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Abstract. Bhat et al. developed an inductive compiler that computes
density functions for probability spaces described by programs in a prob-
abilistic functional language. We implement such a compiler for a modi-
fied version of this language within the theorem prover Isabelle and give
a formal proof of its soundness w. r. t. the semantics of the source and
target language. Together with Isabelle’s code generation for inductive
predicates, this yields a fully verified, executable density compiler. The
proof is done in two steps: First, an abstract compiler working with ab-
stract functions modelled directly in the theorem prover’s logic is defined
and proved sound. Then, this compiler is refined to a concrete version
that returns a target-language expression.

1 Introduction

Random distributions of practical significance can often be expressed as prob-
abilistic functional programs. When studying a random distribution, it is often
desirable to determine its probability density function (PDF). This can be used
to e. g. determine the expectation or sample the distribution with a sampling
method such as Markov-chain Monte Carlo (MCMC).

Bhat et al. [5] presented a compiler that computes the probability density
function of a program in the probabilistic functional language Fun. Fun is a small
functional language with basic arithmetic, Boolean logic, product and sum types,
conditionals, and a number of built-in discrete and continuous distributions. It
does not support lists or recursion. They evaluated the compiler on a number
of practical problems and concluded that it reduces the amount of time and
effort required to model them in an MCMC system significantly compared to
hand-written models. A correctness proof for the compiler is sketched.

Bhat et al. [4] stated that their eventual goal is the formal verification of
this compiler in a theorem prover. We have verified such a compiler for a similar
probabilistic functional language in the interactive theorem prover Isabelle/HOL
[18, 19]. Our contributions are the following:

– a formalisation of the source language, target language (whose semantics
had previously not been given precisely), and the compiler on top of a foun-
dational theory of measure spaces

– a formal verification of the correctness of the compiler
– executable code for the compiler using Isabelle’s code generator
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In the process, we uncovered an incorrect generalisation of one of the compiler
rules in the draft of an extended version of the paper by Bhat et al. [6].

The complete formalisation is available online [13].
In this paper, we focus entirely on the correctness proof; for more motivation

and applications, the reader should consult Bhat et al. [5].

1.1 Related Work

Park et al. [20] developed a probabilistic extension of Objective CAML called
λ©. While Bhat et al. generate density functions of functional programs, Park
et al. generate sampling functions. This approach allows them to handle much
more general distributions, even recursively-defined ones and distributions that
do not have a density function, but it does not allow precise reasoning about
these distributions (such as determining the exact expectation). No attempt at
formal verification is made.

Several formalisations of probabilistic programs already exist. Hurd [16] for-
malises programs as random variables on infinite streams of random bits. Hurd
et al. [17] and Cock [8, 9] both formalise pGCL, an imperative programming
language with probabilistic and non-deterministic choice. Audebaud and Paulin-
Mohring [1] verify probabilistic functional programs in Coq [3] using a shallow
embedding based on the Giry monad on discrete probability distributions. All
these program semantics support only discrete distributions – even the frame-
work by Hurd [16], although it is based on measure theory.

Our work relies heavily on a formalisation of measure theory by Hölzl [15] and
some material developed for the proof of the Central Limit Theorem by Avigad
et al. [2].

1.2 Outline

Section 2 explains the notation and gives a brief overview of the mathematical
basis. Section 3 defines the source and target language. Section 4 defines the
abstract compiler and gives a high-level outline of the soundness proof. Section 5
explains the refinement of the abstract compiler to the concrete compiler and
the final correctness result and evaluates the compiler on a simple example.

2 Preliminaries

2.1 Typographical Notes

We will use the following typographical conventions in mathematical formulæ:

– Constants, functions, datatype constructors, and types will be set in slanted
font.

– Free and bound variables (including type variables) are set in italics.
– Isabelle keywords are set in bold font: lemma, datatype, etc.
– σ-algebras are set in calligraphic font: A, B, M, etc.
– File names of Isabelle theories are set in a monospaced font:

PDF Compiler.thy.
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2.2 Isabelle/HOL Basics

The formalisations presented in this paper employ the Isabelle/HOL theorem
prover. We will aim to stay as close to the Isabelle formalisation syntactically
as possible. In this section, we give an overview of the syntactic conventions we
use to achieve this.

The term syntax follows the λ-calculus, i.e. function application is juxtapo-
sition as in f t. The notation t :: τ means that the term t has type τ . Types
are built from the base types bool, nat (natural numbers), real (reals), ereal
(extended reals, i.e. real ∪ {+∞,−∞}), and type variables (α, β, etc) via the
function type constructor α → β or the set type constructor α set. The constant
undefined :: α describes an arbitrary element for each type α. There are no fur-
ther axioms about it, expecially no defining equation. f ‘X is the image set of
X under f : {f x | x ∈ X}. We write 〈P 〉 for the indicator of P : 1 if P is true, 0
otherwise.

Because we represent variables by de Bruijn indices [7], variable names are nat-
ural numbers and program states are functions of type nat → α. As HOL func-
tions are total, we use undefined to fill in the unused places, e.g. (λx. undefined)
describes the empty state. Prepending an element x to a state ω :: nat → α is
written as x •ω, i.e. (x •ω) 0 = x and (x •ω) (n+1) = ω n. The function merge
merges two states with given domains:

merge V V ′ (ρ, σ) =

⎧
⎪⎨

⎪⎩

ρ x if x ∈ V

σ y if x ∈ V ′ \ V
undefined otherwise

Notation. We use Γ to denote a type environment, i. e. a function from variable
names to types, and σ to denote a state.

The notation t • Γ (resp. v • σ) denotes the insertion of a new variable with
the type t (resp. value v) into a typing environment (resp. state). We use the
same notation for inserting a new variable into a set of variables, shifting all
other variables, i. e.: 0 • V = {0} ∪ {y + 1 | y ∈ V }

2.3 Measure Theory in Isabelle/HOL

We use Isabelle’s measure theory, as described in [15]. This section gives an
introduction of the measure-theoretical concepts used in this paper. The type
α measure describes a measure over the type α. Each measure μ is described by
the following three projections: space μ :: α set is the space, sets μ :: α set set
are the measurable sets, and measure μ :: α set → ereal is the measure func-
tion valid on the measurable sets. The type α measure guarantees that the
measurable sets are a σ-algebra and that measure μ is a non-negative and
σ-additive function. In the following we will always assume that the occuring
sets and functions are measurable. We also provide integration over measures:
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∫
:: (α → ereal) → α measure → ereal, we write

∫
x. f x ∂μ. This is the non-

negative Lebesgue integral ; for this integral, most rules do not require integrable
functions – measurability is enough.

We write (A,A, μ) for a measure with space A, measurable sets A and the
measure function μ :: α set → ereal. If we are only intersted in the measurable
space we write (A,A). When constructing a measure in this way, the measure
function is the constant zero function.

Sub-probability Spaces. A sub-probability space is a measure (A,A, μ) with
μ A ≤ 1. For technical reasons, we also assume A 	= ∅ . This is required later in
order to define the bind operation in the Giry monad in a convenient way within
Isabelle. This non-emptiness condition will always be trivially satisfied by all the
measure spaces used in this work.

Constructing Measures. The semantics of our language will be given in terms
of measures. We have the following functions to construct measures:

Counting: measure (count A) X = |X |
Lebesgue-Borel: measure borel [a; b] = b− a

With density: measure (density μ f) X =
∫
x. f x · 〈x ∈ X〉∂μ

Push-forward: measure (distr μ ν f) X = measure μ {x | f x ∈ X}
Product: measure (μ⊗ ν) (A×B) = measure μ A ·measure ν B

Indexed product: measure (
⊗

i∈I μi) (×i∈IAi) =
∏

i∈I measure μi Ai

Embedding: measure (embed μ f) X = measure μ {x | f x ∈ X}
The push-forward measure and the embedding of a measure have different mea-
surable sets. The σ-algebra of the push-forward measure distr μ ν f is given
by ν. The measure is only well-defined when f is μ-ν-measurable. The σ-algebra
of embed μ f is generated by the sets f [A] for A μ-measurable. The embedding
measure is well-defined when f is injective.

2.4 Giry Monad

The category theory part of this section is based mainly on a presentation by
Ernst-Erich Doberkat [11]. For a more detailed introduction, see his textbook [10]
or the original paper by Michèle Giry [14]. Essentially the Giry monad is a monad
on measures.

The category Meas has measurable spaces as objects and measurable maps
as morphisms. This category forms the basis on which we will define the Giry
monad. In Isabelle/HOL, the objects are represented by the type measure, and
the morphism are represented as regular functions. When we mention a measur-
able function, we explicitly need to mention the measurable spaces representing
the domain and the range.

The sub-probability functor S is an endofunctor on Meas. It maps a measur-
able space A to the measurable space of all sub-probabilities on A. Given a
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measurable space (A,A), we consider the set of all sub-probability measures on
(A,A):

M = {μ | μ is a sub-probability measure on (A,A)}
The measurable space S(A,A) is the smallest measurable space on M that fulfils
the following property:

For all X ∈ A, (λμ. measure μ X) is S(A,A)-Borel-measurable

A M-N -measurable function f is mapped with S(f) = λμ. distr μ N f , where
all μ are sub-probability measures on M.

The Giry monad naturally captures the notion of choosing a value according to
a (sub-)probability distribution, using it as a parameter for another distribution,
and observing the result.

Consequently, return yields a Dirac measure, i. e. a probability measure in
which all the “probability” lies in a single element, and bind (or �=) integrates
over all the input values to compute one single output measure. Formally, for
measurable spaces (A,A) and (B,B), a measure μ on (A,A), a value x ∈ A, and
a A-S(B,B)-measurable function f :

return :: α → α measure

return x := λX.

{
1 if x ∈ X

0 otherwise

bind :: α measure → (α → β measure) → β measure

μ �= f := λX.

∫

x. f(x)(X) ∂μ

The actual definitions of return and bind in Isabelle are slightly more compli-
cated due to Isabelle’s simple type system. In informal mathematics, a function
typically has attached to it the information of what its domain and codomain
are and what the corresponding measurable spaces are; with simple types, this
is not directly possible and requires some tricks in order to infer the carrier set
and the σ-algebra of the result.

The “do” Syntax. For better readability, we employ a Haskell-style “do no-
tation” for operations in the Giry monad. The syntax of this notation is defined
recursively, where M stands for a monadic expression and 〈text〉 stands for ar-
bitrary “raw” text:

do {M} =̂ M do {x ← M ; 〈text〉} =̂ M �= (λx. do {〈text〉})

3 Source and Target Language

The source language used in the formalisation was modelled after the language
Fun described by Bhat et al. [5]; similarly, the target language is almost identical
to the target language used by Bhat et al. However, we have made the following
changes in our languages:
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– Variables are represented by de Bruijn indices.

– No sum types are supported. Consequently, the match-with construct is
replaced with an IF-THEN -ELSE. Furthermore, booleans are a primitive
type rather than represented as unit+ unit.

– The type double is called real and it represents a real number with absolute
precision as opposed to an IEEE 754 floating point number.

In the following subsections, we give the precise syntax, typing rules, and
semantics of both our source language and our target language.

3.1 Types, Values, and Operators

The source language and the target language share the same type system and the
same operators. Figure 1 shows the types and values that exist in our languages.1

Additionally, standard arithmetical and logical operators exist.
All operators are total, meaning that for every input value of their parameter

type, they return a single value of their result type. This requires some non-
standard definitions for non-total operations such as division, the logarithm, and
the square root. Non-totality could also be handled by implementing operators in
the Giry monad by letting them return either a Dirac distribution with a single
result or, when evaluated for a parameter on which they are not defined, the null
measure. This, however, would probably complicate many proofs significantly.

To increase readability, we will use the following abbreviations:

– TRUE and FALSE stand for BoolVal True and BoolVal False, respectively.

– RealVal, IntVal, etc. will be omitted in expressions when their presence is
implicitly clear from the context.

datatype pdf type =

UNIT | B | Z | R | pdf type× pdf type

datatype val =

UnitVal | BoolVal bool | IntVal int | RealVal real | <|val, val |>
datatype pdf operator =

Fst | Snd | Add | Mult | Minus | Less | Equals | And | Or | Not | Pow |
Fact | Sqrt | Exp | Ln | Inverse | Pi | Cast pdf type

Fig. 1. Types and values in source and target language

1 Note that bool, int, and real stand for the respective Isabelle types, whereas B, Z,
and R stand for the source-/target-language types.
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Table 1. Auxiliary functions

Function Description

op sem op v semantics of operator op applied to v

op type op t result type of operator op for input type t

dist param type dst parameter type of the built-in distribution dst

dist result type dst result type of the built-in distribution dst

dist measure dst x built-in distribution dst with parameter x

dist dens dst x y density of the built-in distribution dst w. parameter x at value y

type of Γ e the unique t such that Γ � e : t

val type v the type of value v, e. g. val type (IntVal 42) = INTEG

type universe t the set of values of type t

countable type t True iff type universe t is a countable set

free vars e the free variables in the expression e

e det True iff e does not contain Random or Fail

extract real x returns y for x = RealVal y (analogous for int, pair, etc.)

return val v return (stock measure (val type v)) v

null measure M measure with same measurable space as M , but 0 for all sets

3.2 Auxiliary Definitions

A number of auxiliary definitions are used in the definition of the semantics;
Table 1 lists some simple auxiliary functions. Additionally, the following two
notions require a detailed explanation:

Stock Measures. The stock measure for a type t is the “natural” measure on
values of that type. This is defined as follows:

– For the countable types UNIT, B, Z: the count measure over the correspond-
ing type universes

– For type R: the embedding of the Lebesgue-Borel measure on R with RealVal
– For t1 × t2: the embedding of the product measure

stock measure t1 ⊗ stock measure t2

with λ(v1, v2). <|v1, v2 |>
Note that in order to save space and increase readability, we will often write∫

x. f x ∂t instead of
∫
x. f x ∂ stock measure t in integrals.

State Measure. Using the stock measure, we construct a measure on states in
the context of a typing environment Γ . A state σ is well-formed w. r. t. to V and
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Γ if it maps every variable x ∈ V to a value of type Γ x and every variable /∈ V
to undefined. We fix Γ and a finite V and consider the set of well-formed states
w. r. t. V and Γ . Another representation of these states are tuples in which the
i-th component is the value of the i-th variable in V . The natural measure that
can be given to such tuples is the finite product measure of the stock measures
of the types of the variables:

state measure V Γ :=
⊗

x∈V

stock measure (Γ x)

3.3 Source Language

datatype expr =

Var nat | Val val | LET expr IN expr | pdf operator $ expr | <expr, expr> |
Random pdf dist | IF expr THEN expr ELSE expr | Fail pdf type

Fig. 2. Source language expressions

Figure 2 shows the syntax of the source language. It contains variables (de
Bruijn), values, LET-expressions (again de Bruijn), operator application, pairs,
sampling a parametrised built-in random distribution, IF-THEN -ELSE and fail-
ure. We omit the constructor Val when its presence is obvious from the context.

Figures 3 and 4 show the typing rules and the monadic semantics of the source
language.

Γ � Val v : val type v Γ � Var x : Γ x Γ � Fail t : t

Γ � e : t op type op t = Some t′

Γ � op $ e : t′
Γ � e1 : t1 Γ � e2 : t2

Γ �<e1, e2> : t1× t2

Γ � b : B Γ � e1 : t Γ � e2 : t

Γ � IF b THEN e1 ELSE e2 : t

Γ � e1 : t1 t1 • Γ � e2 : t2

Γ � LET e1 IN e2 : t2

Γ � e : dist param type dst

Γ � Random dst e : dist result type dst

Fig. 3. Typing rules of the source language
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expr sem :: state → expr → val measure

expr sem σ (Val v) = return val v

expr sem σ (Var x) = return val (σ x)

expr sem σ (LET e1 IN e2) =

do {v ← expr sem σ e1; expr sem (v • σ) e2}
expr sem σ (op $ e) =

do {v ← expr sem σ e; return val (op sem op v)}
expr sem σ <e1, e2> =

do {v1 ← expr sem σ e1; v2 ← expr sem σ e2;

return val <|v1, v2 |>}
expr sem σ (IF b THEN e1 ELSE e2) =

do {b′ ← expr sem σ b;

expr sem σ (if b′ = TRUE then e1 else e2)}
expr sem σ (Random dst e) =

do {p ← expr sem σ e; dist measure dst p}
expr sem σ (Fail t) = null measure (stock measure t)

Fig. 4. Semantics of the source language

Figure 5 shows the built-in distributions of the source language, their parame-
ter types and domains, the types of the random variables they describe, and their
density functions in terms of their parameter. When given a parameter outside
their domain, they return the null measure. We support the same distributions
as Bhat et al., except for the Beta and Gamma distributions (merely because
we have not formalised them yet).

3.4 Deterministic Expressions

We call an expression e deterministic (written as “e det”) if it contains no occur-
rence of Random or Fail. Such expressions are of particular interest: if all their
free variables have a fixed value, they return precisely one value, so we can define
a function expr sem rf2 that, when given a state σ and a deterministic expression
e, returns this single value. This function can be seen as a non-monadic analogue
to expr sem and its definition is therefore analogous and is not shown here. The

2 In Isabelle, the expression randomfree is used instead of deterministic, hence the “rf”
suffix. This is in order to emphasise the syntactical nature of the property. Note that
a syntactically deterministic expression is not truly deterministic if the variables it
contains are randomised over, which can be the case.
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Distribution Param. Domain Type Density function

Bernoulli R p ∈ [0; 1] B λx.

{
p for x = TRUE

1− p for x = FALSE

UniformInt Z× Z p1 ≤ p2 Z λx.
〈x ∈ [p1; p2]〉
p2 − p1 + 1

UniformReal R× R p1 < p2 R λx.
〈x ∈ [p1; p2]〉

p2 − p1

Gaussian R× R p2 > 0 R λx.
1√
2πp22

· exp
(
− (x− p1)

2

2p22

)

Poisson R p ≥ 0 Z λx.

{
exp (−p) · px/x! for x ≥ 0

0 otherwise

Fig. 5. Built-in distributions of the source language.
The density functions are given in terms of the parameter p, which is of the type given
in the column “parameter type”. If p is of a product type, p1 and p2 stand for the two
components of p.

function expr sem has the following property (assuming that e is deterministic
and well-typed and σ is a valid state):

expr sem σ e = return (expr sem rf σ e)

This property will enable us to convert deterministic source-language expressions
into “equivalent” target-language expressions.

3.5 Target Language

The target language is again modelled very closely after the one by Bhat et al.
[5]. The type system and the operators are the same as in the source language.
The key difference is that the Random construct has been replaced by an integral.
As a result, while expressions in the source language return a measure space,
expressions in the target language always return a single value.

Since our source language lacks sum types, so does our target language. Addi-
tionally, our target language differs from the one by Bhat et al. in the following
respects:

– Our language has no function types; since functions only occur as integrands
and as final results (as the compilation result is a density function), we can
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simply define integration to introduce the integration variable as a bound
variable and let the final result contain a single free variable with de Bruijn
index 0, i. e. there is an implicit λ abstraction around the compilation result.

– Evaluation of expressions in our target language can never fail. In the lan-
guage by Bhat et al., failure is used to handle undefined integrals; we, on the
other hand, use the convention of Isabelle’s measure theory library, which
returns 0 for integrals of non-integrable functions. This has the advantage of
keeping the semantics simple, which makes proofs considerably easier.

– Our target language does not have LET-bindings, since, in contrast to the
source language, they would be semantically superfluous here. However, they
are still useful in practice since they yield shorter expressions and can avoid
multiple evaluation of the same term; they could be added with little effort.

Figures 6, 7, and 8 show the syntax, typing rules, and semantics of the target
language.

The matter of target-language semantics in the papers by Bhat et al. is some-
what unclear. In the 2012 POPL paper [4], the only semantics given for the target
language is a vague denotational rule for the integral. In the 2013 TACAS pa-
per [5], no target-language semantics is given at all; it is only said that “standard
CBV small-step evaluation” is used. The extended version of this paper currently
submitted for publication [6] indeed gives some small-step evaluation rules, but
only for simple cases. In particular, none of these publications give the precise
rules for evaluating integral expressions. It is quite unclear to us how small-step
evaluation of integral expressions is possible in the first place. Another issue is
how to handle evaluation of integral expressions where the integrand evaluates
to ⊥ for some values.3

Converting deterministic expressions. The auxiliary function expr rf to cexpr,
which will be used in some rules of the compiler that handle deterministic
expressions, is of particular interest. We mentioned earlier that deterministic
source-language expressions can be converted to equivalent target-language ex-
pressions.4 This function does precisely that. Its definition is mostly obvious,
apart from the LET case. Since our target language does not have a LET con-
struct, the function must resolve LET-bindings in the source-language expression
by substituting the bound expression.

expr rf to cexpr satisfies the following equality for any deterministic source-
language expression e:

cexpr sem σ (expr rf to cexpr e) = expr sem rf σ e

3 We do not have this problem since in our target language, as mentioned before,
evaluation cannot fail.

4 Bhat et al. say that a deterministic expression “is also an expression in the target
language syntax, and we silently treat it as such” [5]
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datatype cexpr =

CVar nat | CVal val | pdf operator $c cexpr | <cexpr, cexpr>c |
IFc cexpr THEN cexpr ELSE cexpr | ∫

c
cexpr∂pdf type

Fig. 6. Target language expressions

Γ �c CVal v : val type v Γ �c CVar x : Γ x

Γ �c e : t op type op t = Some t′

Γ �c op $c e : t′
Γ �c e1 : t1 Γ �c e2 : t2

Γ �c <e1, e2>c : t1× t2

Γ �c b : B Γ �c e1 : t Γ �c e2 : t

Γ �c IFc b THEN e1 ELSE e2 : t

t • Γ �c e : R

Γ �c

∫
c
e ∂t : R

Fig. 7. Typing rules for target language

cexpr sem :: state → cexpr → val

cexpr sem σ (CVal v) = v

cexpr sem σ (CVar x) = σ x

cexpr sem σ <e1, e2>c = <|cexpr sem σ e1, cexpr sem σ e2 |>
cexpr sem σ op $c e = op sem op (cexpr sem σ e)

cexpr sem σ (IFc b THEN e1 ELSE e2) =

(if cexpr sem σ b = TRUE then cexpr sem σ e1 else cexpr sem σ e2)

cexpr sem σ (
∫
c
e∂t) =

RealVal (
∫
x. extract real (cexpr sem (x • σ) e) ∂ stock measure t)

Fig. 8. Semantics of target language



92 M. Eberl, J. Hölzl, and T. Nipkow

4 Abstract Compiler

The correctness proof is done in two steps using a refinement approach: first, we
define and prove correct an abstract compiler that returns the density function
as an abstract mathematical function. We then define an analogous concrete
compiler that returns a target-language expression and show that it is a refine-
ment of the abstract compiler, which will allow us to lift the correctness result
from the latter to the former.

4.1 Density Contexts

First, we define the notion of a density context, which holds the context data the
compiler will require to compute the density of an expression. A density context
is a tuple Υ = (V, V ′, Γ, δ) that contains the following information:

– The set V of random variables in the current context. These are the variables
that are randomised over.

– The set V ′ of parameter variables in the current context. These are variables
that may occur in the expression, but are not randomised over but treated
as constants.

– The type environment Γ
– A density function δ that returns the common density of the variables V

under the parameters V ′. Here, δ is a function from space (state measure (V ∪
V ′) Γ ) to the extended real numbers.

A density context (V, V ′, Γ, δ) describes a parametrised measure on the states
on V ∪ V ′. Let ρ ∈ space (state measure V ′ Γ ) be a parameter state. We write

dens ctxt measure (V, V ′, Γ, δ) ρ

for the measure obtained by taking state measure V Γ , transforming it by merg-
ing a given state σ with the parameter state ρ and finally applying the density
δ on the resulting image measure. The Isabelle definition of this is:

dens ctxt measure :: dens ctxt → state → state measure

dens ctxt measure (V, V ′, Γ, δ) ρ = density (distr (state measure V Γ )

(state measure (V ∪ V ′) Γ ) (λσ. merge V V ′ (σ, ρ))) δ

Informally, dens ctxt measure describes the measure obtained by integrating
over the variables {v1, . . . , vm} = V while treating the variables {v′1, . . . , v′n} =
V ′ as parameters. The evaluation of an expression e with variables from V ∪ V ′

in this context is effectively a function

λv′1 . . . v′n.
∫

v1. . . .

∫

vm. expr sem (v1, . . . , vm, v′1, . . . , v
′
n) e ·

δ (v1, . . . , vm, v′1, . . . , v
′
n) ∂Γ v1 . . . ∂Γ vm .

A density context is well-formed (predicate density context in Isabelle) if:
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– V and V ′ are finite and disjoint
– δ σ ≥ 0 for any σ ∈ space (state measure (V ∪ V ′) Γ )
– δ is Borel-measurable w. r. t. state measure (V ∪ V ′) Γ
– the measure dens ctxt measure (V, V ′, Γ, δ) ρ is a sub-probability measure

for any ρ ∈ space (state measure V ′ Γ )

4.2 Definition

As a first step, we have implemented an abstract density compiler as an inductive
predicate Υ �d e ⇒ f , where Υ is a density context, e is a source-language
expression and f is a function of type val state → val → ereal . Its first parameter
is a state that assigns values to the free variables in e and its second parameter
is the value for which the density is to be computed. The compiler therefore
computes a density function that is parametrised with the values of the non-
random free variables in the source expression.

The compilation rules are very similar to those by Bhat et al. [5], except for
the following adaptations:

– Bhat et al. handle IF-THEN -ELSE with the “match” rule for sum types. As
we do not support sum types, we have a dedicated rule for IF-THEN -ELSE.

– The use of de Bruijn indices requires shifting of variable sets and states
whenever the scope of a new bound variable is entered; unfortunately, this
makes some rules somewhat technical.

– We do not provide any compiler support for deterministic LET-bindings.
They are semantically redundant, as they can always be expanded without
changing the semantics of the expression. In fact, they have to be unfolded
for compilation, so they can be regarded as a feature that adds convenience,
but no expressivity.

The following list shows the standard compilation rules adapted from Bhat
et al., plus a rule for multiplication with a constant.5 The functions marg dens
and marg dens2 compute the marginal density of one and two variables by “in-
tegrating away” all the other variables from the common density δ. The function
branch prob computes the probability of being in the current branch of execution
by integrating over all the variables in the common density δ.

hd val

countable type (val type v)

(V, V ′, Γ, δ) �d Val v ⇒ λρ x. branch prob (V, V ′, Γ, δ) ρ · 〈x = v〉

hd var

x ∈ V

(V, V ′, Γ, δ) �d Var x ⇒ marg dens (V, V ′, Γ, δ) x

5 Additionally, three congruence rules are required for technical reasons. These rules
are required because the abstract and the concrete result may differ on a null set
and outside their domain.
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hd pair

x ∈ V y ∈ V x �= y

(V, V ′, Γ, δ) �d<Var x,Var y>⇒ marg dens2 (V, V ′, Γ, δ) x y

hd fail

(V, V ′, Γ, δ) �d Fail t ⇒ λρ x. 0

hd let

(∅, V ∪ V ′, Γ, λx. 1) �d e1 ⇒ f
(0 • V, {x+ 1 | x ∈ V ′}, type of Γ e1 • Γ,
λρ. f (λx. ρ (x+ 1)) (ρ 0) · δ (λx. ρ (x+ 1))) �d e2 ⇒ g

(V, V ′, Γ, δ) �d LET e1 IN e2 ⇒ λρ. g (undefined • ρ)

hd rand

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d Random dst e ⇒
λρ y.

∫
x. f ρ x · dist dens dst x y ∂dist param type dst

hd rand det

e det free vars e ⊆ V ′

(V, V ′, Γ, δ) �d Random dst e ⇒
λρ x. branch prob (V, V ′, Γ, δ) ρ · dist dens dst (expr sem rf ρ e) x

hd if

(∅, V ∪ V ′, Γ, λρ. 1) �d b ⇒ f (V, V ′, Γ, λρ. δ ρ · f TRUE) �d e1 ⇒ g1
(V, V ′, Γ, λρ. δ ρ · f FALSE) �d e2 ⇒ g2

(V, V ′, Γ, δ) �d IF b THEN e1 ELSE e2 ⇒ λρ x. g1 ρ x+ g2 ρ x

hd if det

b det
(V, V ′, Γ, λρ. δ ρ · 〈expr sem rf ρ b = TRUE〉) �d e1 ⇒ g1
(V, V ′, Γ, λρ. δ ρ · 〈expr sem rf ρ b = FALSE〉) �d e2 ⇒ g2

(V, V ′, Γ, δ) �d IF b THEN e1 ELSE e2 ⇒ λρ x. g1 ρ x+ g2 ρ x

hd fst

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d fst e ⇒ λρ x.
∫
y. f ρ <|x, y |> ∂ type of Γ (snd e)

hd snd

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d snd e ⇒ λρ y.
∫
x. f ρ <|x, y |> ∂ type of Γ (fst e)

hd op discr

countable type (type of (op $ e)) (V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d op $ e ⇒ λρ y.
∫
x. 〈op sem op x = y〉 · f ρ x ∂ type of Γ e

hd neg

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d −e ⇒ λρ x. f ρ (−x)
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hd addc

e′ det free vars e′ ⊆ V ′ (V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d e+ e′ ⇒ λρ x. f ρ (x− expr sem rf ρ e′)

hd multc

c �= 0 (V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d e ·Val (RealVal c) ⇒ λρ x. f ρ (x/c) / |c|

hd add

(V, V ′, Γ, δ) �d<e1, e2>⇒ f

(V, V ′, Γ, δ) �d e1 + e2 ⇒ λρ z.
∫
x. f ρ <|x, z − x |> ∂ type of Γ e1

hd inv

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d e−1 ⇒ λρ x. f ρ (x−1) / x2

hd exp

(V, V ′, Γ, δ) �d e ⇒ f

(V, V ′, Γ, δ) �d exp e ⇒ λρ x. if x > 0 then f ρ (lnx) / x else 0

Consider the following simple example program:

IF Random Bernoulli 0.25 THEN 0 ELSE 1

Applying the abstract compiler yields the following HOL function:

branch prob (∅, ∅, Γ, λρ. branch prob (∅, ∅, Γ, λρ. 1) ρ ∗
dist dens Bernoulli 0.25 True) ρ · 〈x = 0〉+

branch prob (∅, ∅, Γ, λρ. branch prob (∅, ∅, Γ, λρ. 1) ρ ∗
dist dens Bernoulli 0.25 False) ρ · 〈x = 1〉

Since the branch prob in this example is merely the integral over the empty set
of variables, this simplifies to:

λρ x. dist dens Bernoulli 0.25 ρ True · 〈x = 0〉+
dist dens Bernoulli 0.25 ρ False · 〈x = 1〉

4.3 Soundness Proof

We proved the following soundness result for the abstract compiler:6

6 Note that since the abstract compiler returns parametrised density functions, we
need to parametrise the result with the state λx. undefined, even if the expression
contains no free variables.
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lemma expr has density sound:

assumes (∅, ∅, Γ, λρ. 1) �d e ⇒ f and Γ � e : t and free vars e = ∅
shows has subprob density (expr sem σ e) (stock measure t) (f (λx. undefined))

where has subprob density M N f is an abbreviation for the following four
facts: applying the density f to N yields M , M is a sub-probability measure, f
is N -Borel-measurable, and f is non-negative on its domain.

The lemma above follows easily from the following generalised lemma:

lemma expr has density sound aux:

assumes (V, V ′, Γ, δ) �d e ⇒ f and Γ � e : t and

density context V V ′ Γ δ and free vars e ⊆ V ∪ V ′

shows has parametrized subprob density (state measure V ′ Γ )

(λρ. do {σ ← dens ctxt measure (V, V ′, Γ, δ) ρ; expr sem σ e})
(stock measure t) f

where has parametrized subprob density R M N f means that f is Borel-
measurable w. r. t. R⊗N and that for any parameter state ρ fromR, the predicate
has subprob density (M ρ) N (f ρ) holds.

The proof is by induction on the definition of the abstract compiler. In many
cases, the monad laws for the Giry monad allow restructuring the induction goal
in such a way that the induction hypothesis can be applied directly; in the other
cases, the definitions of the monadic operations need to be unfolded and the goal
is essentially to show that two integrals are equal and that the output produced
is well-formed.

The proof given by Bhat et al. [6] (which we were unaware of while working
on our own proof) is analogous to ours, but much more concise due to the fact
that side conditions such as measurability, integrability, non-negativity, and so
on are not proven explicitly and many important (but uninteresting) steps are
skipped or only hinted at.

It should be noted that in the draft of an updated version of their 2013
paper [6], Bhat et al. added a scaling rule for real distributions similar to our
hd multc rule. However, in the process of our formal proof, we found that
their rule was too liberal: while our rule only allows multiplication with a fixed
constant, their rule allowed multiplication with any deterministic expression,
even expressions that may evaluate to 0, but multiplication with 0 always yields
the Dirac distribution, which does not have a density function. In this case, the
compiler returns a PDF for a distribution that has none, leading to unsoundness.
This shows the importance of formal proofs.
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5 Concrete Compiler

5.1 Approach

The concrete compiler is another inductive predicate, modelled directly after the
abstract compiler, but returning a target-language expression instead of a HOL
function. We use a standard refinement approach to relate the concrete compiler
to the abstract one. We thus lift the soundness result on the abstract compiler
to an analogous result on the concrete compiler. This shows that the concrete
compiler always returns a well-formed target-language expression that represents
a density for the sub-probability space described by the source language.

The concrete compilation predicate is written as

(vs , vs ′, Γ, δ) �c e ⇒ f

Here, vs and vs ′ are lists of variables, Γ is a typing environment, and δ is a
target-language expression describing the common density of the random vari-
ables vs in the context. It may be parametrised with the variables from vs ′.

5.2 Definition

The concrete compilation rules are, of course, a direct copy of the abstract ones,
but with all the abstract HOL operations replaced with operations on target-
language expressions. Due to the de Bruijn indices and the lack of functions as
explicit objects in the target language, some of the rules are somewhat compli-
cated – inserting an expression into the scope of one or more bound variables
(such as under an integral) requires shifting the variable indices of the inserted
expression correctly. For this reason, we do not show the rules here; they can be
found in the Isabelle theory file PDF Compiler.thy [13].

5.3 Refinement

The refinement relates the concrete compilation

(vs , vs ′, Γ, δ) �c e ⇒ f

to the abstract compilation

(set vs, set vs′, Γ, λσ. expr sem σ δ) �c e ⇒ λρ x. cexpr sem (x • ρ) f
In words: we take the abstract compilation predicate and

– the variable sets are refined to variable lists
– the typing context and the source-language expression remain unchanged
– the common density in the context and the compilation result are refined

from HOL functions to target-language expressions (by applying the target
language semantics)
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The main refinement lemma states that the concrete compiler yields a result
that is equivalent to that of the abstract compiler, modulo refinement. Informally,
the statement is the following: if e is ground and well-typed under some well-
formed concrete density context Υ and Υ �c e ⇒ f , then Υ ′ �d e ⇒ f ′, where
Υ ′ and f ′ are the abstract versions of Υ and f .

The proof for this is conceptually simple – induction over the definition of
the concrete compiler; in practice, however, it is quite involved. In every single
induction step, the well-formedness of the intermediary expressions needs to be
shown, the previously-mentioned congruence lemmas for the abstract compiler
need to be applied, and, when integration is involved, non-negativity and inte-
grability have to be shown in order to convert non-negative Lebesgue integrals to
general Lebesgue integrals and integrals on product spaces to iterated integrals.

Combining this main refinement lemma and the abstract soundness lemma,
we can now easily show the concrete soundness lemma:

lemma expr has density cexpr sound:

assumes ([], [], Γ, 1) �c e ⇒ f and Γ � e : t and free vars e = ∅
shows has subprob density (expr sem σ e) (stock measure t)

(λx. cexpr sem (x • σ) f)
Γ ′ 0 = t =⇒ Γ ′ �c f : REAL

free vars f ⊆ {0}

Informally, the lemma states that if e is a well-typed, ground source-language
expression, compiling it with an empty context will yield a well-typed,
well-formed target-language expression representing a density function on the
measure space described by e.

5.4 Final Result

We will now summarise the soundness lemma we have just proven in a more
concise manner. For convenience, we define the symbol e : t ⇒c f (read “e
with type t compiles to f”), which includes the well-typedness and groundness
requirements on e as well as the compilation result:7

e : t ⇒c f ←→
(λx. UNIT) � e : t ∧ free vars e = ∅ ∧ ([], [], λx. UNIT, 1) �c e ⇒ f

The final soundness theorem for the compiler, stated in Isabelle syntax:8

7 In this definition, the choice of the typing environment is completely arbitrary since
the expression contains no free variables.

8 The lemma statement in Isabelle is slightly different: for better readability, we un-
folded one auxiliary definition here and omitted the type cast from real to ereal.
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lemma expr compiles to sound:

assumes e : t ⇒c f

shows expr sem σ e = density (stock measure t) (λx. cexpr sem (x • σ′) f)
∀x∈ type universe t. cexpr sem (x • σ′) f ≥ 0

Γ � e : t

t • Γ ′ �c f : REAL

free vars f ⊆ {0}

In words, this result means the following:

Theorem

Let e be a source-language expression. If the compiler determines that e is
well-formed and well-typed with type t and returns the target-language
expression f , then:

– the measure obtained by taking the stock measure of t and using the
evaluation of f as a density is the measure obtained by evaluating e

– f is non-negative on all input values of type t
– e has no free variables and indeed has type t (in any type context Γ )
– f has no free variable except the parameter (i. e. the variable 0) and is

a function from t to REAL9

5.5 Evaluation

Isabelle’s code generator allows us to execute our inductively-defined verified
compiler using the values command10 or generate code in one of the target
languages such as Standard ML or Haskell. As an example on which to test the
compiler, we choose the same expression that was chosen by Bhat et al. [5]:11

LET x = Random UniformReal <0, 1> IN

LET y = Random Bernoulli x IN

IF y THEN x + 1 ELSE x

9 Meaning if its parameter variable has type t, it is of type REAL.
10 Our compiler is inherently non-deterministic since it may return zero, one, or many

density functions, seeing as an expression may have no matching compilation rules
or more than one. Therefore, we must use the values command instead of the value
command and receive a set of compilation results.

11 Val and RealVal were omitted for better readability and symbolic variable names
were used instead of de Bruijn indices.
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We abbreviate this expression with e. We can then display the result of the
compilation using the following Isabelle command:

values ”{(t, f) | t f. e : t ⇒c f}”
The result is a singleton set which contains the pair (REAL, f), where f is a
very long and complicated expression. Simplifying constant subexpressions and
expressions of the form fst <e1, e2> and again replacing de Bruijn indices with
symbolic identifiers, we obtain:∫

b. (IF 0 ≤ x− 1 ∧ x− 1 ≤ 1 THEN 1 ELSE 0) · (IF 0 ≤ x− 1 ∧ x− 1 ≤ 1 THEN

IF b THEN x− 1 ELSE 1− (x− 1) ELSE 0) · 〈b〉 +∫
b. (IF 0 ≤ x ∧ x ≤ 1 THEN 1 ELSE 0) · (IF 0 ≤ x ∧ x ≤ 1 THEN

IF b THEN x ELSE 1− x ELSE 0) · 〈¬ b〉

Further simplification yields the following result:

〈1 ≤ x ≤ 2〉 · (x− 1) + 〈0 ≤ x ≤ 1〉 · (1− x)

While this result is the same as that which Bhat et al. have reached, our
compiler generates a much larger expression than the one they printed. The
reason for this is that they β-reduced the compiler output and evaluated constant
subexpressions. While such simplification is very useful in practice, we have not
automated it yet since it is orthogonal to the focus of our work, the compiler.

6 Conclusion

6.1 Effort

The formalisation of the compiler took about three months and roughly 10000
lines of Isabelle code (definitions, lemma statements, proofs, and examples) dis-
tributed as follows:

Type system and semantics 2900 lines
Abstract compiler 2600 lines
Concrete compiler 1400 lines
General measure theory 3400 lines

As can be seen, a sizeable portion of the work was the formalisation of results
from general measure theory, such as integration by substitution and measure
embeddings.

6.2 Difficulties

The main problems we encountered during the formalisation were:
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Missing background theory. As mentioned in the previous section, a sizeable
amount of measure theory and auxiliary notions had to be formalised. Most
notably, the existing measure theory library did not contain integration by sub-
stitution. We proved this, using material from a formalisation of the Central
Limit Theorem by Avigad et al. [2].

Proving side conditions. Many lemmas from the measure theory library require
measurability, integrability, non-negativity, etc. In hand-written proofs, this is
often “hand-waved” or implicitly dismissed as trivial; in a formal proof, proving
these can blow up proofs and render them very complicated and technical. The
measurability proofs in particular are ubiquitous in our formalisation. The mea-
sure theory library provides some tools for proving measurability automatically,
but while they were quite helpful in many cases, they are still work in progress
and require more tuning.

Lambda calculus. Bhat et al. use a simply-typed λ-calculus-like language with
symbolic identifiers as a target language. For a paper proof, this is the obvious
choice. We chose de Bruijn indices instead; however, this makes handling target
language terms less intuitive and requires additional lemmas. Urban’s nominal
datatypes [21] would have allowed us to work with a more intuitive model, but
we would have lost executability of the compiler, which was one of our aims.

6.3 Summary

We formalised the semantics of a probabilistic functional programming language
with predefined probability distributions and a compiler that returns the prob-
ability distribution that a program in this language describes. These are mod-
elled very closely after those given by Bhat et al. [5]. Then we formally verified
the correctness of this compiler w. r. t. the semantics of the source and target
languages.

This shows not only that the compiler given by Bhat et al. is correct (apart
from the problem with the scaling rule we discussed earlier), but also that a
formal correctness proof for such a compiler can be done with reasonable effort
and that Isabelle/HOL in general and its measure theory library in particular
are suitable for it. A useful side effect of our work was the formalisation of the
Giry Monad, which is useful for formalisations of probabilistic computations in
general.

Possible future work includes support for sum types, which should be possible
with little effort, and a verified postprocessing stage to automatically simplify
the density expression would be desirable.
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Appendix

Notation Name /Description Definition

f x function application f(x)

f ‘X image set f(X) or {f(x) | x ∈ X}
λx. e lambda abstraction x �→ e

undefined arbitrary value

Suc successor of a natural number +1

case nat x f y case distinction on natural number

{
x if y = 0

f(y − 1) otherwise

[] Nil empty list

x#xs Cons prepend element to list

xs @ ys list concatenation

map f xs applies f to all list elements [f(x) | x ← xs ]

merge V V ′ (ρ, σ) merging disjoint states

⎧⎪⎨
⎪⎩
ρ x if x ∈ V

σ y if x ∈ V ′

undefined otherwise

y • f add de Bruijn variable to scope see Sect. 2.2

〈P 〉 indicator function 1 if P is true, 0 otherwise∫
x. f x ∂μ Lebesgue integral on non-neg. functions

Meas category of measurable spaces see Sect. 2.4

S sub-probability functor see Sect. 2.4

return monadic return (η) in the Giry monad see Sect. 2.4

�= monadic bind in the Giry monad see Sect. 2.4

do { . . . } monadic “do” syntax see Sect. 2.4

density M f measure with density result of applying density f to M

distr M N f push-forward/image measure (B, B, λX. μ(f−1(X))) for

M = (A,A, μ), N = (B,B, μ′)
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