definition 1 (PTS). A probabilistic nondeterministic labeled transition system (PTS)
is given by a triple (T(Σ), A,−→), where Σ is a signature, A is a countable set of actions,

and −→ ⊆ T(Σ) × A × Δ(T(Σ)) is a transition relation. We write t
a−→ π for (t, a, π) ∈ −→.

Bisimulation Metric on PTS. We define now bisimulation metric as the quantitative
analogue to bisimulation equivalence. A 1-bounded pseudometric on the set of pro-
cesses T(Σ) is a function d : T(Σ) × T(Σ) → [0, 1] with d(t, t) = 0, d(t, t′) = d(t′, t),
and d(t, t′) ≤ d(t, t′′) + d(t′′, t′), for all t, t′, t′′ ∈ T(Σ). We will use 1-bounded pseu-
dometrics to describe the behavioral distances between processes. We order 1-bounded
pseudometrics by d1 � d2 iff d1(t, t′) ≤ d2(t, t′) for all t, t′ ∈ T(Σ).

A 1-bounded pseudometric on processes T(Σ) is lifted to a 1-bounded pseudometric
on distributions Δ(T(Σ)) by means of the Kantorovich pseudometric. A matching for
(π, π′) ∈ Δ(T(Σ)) × Δ(T(Σ)) is a distribution ω ∈ Δ(T(Σ) × T(Σ)) with

∑
t′∈T(Σ) ω(t, t′) =

π(t) and
∑

t∈T(Σ) ω(t, t′) = π′(t′) for all t, t′ ∈ T(Σ). LetΩ(π, π′) be the set of all matchings
for (π, π′). The Kantorovich pseudometric K(d) : Δ(T(Σ))×Δ(T(Σ))→ [0, 1] for a pseu-
dometric d : T(Σ)×T(Σ)→ [0, 1] is given by K(d)(π, π′) = minω∈Ω(π,π′)

∑
t,t′∈T(Σ) d(t, t′) ·

ω(t, t′) for all π, π′ ∈ Δ(T(Σ)).
A 1-bounded pseudometric is a bisimulation metric if for all pairs of process terms t

and t′ each transition of t can be mimicked by a transition of t′ with the same label and
the distance between the accessible distributions does not exceed the distance between
t and t′. By means of a discount factor λ ∈ (0, 1] we allow to specify how much the
behavioral distance of future transitions is taken into account [6,8]. The discount factor
λ = 1 expresses no discount, meaning that the differences in the behavior between t and
t′ are considered irrespective of after how many steps they can be observed.

Definition 2 (Bisimulation metric [8]). A 1-bounded pseudometric d on T(Σ) is a λ-
bisimulation metric for λ ∈ (0, 1] if for all process terms t, t′ ∈ T(Σ) with d(t, t′) < 1, if

t
a−→ π then there exists a transition t′

a−→ π′ such that λ ·K(d)(π, π′) ≤ d(t, t′).
The smallest λ-bisimulation metric, notation dλ, is called λ-bisimilarity metric [3,7,8].
By λ-bisimulation distance between t and t′ we mean dλ(t, t′). Bisimilarity equiva-
lence [15] is the kernel of dλ [8], i.e. dλ(t, t′) = 0 iff t and t′ are bisimilar. We may
write d for d1.

Remark 3. Clearly, dλ(t, t′) ∈ [0, λ]∪{1} for all t, t′ ∈ T(Σ). Let λ < 1. Then, dλ(t, t′) = 1
iff t can perform an action which t′ cannot (or vice versa), dλ(t, t′) = 0 iff t and t′
have the same reactive behavior, and dλ(t, t′) ∈ (0, λ] iff t and t′ have different reactive
behavior after performing the same initial action.

Algebra of Probability Distributions. We start with some notations and operations
on probability distributions. We denote by δ(t) with t ∈ T(Σ) the Dirac distribution
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defined by (δ(t))(t) = 1 and (δ(t))(t′) = 0 if t � t′. The convex combination
∑

i∈I piπi of
a family {πi}i∈I of probability distributions πi ∈ Δ(T(Σ)) with pi ∈ (0, 1] and

∑
i∈I pi = 1

is defined by (
∑

i∈I piπi)(t) =
∑

i∈I (piπi(t)) for all t ∈ T(Σ). The expression f (π1, . . . , πn)
with f ∈ Σ and πi ∈ Δ(T(Σ)) denotes the product distribution of π1, . . . , πn defined by
f (π1, . . . , πn)( f (t1, . . . , tn)) =

∏n
i=1 πi(ti) and f (π1, . . . , πn)(t) = 0 for all t ∈ T(Σ) not in

the form t = f (t1, . . . , tn). For binary operators f we may write π1 f π2 for f (π1, π2).
In order to describe probabilistic behavior, we need syntactic expressions that denote

probability distributions. To be precise, each closed expression will denote some prob-
ability distribution, and each open expression instantiates by a closed substitution to
some probability distribution. We assume an infinite set of distribution
variables Vd. We let μ, ν range over Vd. We denote by V the set of process and dis-
tribution variables V = Vs ∪ Vd . The set of distribution terms over process variables
Vs ⊆ Vs and distribution variables Vd ⊆ Vd, notation DT(Σ,Vs,Vd), is the least set
satisfying [12]: (i) Vd ⊆ DT(Σ,Vs,Vd), (ii) {δ(t) | t ∈ T(Σ,Vs)} ⊆ DT(Σ,Vs,Vd),
(iii)
∑

i∈I piθi ∈ DT(Σ,Vs,Vd) whenever θi ∈ DT(Σ,Vs,Vd) and pi ∈ (0, 1] with
∑

i∈I pi =

1, and (iv) f (θ1, . . . , θn) ∈ DT(Σ,Vs,Vd) whenever f ∈ Σ and θi ∈ DT(Σ,Vs,Vd).
We write DT(Σ) for DT(Σ,Vs,Vd) (set of all open distribution terms), and DT(Σ) for
DT(Σ, ∅, ∅) (set of all closed distribution terms).

Distribution terms have the following meaning. A distribution variable μ ∈ Vd is
a variable that takes values from Δ(T(Σ)). An instantiable Dirac distribution δ(t) is
an expression that takes as value the Dirac distribution δ(t′) when variables in t are
substituted so that t becomes the closed term t′. Case iii allows to construct convex
combinations of distributions. We write θ1⊕pθ2 for

∑2
i=1 piθi with p1 = p and p2 = 1−p.

Case iv lifts the structural inductive construction of state terms to distribution terms.
A substitution is a mapping σ : V → T(Σ) ∪ DT(Σ) s.t. σ(x) ∈ T(Σ) if x ∈ Vs and

σ(μ) ∈ DT(Σ) if μ ∈ Vd. σ extends to a mapping from process terms to process terms
as usual and to a mapping from distribution terms to distribution terms by σ(δ(t)) =
δ(σ(t)), σ(

∑
i∈I piθi) =

∑
i∈I piσ(θi), and σ( f (θ1, . . . , θn)) = f (σ(θ1), . . . , σ(θn)). A sub-

stitution σ is closed if σ(x) ∈ T(Σ) for all x ∈ Vs and σ(μ) ∈ DT(Σ) for all μ ∈ Vd .

Specification of Process Combinators. We specify the operational semantics of pro-
cess combinators by SOS rules in the probabilistic GSOS format [2,12]. The operational
semantics of a process term is given by inductively applying the respective SOS rules.

Definition 4 (PGSOS rule [2, 12]). A PGSOS rule has the form:

{xi
ai,k−−−→ μi,k | i ∈ I, k ∈ Ki} {xi

bi,l−−→� | i ∈ I, l ∈ Li}
f (x1, . . . , xn)

a−→ θ
with n the rank of operator f ∈ Σ, I = {1, . . . , n} the indices of the arguments of f ,
finite index sets Ki, Li, actions ai,k, bi,l, a ∈ A, process variables xi ∈ Vs, distribution
variables μi,k ∈ Vd, distribution term θ ∈ DT(Σ), and constraints:

1. all μi,k for i ∈ I, k ∈ Ki are pairwise different;
2. all x1, . . . , xn are pairwise different;
3. Var(θ) ⊆ {μi,k | i ∈ I, k ∈ Ki} ∪ {x1 . . . , xn}.

The expressions xi
ai,k−−−→ μi,k and xi

bi,l−−→� above the line, and f (x1, . . . , xn)
a−→ θ below the

line, are called, resp., positive premises, negative premises and conclusion of the rule.
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Table 1. Standard non-recursive process combinators

ε
√
−→ δ(0) a.

n⊕

i=1

[pi]xi
a−→

n∑

i=1

piδ(xi)

x
a−→ μ a �

√

x; y
a−→ μ; δ(y)

x
√
−→ μ y

a−→ ν
x; y

a−→ ν

x
a−→ μ

x + y
a−→ μ

y
a−→ ν

x + y
a−→ ν

x
a−→ μ y

a−→ ν
x | y a−→ μ | ν

x
a−→ μ

x ||| y a−→ μ ||| δ(y)

y
a−→ ν

x ||| y a−→ δ(x) ||| ν
x

a−→ μ y
a−→ ν a ∈ B \ {√}

x ||B y
a−→ μ ||B ν

x
a−→ μ a � B ∪ {√}

x ||B y
a−→ μ ||B δ(y)

y
a−→ ν a � B ∪ {√}

x ||B y
a−→ δ(x) ||B ν

x
√
−→ μ y

√
−→ ν

x ||B y
√
−→ δ(0)

A probabilistic transition system specification (PTSS) in PGSOS format is a triple
P = (Σ, A,R), where Σ is a signature, A is a countable set of actions and R is a countable
set of PGSOS rules. A supported model of P is a PTS (T(Σ), A,−→) such that the transi-
tion relation −→ contains all and only those transitions for which P offers a justification,

i.e. t
a−→ π ∈ −→ iff for some rule r ∈ R and some closed substitution σ all premises of

r hold, i.e. for all positive premises xi
ai,k−−−→ μi,k we have σ(xi)

ai,k−−−→ σ(μi,k) ∈ −→ and for

all negative premises xi
bi,l−−→� we have σ(xi)

bi,l−−→ π � −→ for all π ∈ Δ(T(Σ)), and the

conclusion f (x1, . . . , xn)
a−→ θ instantiates to σ( f (x1, . . . , xn)) = t and σ(θ) = π. Each

PTSS in PGSOS format has a supported model which is moreover unique [2].
Intuitively, a term f (t1, . . . , tn) represents the composition of processes t1, . . . , tn by

operator f . A rule r specifies some transition f (t1, . . . , tn)
a−→ π that represents the

evolution of the composed process f (t1, . . . , tn) by action a to the distribution π.

Definition 5 (Disjoint Extension). Let P = (Σ, A,R) and P′ = (Σ′, A,R′) be two PTSSs
in PGSOS format. P′ is a disjoint extension of P, notation P � P′, iff Σ ⊆ Σ′, R ⊆ R′
and R′ introduces no new rule for any operator in Σ.

The disjoint extension of the specification of some process combinator allows to specify
arbitrary processes while the operational semantics of the process combinator remains
unchanged. This allows us to study the compositionality properties of concrete process
combinators which hold for the composition of arbitrary processes.

3 Non-recursive Processes

We start by discussing compositional reasoning over probabilistic processes that are
composed by non-recursive process combinators. First we introduce the most com-
mon non-recursive process combinators, then study the distance between composed
processes, and conclude by analyzing their compositionality properties. Our study of
compositionality properties generalizes earlier results of [7, 8] which considered only
a small set of process combinators and only the property of non-expansiveness. The
development of tight bounds on the distance between composed process (necessary for
effective metric assume-guarantee performance validation) is novel.

3.1 Non-recursive Process Combinators

We introduce a probabilistic process algebra that comprises many of the probabilistic
CCS [2] and CSP [4] process combinators. Let ΣPA be a signature with the following
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Table 2. Standard non-recursive probabilistic process combinators

x
a−→ μ y

a−→�
x +p y

a−→ μ
x

a−→� y
a−→ ν

x +p y
a−→ ν

x
a−→ μ y

a−→ ν
x +p y

a−→ μ ⊕p ν

x
a−→ μ y

a−→�
x |||p y

a−→ μ |||p δ(y)

x
a−→� y

a−→ ν
x |||p y

a−→ δ(x) |||p ν
x

a−→ μ y
a−→ ν

x |||p y
a−→ μ |||p δ(y) ⊕p δ(x) |||p ν

operators: i) constants 0 (stop process) and ε (skip process); ii) a family of n-ary prob-
abilistic prefix operators a.([p1] ⊕ . . . ⊕ [pn] ) with a ∈ A, n ≥ 1, p1, . . . , pn ∈ (0, 1]
and
∑n

i=1 pi = 1; iii) binary operators ; (sequential composition), + (alternative
composition), +p (probabilistic alternative composition), | (synchronous parallel
composition), ||| (asynchronous parallel composition), |||p (probabilistic parallel
composition), and ‖B for each for each B ⊆ A (CSP parallel composition). The PTSS
PPA = (ΣPA, A,RPA) is given by the rules RPA in Tab. 1 and Tab. 2. We write a.

⊕n
i=1[pi]

for a.([p1] ⊕ . . . ⊕ [pn] ) and a. for a.([1] ). Moreover, by process a we mean a.0.

3.2 Distance between Non-recursive Processes

We develop now tight bounds on the distance between processes combined by the non
-recursive process combinators. This allows us later to derive the compositionality prop-
erties of those operators. As we will discuss two different compositionality proper-
ties for non-recursive processes, we split in this section the discussion on the distance
bounds accordingly. We use disjoint extensions of the specification of the process com-
binators in order to reason over the composition of arbitrary processes.

We will express the bound on the distance between composed processes f (s1, . . . , sn)
and f (t1, . . . , tn) in terms of the distance between their respective components si and
ti. Intuitively, given a probabilistic process f (s1, . . . , sn) we provide a bound on the
distance to the respective probabilistic process f (t1, . . . , tn) where each component si is
replaced by the component ti. We start with those process combinators that satisfy the
later discussed compositionality property of non-extensiveness (Def. 9).

Proposition 6. Let P = (Σ, A,R) be any PTSS with PPA � P. For all si, ti ∈ T(Σ)

(a) dλ(a.
⊕n

i=1[pi]si, a.
⊕n

i=1[pi]ti) ≤ λ∑n
i=1 pidλ(si, ti);

(b) dλ(s1 + s2, t1 + t2) ≤ max(dλ(s1, t1), dλ(s2, t2));
(c) dλ(s1 +p s2, t1 +p t2) ≤ max(dλ(s1, t1), dλ(s2, t2)).

The distance between action prefixed processes (Prop. 6.a) is discounted by λ since
the processes a.

⊕n
i=1[pi]si and a.

⊕n
i=1[pi]ti perform first the action a before si and ti

may evolve. The distances between processes composed by either the nondeterminis-
tic alternative composition operator or by the probabilistic alternative composition are
both bounded by the maximum of the distances between their respective arguments
(Prop. 6.b and Prop. 6.c). The distance bounds for these operators coincide since the
first two rules specifying the probabilistic alternative composition define the same op-
erational behavior as the nondeterministic alternative composition and the third rule
defines a convex combination of these transitions.

We proceed with those process combinators that satisfy the later discussed composi-
tionality property of non-expansiveness (Def. 12).
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Proposition 7. Let P = (Σ, A,R) be any PTSS with PPA � P. For all si, ti ∈ T(Σ)

(a) dλ(s1; s2, t1; t2) ≤
⎧
⎪⎪⎨
⎪⎪⎩

1 if dλ(s1, t1) = 1

max(da
1,2, dλ(s2, t2)) if dλ(s1, t1) ∈ [0, 1)

(b) dλ(s1 | s2, t1 | t2) ≤ ds

(c) dλ(s1 ||| s2, t1 ||| t2) ≤ da

(d) dλ(s1 ‖B s2, t1 ‖B t2) ≤
⎧
⎪⎪⎨
⎪⎪⎩

ds if B \ {√} � ∅
da otherwise

(e) dλ(s1 |||p s2, t1 |||p t2) ≤ da, with

ds=

⎧
⎪⎪⎨
⎪⎪⎩

1 if dλ(s1, t1) = 1 or dλ(s2, t2) = 1

dλ(s1, t1) + (1 − dλ(s1, t1)/λ)dλ(s2, t2) otherwise

da=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if dλ(s1, t1) = 1

1 if dλ(s2, t2) = 1

max(da
1,2 , da

2,1) otherwise

da
1,2 = dλ(s1, t1) + λ(1 − dλ(s1, t1)/λ)dλ(s2, t2)

da
2,1 = dλ(s2, t2) + λ(1 − dλ(s2, t2)/λ)dλ(s1, t1)

The expression ds captures the distance bound between the synchronously evolv-
ing processes s1 and s2 on the one hand and the synchronously evolving processes t1
and t2 on the other hand. We remark that distances dλ(s1, t1) and dλ(s2, t2) contribute
symmetrically to ds since dλ(s1, t1) + (1 − dλ(s1, t1)/λ)dλ(s2, t2) = dλ(s2, t2) + (1 −
dλ(s2, t2)/λ)dλ(s1, t1) = dλ(s1, t1) + dλ(s2, t2) − dλ(s1, t1)dλ(s2, t2)/λ. The expressions
da

1,2, d
a
2,1, d

a cover different scenarios of the asynchronous evolution of those processes.
The expression da

1,2 (resp. da
2,1) denotes the distance bound between the asynchronously

evolving processes s1 and s2 on the one hand and the asynchronously evolving pro-
cesses t1 and t2 on the other hand, at which the first transition is performed by the pro-
cesses s1 and t1 (resp. the first transition is performed by processes s2 and t2). Hence, the
distances of the asynchronously evolving processes da

1,2 and da
2,1 differ from the distance

ds of the synchronously evolving processes only by the discount factor λ that is applied
to the delayed process. Finally, da captures the distance between asynchronously evolv-
ing processes independent of which of those processes moves first. If dλ(si, ti) = 1
the processes may disagree on the initial actions they can perform and the composed
processes have then also the maximal distance of 1 (cf. Rem. 3).

We consider now the process combinators in detail. The distance between sequen-
tially composed processes s1; s2 and t1; t2 (Prop. 7.a) is given if dλ(s1, t1) ∈ [0, 1) as
the maximum of (i) the distance da

1,2 (which captures the case that first the processes
s1 and t1 evolve followed by s2 and t2), and (ii) the distance dλ(s2, t2) (which cap-
tures the case that the processes s2 and t2 evolve immediately because both s1 and t1
terminate successfully). The distance da

1,2 weights the distance between s2 and t2 by
λ(1−dλ(s1, t1)/λ). The discount λ expresses that the distance between processes s2 and
t2 is observable just after s1 and t1 have performed at least one step. Additionally, note
that the difference between s2 and t2 can only be observed when s1 and t1 agree to ter-
minate. When processes s1 and t1 evolve by one step, they disagree by dλ(s1, t1)/λ on
their behavior. Hence they agree by 1 − dλ(s1, t1)/λ. Thus, the distance between pro-
cesses s2 and t2 needs to be additionally weighted by (1 − dλ(s1, t1)/λ). In case (ii) the
distance between s2 and t2 is not discounted since both processes start immediately.
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The distance between synchronous parallel composed processes s1 | s2 and t1 | t2 is
dλ(s1, t1)+(1−dλ(s1, t1)/λ)dλ(s2, t2) = λ(1−(1−dλ(s1, t1)/λ)(1−dλ(s2, t2)/λ)). The dis-
tance between s1 | s2 and t1 | t2 is bounded by the sum of the distance between s1 and t1
(degree of dissimilarity between s1 and t1) and the distance between s2 and t2 weighted
by the probability that s1 and t1 agree on their behavior (degree of dissimilarity between
s2 and t2 under equal behavior of s1 and t1). Alternatively, the distance between s1 | s2

and t1 | t2 can be understood as composing processes on the behavior they agree upon,
i.e. s1 | s2 and t1 | t2 agree on their behavior if s1 and t1 agree (probability of similar-
ity 1 − dλ(s1, t1)/λ) and if s2 and t2 agree (probability of similarity 1 − dλ(s2, t2)/λ).
The resulting distance is then the probability of dissimilarity of the respective behavior
expressed by 1 − (1 − dλ(s1, t1)/λ)(1− dλ(s2, t2)/λ) multiplied by the discount factor λ.

The distance between asynchronous parallel composed processes s1 ||| s2 and t1 ||| t2
is exactly the expression da. The distance between processes composed by the prob-
abilistic parallel composition operator s1 |||p s2 and t1 |||p t2 is bounded by the same
expression da since the first two rules specifying the probabilistic parallel composi-
tion define the same operational behavior as the nondeterministic parallel composition.
The third rule defining a convex combination of these transitions applies only for those
actions that can be performed by both processes s1 and s2 and resp. t1 and t2.

Processes that are composed by the CSP parallel composition operator ‖B evolve
synchronously for actions in B \ {√}, evolve asynchronously for actions in A \ (B∪{√}),
and the action

√
leads always to the stop process if both processes can perform

√
. Since

ds ≥ da, the distance is bounded by ds if there is at least one action a ∈ B with a �
√

for which the composed processes can evolve synchronously, and otherwise by da.
The distance bounds for non-recursive process combinators are tight.

Proposition 8. Let εi ∈ [0, 1]. There are si, ti ∈ T(ΣPA) with dλ(si, ti) = εi such that the
inequalities in Prop. 6 and 7 become equalities.

3.3 Compositional Reasoning Over Non-recursive Processes

In order to specify and verify systems in a compositional manner, it is necessary that
the behavioral semantics is compatible with all operators of the language that describe
these systems. There are multiple proposals which properties of process combinators
facilitate compositional reasoning. In this section we discuss non-extensiveness [1] and
non-expansiveness [7, 8]), which are compositionality properties based on the p-norm.
They allow for compositional reasoning over probabilistic processes that are built of
non-recursive process combinators. Non-extensiveness and non-expansiveness are very
strong forms of uniform continuity. For instance, a non-expansive operator ensures that
the distance between the composed processes is at most the sum of the distances be-
tween its parts. Later in Sec. 4.3 we will propose uniform continuity as generalization of
these properties that allows also for compositional reasoning over recursive processes.

Definition 9 (Non-extensive Process Combinator). A process combinator f ∈ Σ is
non-extensive wrt. λ-bisimulation metric dλ if or all closed process terms si, ti ∈ T(Σ)

dλ( f (s1, . . . , sn), f (t1, . . . , tn)) ≤ n
max

i=1
dλ(si, ti)
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Theorem 10. The process combinators probabilistic action prefix a.
⊕n

i=1[pi] , non-
deterministic alternative composition + and probabilistic alternative composition
+p are non-extensive wrt. dλ for any λ ∈ (0, 1].

Proposition 11. The process combinators sequential composition ; , synchronous
parallel composition | , asynchronous parallel composition ||| , CSP-like parallel
composition ‖B and probabilistic parallel composition |||p are not non-extensive
wrt. dλ for any λ ∈ (0, 1].

Note that Thm. 10 follows from Prop. 6, and that Prop. 11 follows from Prop. 7 and
Prop. 8. We proceed now with the compositionality property of non-expansiveness.

Definition 12 (Non-expansive Process Combinator). A process combinator f ∈ Σ is
non-expansive wrt. λ-bisimulation metric dλ if for all closed process terms si, ti ∈ T(Σ)

dλ( f (s1, . . . , sn), f (t1, . . . , tn)) ≤
n∑

i=1

dλ(si, ti)

If f is non-extensive, then f is non-expansive.

Theorem 13. All non-recursive process combinators of ΣPA are non-expansive wrt. dλ
for any λ ∈ (0, 1].

Note that Thm. 13 follows from Prop. 6 and Prop. 7. Thm. 13 generalizes a similar
result of [8] which considered only PTSs without nondeterministic branching and only
a small set of combinators. The analysis which operators are non-extensive (Thm. 10)
and the tight distance bounds (Prop. 6 and 7) are novel.

4 Recursive Processes

Recursion is necessary to express infinite behavior in terms of finite process expres-
sions. Moreover, recursion allows to express repetitive finite behavior in a compact
way. We will discuss now compositional reasoning over probabilistic processes that
are composed by recursive process combinators. We will see that the compositionality
properties used for non-recursive process combinators (Sec. 3.3) fall short for recursive
process combinators. We will propose the more general property of uniform continuity
(Sec. 4.3) that captures the inherent nature of compositional reasoning over probabilistic
processes. In fact, it allows to reason compositionally over processes that are composed
by both recursive and non-recursive process combinators. In the next section we apply
these results to reason compositionally over a communication protocol and derive its
respective performance properties. To the best of our knowledge this is the first study
which explores systematically compositional reasoning over recursive processes in the
context of bisimulation metric semantics.

4.1 Recursive Process Combinator

We define PPA� as disjoint extension of PPA with the operators finite iteration n, infi-
nite iteration ω, binary Kleene-star iteration ∗ , probabilistic Kleene-star iteration ∗p ,
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Table 3. Standard recursive process combinators

x
a−→ μ

xn+1 a−→ μ; δ(xn)

x
a−→ μ

xω
a−→ μ; δ(xω)

x
a−→ μ

x∗y
a−→ μ; δ(x∗y)

y
a−→ ν

x∗y
a−→ ν

x
a−→ μ y

a−→ ν
x∗p y

a−→ ν ⊕p μ; δ(x∗p y)

x
a−→ μ y

a−→�
x∗p y

a−→ μ; δ(x∗p y)

x
a−→� y

a−→ ν
x∗p y

a−→ ν
x

a−→ μ
!n+1x

a−→ μ ||| δ(!n x)

x
a−→ μ

!x
a−→ μ ||| δ(!x)

x
a−→ μ

!p x
a−→ μ ⊕p (μ ||| δ(!px))

finite replication !n , infinite replication (bang) operator ! , and probabilistic bang oper-
ator !p . The operational semantics of these operators is specified by the rules in Tab. 3.
The finite iteration tn (resp. infinite iteration tω) of process t expresses that t is performed
n times (resp. infinitely often) in sequel. The binary Kleene-star is as usual. The bang
operator expresses for !t (resp. finite replication !nt) that infinitely many copies (resp.
n copies) of t evolve asynchronously. The probabilistic variants of Kleene-star itera-
tion [2, Sec. 5.2.4(vi)] and bang replication [14, Fig. 1] substitute the nondeterministic
choice of the non-probabilistic variants by a respective probabilistic choice.

4.2 Distance between Recursive Processes

We develop now tight bounds for recursive process combinators.

Proposition 14. Let P = (Σ, A,R) be any PTSS with PPA� � P. For all s, t ∈ T(Σ)

(a) dλ(sn, tn) ≤ dn

(b) dλ(!ns, !nt) ≤ dn

(c) dλ(sω, tω) ≤ dω

(d) dλ(!s, !t) ≤ dω

(e) dλ(s1
∗s2, t1∗t2) ≤ max(dλ(s1

ω, t1ω), dλ(s2, t2))

(f) dλ(s
∗p

1 s2, t
∗p

1 t2) ≤ dλ(s1
∗s2, t1∗t2)

(g) dλ(!ps, !pt) ≤
⎧
⎪⎪⎨
⎪⎪⎩

dλ(s, t) 1
1−(1−p)(λ−dλ (s,t)) if dλ(s, t) ∈ (0, 1)

dλ(s, t) if dλ(s, t) ∈ {0, 1} , with

dn=

⎧
⎪⎪⎨
⎪⎪⎩

dλ(s, t) 1−(λ−dλ(s,t))n

1−(λ−dλ(s,t)) if dλ(s, t) ∈ (0, 1)

dλ(s, t) if dλ(s, t) ∈ {0, 1} dω=

⎧
⎪⎪⎨
⎪⎪⎩

dλ(s, t) 1
1−(λ−dλ(s,t)) if dλ(s, t) ∈ (0, 1)

dλ(s, t) if dλ(s, t) ∈ {0, 1}

First we explain the distance bounds of the nondeterministic recursive process com-
binators. To understand the distance bound between processes that iterate finitely many
times (Prop. 14.a), observe that sn and s; . . . ; s (where s; . . . ; s denotes n sequentially
composed instances of s) denote the same PTSs (up to renaming of states). Recursive
application of the distance bound Prop. 7.a yields dλ(sn, tn) = dλ(s; . . . ; s, t; . . . ; t) ≤
dλ(s, t)

∑n−1
k=0(λ − dλ(s, t)) = dn. The same reasoning applies to the finite replication op-

erator (Prop.14.b) by observing that !ns and s ||| . . . ||| s denote the same PTSs (up to
renaming of states) and that the bounds in Prop. 7.a and 7.c coincide if s1 = s2 = s
and t1 = t2 = t. The distance between processes that may iterate infinitely many times
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(Prop. 14.c), and the distance between processes that may spawn infinite many copies
that evolve asynchronously (Prop. 14.d) are the limit of the respective finite iteration
and replication bounds. The distance between the Kleene-star iterated processes s1

∗s2

and t1∗t2 is bounded by the maximum of the distance dλ(s1
ω, t1ω) (infinite iteration of

s1 and t1 s.t. s2 and t2 never evolve), and the distance dλ(s2, t2) (s2 and t2 evolve imme-
diately). The case where s1 and t1 iterate n-times and then s2 and t2 evolve leads always
to a distance dλ(s1

n, t1n) + (λ − dλ(s1, t1))ndλ(s2, t2) ≤ max(dλ(s1
ω, t1ω), dλ(s2, t2)).

Now we explain the bounds of the probabilistic recursive process combinators. The
distance between processes composed by the probabilistic Kleene star is bounded by
the distance between those processes composed by the nondeterministic Kleene star
(Prop. 14.f), since the second and third rule specifying the probabilistic Kleene star
define the same operational behavior as the nondeterministic Kleene star. The first
rule which defines a convex combination of these transitions applies only for those
actions that both of the combined processes can perform. In fact, dλ(s1

∗p s2, t1∗p t2) =
dλ(s1

∗s2, t1∗t2) if the initial actions that can be performed by processes s1, t1 are dis-
joint from the initial actions that can be performed by processes s2, t2 (and hence the
first rule defining ∗p cannot be applied). Thus, the distance bound of the probabilistic
Kleene star coincides with the distance bound of the nondeterministic Kleene star. The
bound on the distance of processes composed by the probabilistic bang operator can be
understood by observing that !ps behaves as !n+1s with probability p(1− p)n. Hence, by
Prop. 14.b we get dλ(!ps, !pt) ≤ ∑∞n=0 p(1 − p)ndλ(!n+1s, !n+1t) ≤ ∑∞n=0 p(1 − p)ndn+1 =

dλ(s, t)/(1 − (1 − p)(λ − dλ(s, t))).
The distance bounds for recursive process combinators are tight.

Proposition 15. Let εi ∈ [0, 1]. There are si, ti ∈ T(ΣPA) with dλ(si, ti) = εi such that the
inequalities in Prop. 14 become equalities.

4.3 Compositional Reasoning Over Recursive Processes

From Prop. 14 and Prop. 15 it follows that none of the recursive process combinators
discussed in this section satisfies the compositionality property of non-expansiveness.

Proposition 16. All recursive process combinators of ΣPA� (unbounded recursion and
bounded recursion with n ≥ 2) are not non-expansive wrt. dλ for any λ ∈ (0, 1].

However, a weaker property suffices to facilitate compositional reasoning. To reason
compositionally over probabilistic processes it is enough if the distance of the composed
processes can be related to the distance of its parts. In essence, compositional reasoning
over probabilistic processes is possible whenever a small variance in the behavior of the
parts leads to a bounded small variance in the behavior of the composed processes.

We introduce uniform continuity as the compositionality property for both recursive
and non-recursive process combinators. Uniform continuity generalizes the properties
non-extensiveness and non-expansiveness for non-recursive process combinators.

Definition 17 (Uniformly Continuous Process Combinator). A process combinator
f ∈ Σ is uniformly continuous wrt. λ-bisimulation metric dλ if for all ε > 0 there are
δ1, . . . , δn > 0 such that for all closed process terms si, ti ∈ T(Σ)

∀i = 1, . . . , n. dλ(si, ti) < δi =⇒ dλ( f (s1, . . . , sn), f (t1, . . . , tn)) < ε.
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Note that by definition each non-expansive operator is also uniformly continuous (by
δi = ε/n). A uniformly continuous combinator f ensures that for any non-zero bisim-
ulation distance ε there are appropriate non-zero bisimulation distances δi s.t. for any
composed process f (s1, . . . , sn) the distance to the composed process where each si is
replaced by any ti with dλ(si, ti) < δi is dλ( f (s1, . . . , sn), f (t1, . . . , tn)) < ε. We consider
the uniform notion of continuity (technically, the δi depend only on ε and are indepen-
dent of the concrete states si) because we aim at universal compositionality guarantees.

The distance bounds of Sec. 4.2 allow us to derive that finitely recursing process
combinators are uniformly continuous wrt. both non-discounted and discounted bisimu-
lation metric (Thm. 18). On the contrary, unbounded recursing process combinators are
uniformly continuous only wrt. discounted bisimulation metric (Thm. 19 and Prop. 20).

Theorem 18. The process combinators finite iteration n, finite replication !n , and
probabilistic replication (bang) !p are uniformly continuous wrt. dλ for any λ ∈ (0, 1].

Note that the probabilistic bang is uniformly continuous wrt. non-discounted bisimula-
tion metric d1 because in each step there is a non-zero probability that the process is not
copied. On contrary, the process s1

∗p s2 applying the probabilistic Kleene star creates
with probability 1 a copy of s1 for actions that s1 can and s2 cannot perform. Hence,
∗p is uniformly continuous only for discounted bisimulation metric dλ with λ < 1.

Theorem 19. The process combinators infinite iteration ω, nondeterministic Kleene-
star iteration ∗ , probabilistic Kleene-star iteration ∗p , and infinite replication (bang)
! are uniformly continuous wrt. dλ for any λ ∈ (0, 1).

Proposition 20. The process combinators ω, ∗ , ! and ∗p are not uniformly contin-
uous wrt. d1.

5 Application

To advocate both uniform continuity as adequate property for compositional reasoning
as well as bisimulation metric semantics as a suitable distance measure for performance
validation of communication protocols, we exemplify the discussed compositional rea-
soning method by analyzing the bounded retransmission protocol (BRP) as a case study.

The BRP allows to transfer streams of data from a sender (e.g. a remote control
RC) to a receiver (e.g. a TV). The RC tries to send to the TV a stream of n data,
d0, . . . , dn−1, with each di a member of the finite data domain D. The length n of the
stream is bounded by a given N. Each di is sent separately and has probability p to get
lost. When the TV receives di, it sends back an acknowledgment message (ack), which
may also get lost, with probability q. If the RC does not receive the ack for di within a
given time, it assumes that di got lost and retries to transmit it. However, the maximal
number of attempts is T . Since the ack may get lost, it may happen that the RC sends
more than once the same datum di notwithstanding that it was correctly received by the
TV. Therefore the RC attaches a control bit b to each datum di s.t. the TV can recognize
if this datum is original or already received. Data items at even positions, i.e. d2k for
some k ∈ N, get control bit 0 attached, and data items d2k+1 get control bit 1 attached.
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BRP(N, T, p, q) = RC(N, T, p, q) ‖B TV, where B = {c(d, b) | d ∈ D, b ∈ {0, 1}} ∪ {ack, lost}

RC(N, T, p, q) =

[ ∑

0≤n≤N,n=2k

i(n).
(

CH(0, T, p, q) ; CH(1,T, p, q)
) n

2
+

∑

0≤n≤N,n=2k+1

i(n).
((

CH(0, T, p, q) ; CH(1,T, p, q)
) n−1

2
; CH(0, T, p, q)

)]

; res(OK).
√

CH(b, t, p, q) =
∑

d∈D
i(d).CH′(d, b, t, p, q)

CH′(d, b, t, p, q) =

⎧
⎪⎪⎨
⎪⎪⎩

(⊥.CH′(d, b, t − 1, p, q)) ⊕p (c(d, b).CH2(d, b, t, p, q)) if t > 0

res(NOK) if t = 0

CH2(d, b, t, p, q) =

⎧
⎪⎪⎨
⎪⎪⎩

(lost.CH′(d, b, t − 1, p, q)) ⊕q (ack.
√

) if t > 0

res(NOK) if t = 0

T V =
[((∑

d∈D
c(d, 1).(ack.

√
+ lost.

√
)
)∗(∑

d∈D
c(d, 0).o(d).(ack.

√
+ lost.

√
)
))

;

((∑

d∈D
c(d, 0).(ack.

√
+ lost.

√
)
)∗(∑

d∈D
c(d, 1).o(d).(ack.

√
+ lost.

√
)
))]ω

Fig. 1. Specification of the Bounded Retransmission Protocol

The BRP is specified in Fig. 1. Our specification adapts the nondeterministic process
algebra specification of [10] by refining the configuration of lossy channels. While in
the nondeterministic setting a lossy channel (nondeterministically) either successfully
transmits a datum or looses it, we attached a success and failure probability to this
choice. The protocol specification BRP(N, T, p, q) represents a system consisting of
the RC modeled as process RC(N, T, p, q), the TV modeled as process TV , and the
channels CH(b, t, p, q) for data transmission and CH2(d, b, t, p, q) for acknowledgment.
The processes RC(N, T, p, q) and TV synchronize over the actions: (i) c(d, b), modeling
the correct transmission of pair (d, b) from the RC to the TV; (ii) ack, modeling the
correct transmission of the ack from the TV to the RC, and (iii) lost, used to model
the timeout due to loss of the ack. Timeout due to the loss of pair (d, b) is modeled
by action ⊥ by the RC. RC(N, T, p, q) starts by receiving the size n ≤ N of the data
stream, by means of action i(n). Then, for n times it reads the datum di by means of
action i(d) and tries to send it to the TV . If all data are sent successfully, then the other
RC components are notified by means of action res(OK). In case of T failures for one
datum, the whole transmission fails and emits res(NOK). If TV receives a pair (d, b) by
action c(d, b) then, if d is original, namely b is the expected control bit, then d is sent to
other TV components by o(d), otherwise (d, b) is ignored.

To advocate bisimulation metric semantics as a suitable distance measure for perfor-
mance validation of communication protocols we translate performance properties of a
BRP implementation with lossy channels BRP(N, T, p, q) to the bisimulation distance
between this implementation and the specification with perfect channels BRP(N, T, 0, 0).
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Proposition 21. Let N, T ∈ N and p, q ∈ [0, 1].

(a) Bisimulation distance d(BRP(N, T, 0, 0),BRP(N, T, p, q)) = ε relates as follows to
the protocol performance properties:

– The likelihood that N data items are sent and acknowledged without any retry
(i.e. BRP(N, T, p, q) behaves as BRP(N, T, 0, 0)) is 1 − ε.

– The likelihood that N data items are sent and acknowledged with at most k ≤
N · T retries is (1 − ε) 1−(1−(1−ε)1/N )k

(1−ε)1/N .

– The likelihood that N items are sent and acknowledged is (1− ε) 1−(1−(1−ε)1/N )N·T
(1−ε)1/N .

(b) Bisimulation distance d(CH(b, T, 0, 0),CH(b, T, p, q)) = δ relates as follows to the
channel performance properties:

– The likelihood that one datum is sent and acknowledged without retry is 1 − δ.
– The likelihood that one datum is sent and acknowledged with at most k ≤ T

retries is 1 − δk.

Now we show that by applying the compositionality results in Prop. 6, 7, 14 we
can relate the bisimulation distance between the specification BRP(N, T, 0, 0) and some
implementation BRP(N, T, p, q) of the entire protocol with the distances between the
specification and some implementation of its respective components. On the one hand,
this allows to derive from specified performance properties of the entire protocol indi-
vidual performance requirements of its components (compositional verification). On the
other hand, it allows to infer from performance properties of the protocol components
suitable performance guarantees on the entire protocol (compositional specification).

Proposition 22. Let N, T ∈ N and p, q ∈ [0, 1]. For all d ∈ D and b ∈ {0, 1}
(a) d(BRP(N, T, 0, 0),BRP(N, T, p, q)) ≤ 1 − (1 − d(CH(b, T, 0, 0),CH(b, T, p, q)))N

(b) d(CH(b, T, 0, 0),CH(b, T, p, q)) = 1 − (1 − p)(1 − q)

Prop. 22.a follows from Props. 6, 7, 14 and Prop. 22.b from Props. 6, 7.
To advocate uniform continuity as adequate property for compositional reasoning,

we show that the uniform continuity of process combinators in BRP(N, T, p, q) allows us
to relate the distance between this implementation and the specification BRP(N, T, 0, 0)
(which relates by Prop. 21 to performance properties of the entire protocol) to the con-
crete parameters p, q and N of the system. In detail, by Thm. 10, 13, 18 and Prop. 22
we get d(BRP(N, T, p, q),BRP(N, T, 0, 0)) ≤ N/2 · (d(CH(0, T, p, q),CH(0, T, 0, 0)) +
d(CH(1, T, p, q),CH(1, T, 0, 0))) ≤ N(1− (1− p)(1− q)). We infer the following result.

Proposition 23. Let N, T ∈ N and p, q ∈ [0, 1]. For all ε ≥ 0, p+q− pq < ε/N ensures

d(BRP(N, T, p, q),BRP(N, T, 0, 0)) < ε

Combining Prop. 21 – 23 allows us now to reason compositionally over a concrete
scenario. We derive from a given performance requirement to transmit a stream of data
the necessary performance properties of the channel components.

Example 24. Consider the following scenario. We want to transmit a data stream of N =
20 data items with at most T = 1 retry per data item. We want to build an implementa-
tion that should satisfy the performance property ‘The likelihood that all 20 data items
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are successfully transmitted is at least 99%’. By Prop. 21.a we translate this perfor-
mance property to the resp. bisimulation distance d(BRP(N, T, 0, 0),BRP(N, T, p, q)) ≤
0.01052 on the entire system. By Prop. 22.a we derive the bisimulation distance for
its channel component d(CH(b, T, 0, 0),CH(b, T, p, q) ≤ 0.00053. By Prop. 22.b this
distance can be translated to appropriate parameters of the channel component, e.g.
p = 0.0002 and q = 0.00032 or equivalently p = 0.020% and q = 0.032%. Finally,
Prop. 21.b allows to translate the distance between the specification and implementa-
tion of the channel component back to an appropriate performance requirement, e.g.
‘The likelihood that one datum is successfully transmitted is at least 99.95%’. �

6 Conclusion

We argued that uniform continuity is an appropriate property of process combinators to
facilitate compositional reasoning wrt. bisimulation metric semantics. We showed that
all standard (non-recursive and recursive) process algebra operators are uniformly con-
tinuous. In addition, we provided tight bounds on the distance between the composed
processes. We exemplified how these results can be used to reason compositionally over
protocols. In fact, they allow to derive from performance requirements on the entire sys-
tem appropriate performance properties of the respective components, and in reverse to
induce from performance assumptions on the system components performance guaran-
tees on the entire system.

We will continue this line of research as follows. First, we generalize the analysis
of concrete process algebra operators as discussed in this paper to general SOS rule
and specification formats. Preliminary results show that in essence, a process combi-
nator is uniformly continuous if the combined processes are copied only finitely many
times along their evolution [11]. Then, we explore further (as initiated in Sec. 5) the
relation between various behavioral distance measures, e.g. convex bisimulation met-
ric [5], trace metric [9], and total-variation distance based metrics [13] with perfor-
mance properties of communication and security protocols. This will provide further
practical means to apply process algebraic methods and compositional metric reason-
ing wrt. uniformly continuous process combinators.
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