
On-the-Fly Synthesis of Scarcely Synchronizing
Distributed Controllers from Scenario-Based

Specifications

Christian Brenner1, Joel Greenyer2, and Wilhelm Schäfer1

1 Software Engineering Group,
Heinz Nixdorf Institute

University of Paderborn, Germany
{cbr,wilhelm}@uni-paderborn.de

2 Software Engineering Group
Leibniz Universität Hannover, Germany

greenyer@inf.uni-hannover.de

Abstract. Distributed systems consist of subsystems that usually need
to coordinate with each other. Each subsystem must decide its actions lo-
cally, based on its limited knowledge. However, these decisions can be in-
terdependent due to global requirements, i.e., one subsystem may need to
know how another one decided. Complex communication can be required
to exchange this knowledge. With rising complexity, a correct manual im-
plementation of all subsystems becomes unlikely. Therefore, our goal is
to automate the implementation process as far as possible. This paper
presents a novel approach for the automatic synthesis of a distributed
implementation from a global specification. In our approach, MSDs—a
scenario-based specification language—can be used to intuitively, but for-
mally define the requirements. The resulting implementation comprises
one automaton for each subsystem, controlling its behavior. Contrary
to similar approaches, we automatically add communication behavior to
the system only when local knowledge is insufficient.

1 Introduction

Advanced driver-assistant systems with inter-vehicle communication or decen-
tralized production systems are examples of software-intensive, distributed sys-
tems where multiple components interact with each other and the environment
to fulfill complex, sometimes critical requirements. These requirements often
span multiple components, which must synchronize so that each component has
sufficient information about the overall system state in order to act accordingly.
Architectural constraints may prohibit the direct communication between cer-
tain components or may require economical use of channels; also the time needed
for exchanging additional synchronization messages can be an issue. Therefore,
the naive approach of full synchronization among all components is usually not
feasible. With rising complexity, implementing a global specification correctly
and with feasible synchronization becomes an extremely difficult task.

c© Springer-Verlag Berlin Heidelberg 2015
A. Egyed and I. Schaefer (Eds.): FASE 2015, LNCS 9033, pp. 51–65, 2015.
DOI: 10.1007/978-3-662-46675-9_4



52 C. Brenner, J. Greenyer, and W. Schäfer

In this paper, we propose a novel algorithm for synthesizing distributed con-
trollers from a Modal Sequence Diagram (MSD) specification. MSDs [9] are a
variant of Live Sequence Charts (LSCs) [4], which allow engineers to describe
what the system components of a system may, must, or must not do.

Approaches for synthesizing distributed controllers from MSD/LSC specifi-
cations have been described previously. One part of these approaches considers
the question whether a distributed implementation exists where the subsystems
exchange messages exactly as defined in the specification, without adding extra
messages for synchronization among the distributed subsystems. The engineers
have to manually ensure that this property is fulfilled by explicitly specifying
all necessary communication. This becomes harder with rising complexity, in-
creasing the chance of errors. The other part of these approaches asks whether
a distributed implementation of a specification exists where extra synchroniza-
tion messages can be added. The existing approaches of this kind automatically
add synchronization messages such that all subsystems have perfect information
about the global state of the system—even when this information is not required
to act correctly according to the specification. This causes a large overhead due
to the unnecessary communication and removes all parallelism from the system.
In real-time systems, this unnecessary communication can even lead to a vio-
lation of timing requirements. But even when timing is not an issue, the given
architecture might not allow all subsystems to communicate.

Contrary to existing approaches, our automatic algorithm introduces synchro-
nization messages scarcely, only when the subsystems could not otherwise avoid
violating the specification. Moreover, these synchronization messages are only
added where allowed by the given architecture. Our algorithm explores candi-
date implementations of an MSD specification on-the-fly and can often find a
solution without constructing all alternatives. This is an advantage over related
approaches that start with constructing a maximal global controller and then
attempt to distribute it. A further advantage over most related approaches is
that we consider specifications where also assumptions can be described on how
the system’s environment may, will, or will not behave.

This paper is structured as follows. Section 2 introduces the foundations and
a running example. Section 3 introduces our distributed synthesis approach. We
illustrate its application for the running example in Sect. 4. We present related
work in Sect. 5 and conclude with Sect. 6.

2 Foundations

As an example, we consider a simple production system with one robot arm
and a press (see sketch in Fig. 1). Blanks arrive on a feed belt where, at its
end, a sensor detects the arrival of a blank and whether it is intact or broken.
The arm must remove broken blanks and move intact ones to the press, where
the blanks are pressed into plates. After pressing, the arm must transport the
pressed plates to a deposit belt. We assume that until the arm has delivered the
plate or removed a broken blank, no new blanks will arrive.



On-the-Fly Synthesis of Scarcely Synchronizing Distributed Controllers 53

The system has two software controller components. One receives signals from
the sensor and controls the robot arm, the other controller controls the press.
Figure 1 shows the requirements (R1-R5) and assumptions (A1, A2).

2.1 MSD Specifications

MSDs are a variant of LSCs [4,10], proposed by Harel and Maoz as a formal
interpretation of UML sequence diagrams [9]. MSDs specify the interaction be-
havior of components or objects. We consider open systems with controllable
system objects and uncontrollable environment objects. Together, these objects
form the object system. An MSD specification consists of an object system and
a set of MSDs, which can be requirement MSDs and assumption MSDs.

Lifelines, Messages, MSD Semantics. An MSD contains lifelines that each
represents one object. Objects can exchange messages. A message has a name and
one sending and one receiving object. We only consider synchronous messages,
where the sending and receiving of a message together form a single event, also
called message event. A run of a system is an infinite sequence of events.

We model the object system by a UML composite structure diagram (CSD,
see Fig. 1). System objects have a rectangular shape; environment objects have
a cloud-like shape. Connectors define which objects can exchange messages.

An MSD contains (diagram) messages that have a name and a sending and
receiving lifeline. They also have a temperature and an execution kind, which
indicate safety and liveness requirements, as we will explain shortly. The tem-
perature can be either hot or cold. The execution kind can be either executed or
monitored. In Fig. 1, the temperature and execution kind is annotated by labels
(c,m), (c,e), (h,m), (h,e) next to the messages. In addition, the hot message ar-
rows are colored red; cold message arrows are colored blue. Monitored messages
have a dashed arrow; the arrows of executed messages have a solid line.

A message in an MSD can be unified with a message event if the sending
and receiving object of the message event are represented by the sending and
receiving lifeline of the diagram message. If a message event occurs that can
be unified with the first message of an MSD (we assume that there is always
exactly one first message), then an active copy of the MSD, also called active
MSD, is created. The active MSD progresses as further events occur that can be
unified with subsequent messages. This progress is indicated by the cut, which
marks messages that have been unified. The MSD labeled R1 in Fig. 1 shows
the cut as a dashed horizontal line spanning all lifelines (the cut is not part
of the specification, but only part of its interpretation). The cut here indicates
that the events intactBlank and blankToPress occurred. There can be several
active MSDs at the same time. The occurrence of blankToPress for example
also activated the MSDs labeled R2 and R4. If the cut reaches the end of the
MSD, the active copy of the MSD is terminated and discarded.

A message in an active MSD is called enabled if the cut is immediately in
front of the message on the sending and receiving lifeline. If a hot message is



54 C. Brenner, J. Greenyer, and W. Schäfer

Fig. 1. The production cell MSD specification

enabled, the cut is also hot; otherwise the cut is cold. If an executed message
is enabled, the cut is also executed; otherwise the cut is monitored. Labels also
indicate the cut temperature and execution kind in Fig. 1.

If a message event occurs that can be unified with a message in the same
MSD that is not currently enabled, this is called a violation. If the cut is hot, a
violation must not happen. If it does, this is called a safety violation. If the cut
is cold, a violation is allowed to happen and results in a premature termination
of the active MSD (cold violation). If the cut is executed, this means that the
cut must eventually progress, otherwise this is called a liveness violation.

An MSD can also contain conditions. In this paper, we only have, and thus
only explain, the hot false condition in MSD R4, depicted by a red hexagon. In
this case, the cut must not reach the condition, otherwise this is a safety violation.
This MSD is an example of an anti-scenario, which describes a sequence of events
that must not happen; in this case blankToPress followed by plateToBelt.



On-the-Fly Synthesis of Scarcely Synchronizing Distributed Controllers 55

The only way this sequence is allowed to happen is if press occurs in between,
which leads to a cold violation in the cut illustrated in Fig. 1.

Assumption MSDs, Satisfying an MSD Specification. A run of a system
is accepted by an MSD iff it does not lead to a safety or liveness violation of
this MSD. The set of all runs accepted by an MSD D is also called the language
of this MSD, L(D). Given a set of MSDs M = {D1, . . . , Dn}, the language of
this set of MSDs, L(M), is the set of runs accepted by all the MSDs in the set,
L(M) =

⋂n
i=1 L(Di).

We consider MSD specifications MS that comprise two sets of MSDs, re-
quirement MSDs G (for “guarantees”) and assumption MSDs A. The set of runs
satisfying an MSD specification, L(MS), is defined as L(MS) = L(A) ∪ L(G),
where L(A) is the set of all runs not in L(A). Intuitively, a run satisfies an MSD
specification iff it satisfies the requirements or does not satisfy the assumptions.

We consider open systems consisting of environment objects and system ob-
jects. Usually, we use assumption MSDs to constrain the possible behavior of the
environment, hence we also call these MSDs environment assumptions. Assump-
tion MSDs have the additional label «EnvironmentAssumption»; the MSDs A1
and A2 in Fig. 1 are examples for such assumption MSDs. Moreover, we assume,
as also Harel et al. [10], that the system objects can send any finite number of
messages between two messages sent by environment objects.

The Specification State Graph. An MSD specification induces a transition
system that we call the specification state graph (SSG). This graph is the basis
for our algorithm. The SSG consists of states and transitions; the transitions are
labeled with message events and a state represents a set of active MSDs with a
particular configuration of cuts. The start state is a state with no active MSDs.
The cut configuration of the other states is the configuration that results after
any sequence of message events that corresponds to a path in the SSG from the
start state to that state. Transitions labeled with system events are controllable;
those with environment events are uncontrollable. The SSG can be considered a
game graph, representing a game played by the system against the environment.

The synthesis must create a strategy for choosing controllable transitions such
that always eventually a goal state can be reached (Büchi condition). The pri-
mary form of goal state is a state without any enabled executed message in any
active requirement MSD. In these states, intuitively, the system currently has no
obligations to do anything and waits for the next environment event to happen.
While calculating this strategy, the algorithm must assume that the environment
can do anything to keep the system from reaching such a state. The strategy
must avoid safety violations of requirement MSDs, unless they coincide with
safety violations of assumption MSDs; this represents behavior that we assume
is not possible to occur in the environment. Moreover, safety violations in re-
quirement MSDs are allowed while executed messages are enabled in assumption
MSDs; this represents environment behavior that we assume is not complete—
maybe here the environment only achieves a violation of the requirements at



56 C. Brenner, J. Greenyer, and W. Schäfer

the expense of finally violating the assumptions, too. These latter states are also
goal states.

More formally, a strategy is a subset of transitions of an SSG. A strategy is
winning under the following two conditions. W1 : The SSG, by taking only these
strategy transitions, contains no deadlocks and no cycles without goal states.
W2 : If a strategy includes an outgoing uncontrollable transition of a state, it
must include all outgoing uncontrollable transitions of that state. Intuitively, W2
means that if the environment makes a move, the strategy must consider all its
possible moves; W1 means that the Büchi condition is satisfied.

2.2 The Controller System

Our synthesis approach generates a controller system consisting of controllers
that together implement a given MSD specification. We consider controllers to
be deterministic finite-state automata that define which messages are sent at
what point in time for one object each. A set of controllers CS is called a
controller system if each system object is controlled by a controller.

We call an event controllable by an object if the object sends the event. We
call it observable by an object if the object sends or receives the event. Events
are controllable/observable for a controller if they are controllable/observable for
the object it controls. We call transitions controllable/observable for an object
or controller if their event is controllable/observable.

By parallel composition, a controller system can be mapped to an equivalent
global (controller) automaton. Given an MSD specification for the same object
system, the states of the global automaton correspond to states of the specifi-
cation’s SSG. We call an SSG state reachable for a controller system iff there
exists a sequence of events for which there is a corresponding path in the global
automaton as well as in the SSG (starting from their resp. start states). The
transitions between the SSG states that are reachable for a controller system
define a strategy corresponding to the controller system.

3 Algorithm for Distributed Synthesis

Our algorithm creates a controller system that implements a given MSD
specification—provided that an implementation is possible. A controller system
implements a specification iff it corresponds to a winning strategy (see Sect. 2.1)
in the SSG. Such a controller system is a solution for the distributed synthesis.

Our algorithm systematically generates candidate controller systems (in short
candidates), i.e., controller systems which might be extensible towards a solution.
These candidates are extended in such a way that an increasing number of SSG
states fulfill the winning conditions. The algorithm backtracks if it finds that
a candidate cannot be extended into a solution. To allow for this systematic
search, the candidates are maintained as nodes in a graph structure called the
candidate graph (CG). The algorithm performs a depth-first search (DFS) in the
CG to approach a solution (cf. Fig. 2):



On-the-Fly Synthesis of Scarcely Synchronizing Distributed Controllers 57

Fig. 2. Overview of the algorithm

The initial CG consists of a candidate with only the start state for each
controller of a system object (0). We assume that environment objects can send
any sequence of environment events and, hence, we do not need to construct
controllers for them. In each step, the algorithm considers a current candidate.
The algorithm finds all states in the SSG that are reachable for this current
candidate. Then the algorithm checks whether any of these currently reachable
SSG states violate the winning conditions (cf. Sect. 2.1) (1). We call these SSG
states unimplemented states. If no such state exists, the candidate is a solution
and the DFS terminates (3). Otherwise, the DFS extends the CG by constructing
a successor candidate (2). The successor candidate is created by extending a copy
of the current candidate and adding transitions and states to ensure that one
of the previously unimplemented SSG states fulfills the winning conditions and
becomes implemented. If this is possible, the algorithm performs the next step
with the successor candidate. If an unimplemented state cannot be implemented,
i.e., a candidate is not extensible towards a solution, the DFS backtracks.

We explain the two procedures of computing unimplemented states and cre-
ating successor candidates in more detail in Sect. 3.1 and 3.2.

3.1 Computation of Reachable Unimplemented SSG States

Identifying reachable unimplemented SSG states works as follows:

Identify Reachable SSG States. We call a specification state s and a con-
troller state c corresponding if there is a sequence of events after which the
specification is in state s and the controller is in state c. We call a controller
transition tc and a specification transition ts corresponding if the source states
are corresponding and both transitions are labeled with the same event. The
algorithm computes these correspondences according to the following definition
of the relation corr of corresponding states of an SSG S for a controller C:



58 C. Brenner, J. Greenyer, and W. Schäfer

1. (C.initial, S.initial) ∈ corr.
2. For transition s

e−−→ s′ of S, e unobservable for C:
(c, s) ∈ corr ⇒ (c, s′) ∈ corr.

3. For transition s
e−−→ s′ of S, e observable for C (it exists c

e−−→ c′ in C):
(c, s) ∈ corr ⇒ (c′, s′) ∈ corr.

As we will discuss shortly in Sect. 3.2, the controllers may be extended with
transitions that send or receive additional messages for synchronization of the
controllers. These messages do not appear in the MSD specification, and thus
there are no corresponding transitions in the SSG. For the sender of a synchro-
nization message, the corresponding SSG states are the same for the source and
target states of the transition labeled with the synchronization event. For the
receiver of the synchronization message, however, the target state of the syn-
chronization transition will only correspond to the SSG states that correspond
to the source states of the synchronization transitions of both the sender and
receiver. Intuitively, the sender of a synchronization message conveys its infor-
mation about the possible global system states to the receiver. Conversely, the
receiver does not convey its information about the global state to the sender,
because we assume that the receiver cannot block the sending of messages.

The definition of the relation corr is extended as follows.

4. For synchronization sending transition c
synch!−−−−→ c′ in C:

(c, s) ∈ corr ⇒ (c′, s) ∈ corr.
5. For transition c

synch?−−−−→ c′ in C that receives a synchronization message sent
by transition c2

synch!−−−−→ c2′ in another controller C2:
(c, s) ∈ corr ∧ (c2, s) ∈ corr ⇒ (c′, s) ∈ corr

Determine Whether Reachable SSG States are Implemented. We call
an event e implemented in a reachable SSG state s if the sending and receiv-
ing objects either are environment objects or their controllers define a send-
ing/receiving transition for e in all their controller states that are corresponding
to s. Additionally, the outgoing transition for e in the SSG state s may close a
loop of SSG transitions for other implemented events only if that loop includes a
goal state. The latter is required to fulfill winning condition W1 (see Sect. 2.1).
We call an SSG transition implemented if its event is implemented.

We call a goal state implemented if all outgoing transitions labeled with envi-
ronment events are implemented (cf. condition W2 in Sect. 2.1). (In goal states,
there is no obligation for the system to send messages.)

We call a non-goal state implemented if it has at least one outgoing transition
labeled with a system event that is implemented. Intuitively, there must be at
least one message that the system can send. In some cases, it may be that the
system can send no message, but there is at least one assumption MSD in an
executed cut, i.e., the environment must yet complete a particular sequence of
events. In this case, the system can wait for environment events. Hence, a non-
goal state is also implemented if there is an assumption MSD in an executed cut
and all outgoing transitions labeled with environment events are implemented.



On-the-Fly Synthesis of Scarcely Synchronizing Distributed Controllers 59

Since we require all reachable states to be implemented, the corresponding
strategy does not contain any deadlock state (cf. condition W1 in Sect. 2.1).

3.2 Creation of Successor Candidate

When the algorithm finds any unimplemented SSG states for the current can-
didate (called CC in the following), it picks any state s of these and creates a
successor candidate CC′ by copying CC. The algorithm attempts to add tran-
sitions and states to CC′ such that s becomes implemented. These additions
depend on whether or not s is a goal state.

If s is a goal state, the algorithm checks the following conditions:

1. No other successor candidate CC′′ of CC already exists in which all uncon-
trollable events are implemented in s.

2. No controller in CC is sending in s.

Condition 1 ensures that the algorithm will not attempt to construct the same
successor candidate twice. Condition 2 ensures that environment events are con-
sidered only in states in which the system does not send anything, because we
assume that the system is always faster than the environment.

If both conditions are met, the algorithm adds receiving transitions to the
controllers of CC′ such that all uncontrollable events in s are implemented.
Otherwise, the algorithm handles s in the same way as a non-goal state.

If s is not a goal state, the algorithm picks any unimplemented controllable
event e that fulfills the following conditions:

1. No other successor candidate CC′′ of CC already exists in which e is imple-
mented in s.

2. The sender controller C of e does not send another event in s.
3. Implementing e in s does not close a loop of implemented SSG transitions

without a goal state.

Condition 1 ensures that no candidate for the same combination of e and s
is constructed again which was previously found to inevitably lead to a losing
strategy. Condition 2 ensures that controllers remain deterministic, i.e., they
send only one event in each state. Condition 3 is necessary to fulfill winning
condition W1 (cf. Sect. 2.1). The algorithm checks condition 3 by performing
a DFS from the successor state of the SSG transition for e in s via transitions
that are implemented for CC and stopping at goal states. Thus the DFS only
reaches s if this transition closes a loop without goal state in the strategy.

If such an event e exists, the algorithm adds sending transitions to all states
of C in CC′ that correspond to s (and adds receiving transitions to the receiving
controller, if applicable), such that e is implemented. If no such event e exists,
the algorithm searches an unimplemented controllable event e that fulfills con-
ditions 2 and 3, but not 1. Then, a successor candidate for implementing e was
already created, but the DFS backtracked. If C in a state corresponding to s also
corresponds to other SSG states s′, this backtracking may have been necessary



60 C. Brenner, J. Greenyer, and W. Schäfer

because sending the event e was problematic in s′: It can be that, while e must
be sent in s, sending e in s′ violates the specification. Since C cannot distinguish
these states, it must send the same message in both of them. The algorithm
then checks whether there is another controller C′ that can distinguish at least
one such state s′ from s. If a C′ exists, the algorithm adds transitions to the
controllers in CC′ such that one or several controllers C′ send synchronization
messages to C. These allow C to distinguish s from other states s′. If a syn-
chronization was added, CC′ is extended as above to make s implemented for
CC′, without affecting s′. Note that we only add synchronization messages when
a path via connectors in the CSD (cf. Sect. 2.1) exists such that C′ can send
messages to C. We search such a path via a DFS on the CSD.

If still no such event e could be found, but an assumption MSD is in an
executed cut in s, the system may wait for the environment in s. Then, the
algorithm attempts to implement all environment events as discussed above for
goal states. In all other cases, the algorithm discards CC and backtracks to its
predecessor CCp. In the attempt to create a new successor for CCp, the same
SSG state s that was picked when constructing CC as successor of CCp is picked
again. This ensures that the algorithm will not attempt to implement other SSG
states when s is unimplementable. In this case, no solution can be reached by
extending CCp and the algorithm needs to backtrack again.

3.3 Removal of Duplicates

After each modification of the CG, the algorithm checks all new candidates and
all new controller states for duplicates. It merges the duplicates into one, com-
bining their incoming transitions/edges. We consider candidates as duplicates
whenever all their controllers are identical. We consider controllers as identical
when their sets of states and transitions are identical. Controller transitions are
identical if their source and target state and their event are identical. Controller
states are identical if they correspond to the same SSG states and if the set of
(other) controllers to which synchronization messages have been sent is iden-
tical. The latter is necessary because sending a synchronization message must
lead to a new controller state—despite identical corresponding states—so that
the message will not be sent repeatedly.

3.4 Correctness

In the following, we informally argue for the correctness of our algorithm.

Termination. Our algorithm generally is a DFS on the CG that terminates if
the graph is finite. The CG is finite if the number of candidates for the given
specification is finite. This, in turn, depends on the maximum number of con-
troller states and transitions. Without considering synchronization transitions,
the maximum number of controller states is bounded by the size of the power set
of SSG states, as new controller states are created only for new sets of correspond-
ing SSG states. Each synchronization transition adds an additional controller
state for the sender controller as it must distinguish the state before sending the



On-the-Fly Synthesis of Scarcely Synchronizing Distributed Controllers 61

message from the state after sending. However, synchronization transitions are
only added in cases where a controller needs information from other controllers
to send. Thus, in the worst case, for each SSG state an additional state will be
added to all controllers except the one receiving the synchronizations. The num-
ber of controller transitions is bounded by the number of controller states and
the number of events in the specification, which we assume to be finite. Thus,
the total number of candidates depends on the number of system objects and
the size of the SSG, which we both also assume to be finite. In conclusion, the
CG is finite as well. Computation of the corresponding states requires further
DFS runs, but these are performed on the (finite) SSG. Thus, the algorithm is
guaranteed to terminate.

Correctness of the Resulting Solution. If the DFS terminates with a solu-
tion, that solution is a candidate with no reachable unimplemented SSG states.
The conditions for an SSG state to be implemented directly correspond to the
conditions W1 and W2 for a winning strategy (cf. Sect. 2.1 and 3.1), except for
the requirement to include goal states in circles of implemented transitions in
the SSG. However, the algorithm checks for loops without goal states and does
not close them by adding transitions to a candidate. Thus, only loops with goal
states remain and the strategy defined by all implemented transitions between
the reachable states is a winning strategy. Consequently, the candidate returned
by the algorithm is a valid implementation for the given specification.

4 Example Execution of the Distributed Synthesis

We illustrate our algorithm by showing its execution on the example MSD spec-
ification presented in Fig. 1 (cf. Sect. 2). Figure 3 shows for several steps of
the algorithm snapshots of the candidate controller system CS that has been
constructed up to that point, the SSG S, and the CG.

a.1 The snapshot shows the algorithm’s models after initialization. The speci-
fication defines two system objects: the PressController pC and the ArmController
aC. Thus, the algorithm creates initial states for the two controllers, which both
correspond to the initial state S.0 of the SSG. The initial state is a goal state
and the algorithm needs to consider all possible environment events in this state.
These are intactBlank and brokenBlank, both leading to new SSG states.

a.2 The algorithm creates a new candidate which has receiving transitions in
aC for brokenBlank and intactBlank, making the SSG states S.1 and S.2 reachable,
but also making S.0 implemented. The controller aC can observe both messages
and “knows” in which SSG state the system is, either S.1 or S.2. Thus, the
new transitions lead to two new controller states corresponding to one SSG
state each. The controller pC, however, cannot observe this message and cannot
distinguish S.1 and S.2 from S.0. All three correspond to pC.0 (state 0 of pC).
The algorithm checks for the reachable states S.0, S.1, and S.2, whether they
are unimplemented, which is the case for S.1 and S.2.

a.3 The algorithm selects S.1. Since S.1 is not a goal state, the algorithm
must pick an enabled system event, which here can only be removeBlank. It adds



62 C. Brenner, J. Greenyer, and W. Schäfer

Fig. 3. Algorithm steps performed for the example (excerpts)



On-the-Fly Synthesis of Scarcely Synchronizing Distributed Controllers 63

a transition to aC that sends this event. The algorithm determines that this
transition leads back to S.0. As all outgoing transitions in S.0 are observable
for aC, the transition’s target state only corresponds to S.0. For this set of
corresponding states, the controller state aC.0 already exists in aC. Thus, the
transition leads to aC.0. Now, S.0 and S.1 are implemented, while S.2 is not.

b The figure then skips several steps until, in the step before snapshot b, the
addition of a controller transition closes the second loop to the goal state S.0
in the SSG. Like in step a.3, the algorithm has extended aC to send events as
a reaction to an environment event. It sends the second event, blankAtPress, to
pC. Hence, the algorithm adds a receiving transition for blankAtPress to pC. The
target state pC.1 in pC can then distinguish S.4 from the other states and sends
press. In S.5, plateToBelt is sent, which closes the loop to S.0, but also makes
S.6 reachable from S.4, because aC.4 corresponds to both, S.4 and S.5. The
closing of the loop to S.0 and the subsequent events until blankAtPress are not
observable by pC. To compute the corresponding states for pC.2, the algorithm
performs a DFS starting in S.0 via unobservable transitions for pC. Since S.2 is
among the states found by the DFS, the event blankAtPress was implemented
by adding a receiving transition in pC.2. However, S.6 remains unimplemented.

c.1 Because S.6 turns out to be a deadlock state (due to a safety violation in
a requirement MSD) which cannot be implemented, the DFS backtracks until
candidate 5 to prevent reachability of S.6.

c.2 The algorithm again attempts to implement S.5. The CG shows that
immediately sending plateToBelt in S.5 was already attempted unsuccessfully.
However, it was not yet attempted with prior synchronization to help aC distin-
guish S.4 from S.5. The algorithm finds a controller that can distinguish these
states, namely pC, since pC.2 only corresponds to S.5. Therefore, the algorithm
adds a synchronization message allowPlateToBelt from pC to aC, telling aC that
S.5 has been reached and sending plateToBelt is safe now. Consequently, a con-
troller transition sending plateToBelt is added to aC. Note that allowPlateToBelt
was not defined in the specification.

d After the synchronization, the algorithm will never need to consider plateTo-
Belt in S.4 and, thus, never need to consider the deadlock state S.6. It just has to
implement blankAtPress in S.3 as discussed for snapshot b. Then, all reachable
SSG states are implemented and the algorithm terminates successfully. Snap-
shot d shows the final result. We omitted the correspondences of some controller
states for reasons of visualization.

5 Related Work

Harel et al. [7] describe an approach for controller synthesis from LSCs based
on the creation of a product automaton; a distributed implementation is then
formed by fully-synchronized copies of a centralized controller. Contrary to our
approach, this procedure introduces additional synchronization messages even
when the local information of the controllers is sufficient to fulfill the specifica-
tion. The approach may thus introduce a vast amount of superfluous messages
in the generated implementation that degrades its runtime performance.



64 C. Brenner, J. Greenyer, and W. Schäfer

In later works, Harel et al. [8], and similarly Bontemps et. al. [1], synthesize
distributed implementations from LSCs, but they do not add any additional
messages not defined in the specification. Therefore, unlike our approach, they
cannot handle cases where the local controllers need to share their knowledge
about the global state to fulfill the specification.

Sun and Dong [13] present a synthesis approach for LSCs that constructs
a distributed implementation in the form of a CSP (Communicating Sequen-
tial Processes) system. However, the implementation they create is only valid
if the LSC specification already guarantees that, regardless of the behavior of
the system, no situation can be reached where liveness requirements cannot be
fulfilled without violating safety requirements. Our approach does not have this
restriction, because it backtracks in such situations.

While the following approaches do not consider LSC/MSD-specifications, they
are related as they also model the local knowledge of subsystems.

Halle and Bultan [6] construct local views of subsystems to decide whether
a given automata-based protocol can be implemented by a distributed system
without additional communication. They mention as possible future work to add
additional messages that are required to implement the protocol. However, they
do not actually present any such algorithm in the paper.

Finkbeiner and Schewe [5] consider the distributed synthesis problem for spec-
ifications using ω-regular tree languages. They take into account the limited
knowledge of the synthesized subsystems but, contrary to our approach, they
do not consider additional communication to extend this knowledge. Thus, their
approach does not work in cases requiring additional communication.

Like our approach, Katz et al. [11] and Peled and Schewe [12] model the
local knowledge of subsystems and use synchronizations when this local knowl-
edge is insufficient. However, their approach requires as an input an existing
implementation model of a distributed system given as a Petri net. New safety
requirements are provided in a textual form. Their algorithm modifies the given
system such that these new requirements are fulfilled.

6 Conclusion

In this paper, we presented a new approach for synthesizing implementation
models for distributed systems based on scenario-based MSD specifications.
We presented an algorithm that synthesizes a controller automaton for each
subsystem such that they in combination fulfill the specification. The core nov-
elty is that our algorithm keeps track of the local knowledge of the subsystems
about the global state. It adds additional synchronizations whenever a subsys-
tem needs to react based on messages that it cannot observe. We demonstrated
the application of our approach on an example specification.

We implemented our distributed synthesis algorithm as an Eclipse plug-in
based on our ScenarioTools tool suite [3]. We evaluated our approach by
executing it on the production cell example presented in the previous sections.
Furthermore, we applied it on several variants with a higher number of arms



On-the-Fly Synthesis of Scarcely Synchronizing Distributed Controllers 65

and presses. We then manually validated that the controllers created by the
algorithm are a correct implementation of these MSD specifications.

In future works, we will extend our synthesis algorithm to take into account
real-time behavior and asynchronous communication. Our new timed play-out
for ScenarioTools [2] paves the way for these extensions. Furthermore, we plan
to evaluate the algorithm’s performance for larger systems and aim to reduce its
runtime by preventing unnecessary re-computation of intermediate results.

References

1. Bontemps, Y., Heymans, P., Schobbens, P.-Y.: Lightweight formal methods for
scenario-based software engineering. In: Leue, S., Systä, T.J. (eds.) Scenarios: Mod-
els, Transformations and Tools. LNCS, vol. 3466, pp. 174–192. Springer, Heidelberg
(2005)

2. Brenner, C., Greenyer, J., Holtmann, J., Liebel, G., Stieglbauer, G., Tichy, M.:
Scenariotools real-time play-out for test sequence validation in an automotive case
study. In: Proc. of 13th Int. Workshop on Graph Transformation and Visual Mod-
eling Techniques, GT-VMT 2014 (2014)

3. Brenner, C., Greenyer, J., Panzica La Manna, V.: The ScenarioTools play-out of
modal sequence diagram specifications with environment assumptions. In: Proc. of
12th Int. Workshop on Graph Transformation and Visual Modeling Techniques,
GT-VMT 2013 (2013)

4. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. In: For-
mal Methods in System Design, vol. 19, pp. 45–80. Kluwer (2001)

5. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. of 20th IEEE
Symp. on Logic in Computer Science, pp. 321–330 (2005)

6. Halle, S., Bultan, T.: Realizability Analysis for Message-based Interactions Using
Shared-State Projections. In: Proc. of 18th ACM SIGSOFT Int. Symp. on Foun-
dations of Software Engineering, FSE 2010, Santa Fe, New Mexico (2010)

7. Harel, D., Kugler, H.: Synthesizing state-based object systems from LSC specifi-
cations. Foundations of Computer Science 13(1), 5–51 (2002)

8. Harel, D., Kugler, H.-J., Pnueli, A.: Synthesis revisited: Generating statechart mod-
els from scenario-based requirements. In: Kreowski, H.-J., Montanari, U., Orejas,
F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems
Modeling. LNCS, vol. 3393, pp. 309–324. Springer, Heidelberg (2005)

9. Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. Software and Systems Modeling (SoSyM) 7(2), 237–252 (2008)

10. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer (2003)

11. Katz, G., Peled, D., Schewe, S.: Synthesis of distributed control through knowl-
edge accumulation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 510–525. Springer, Heidelberg (2011)

12. Peled, D., Schewe, S.: Practical distributed control synthesis. In: Yu, F., Wang, C.
(eds.) Proc. Int. Workshop on Verification and Infinite State Systems (INFINITY
2011). EPTCS, vol. 73, pp. 2–17 (2011)

13. Sun, J., Dong, J.S.: Synthesis of distributed processes from scenario-based spec-
ifications. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 415–431. Springer, Heidelberg (2005)


	On-the-Fly Synthesis of Scarcely SynchronizingDistributed Controllers from Scenario-BasedSpecifications
	1 Introduction
	2 Foundations
	2.1 MSD Specifications
	2.2 The Controller System

	3 Algorithm for Distributed Synthesis
	3.1 Computation of Reachable Unimplemented SSG States
	3.2 Creation of Successor Candidate
	3.3 Removal of Duplicates
	3.4 Correctness

	4 Example Execution of the Distributed Synthesis
	5 Related Work
	6 Conclusion
	References




