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Abstract. XML processing languages can be classified according to
whether they extract XML data by paths or patterns. The strengths
of one category correspond to the weaknesses of the other. In this work,
we propose to bridge the gap between these two classes by considering
two languages, one in each class: XQuery (for path-based extraction) and
�Duce (for pattern-based extraction). To this end, we extend �Duce so as
it can be seen as a succinct core λ-calculus that captures XQuery 3.0. The
extensions we consider essentially allow �Duce to implement XPath-like
navigational expressions by pattern matching and precisely type them.
The elaboration of XQuery 3.0 into the extended �Duce provides a for-
mal semantics and a sound static type system for XQuery 3.0 programs.

1 Introduction

With the establishment of XML as a standard for data representation and ex-
change, a wealth of XML-oriented programming languages have emerged. They
can be classified into two distinct classes according to whether they extract XML
data by applying paths or patterns. The strengths of one class correspond to the
weaknesses of the other. In this work, we propose to bridge the gap between
these classes and to do so we consider two languages each representing a distinct
class: XQuery and �Duce.

XQuery [23] is a declarative language standardized by the W3C that relies
heavily on XPath [21,22] as a data extraction primitive. Interestingly, the latest
version of XQuery (version 3.0, very recently released [25]) adds several func-
tional traits: type and value case analysis and functions as first-class citizens.
However, while the W3C specifies a standard for document types (XML Schema
[26]), it says little about the typing of XQuery programs (the XQuery 3.0 recom-
mendation goes as far as saying that static typing is “implementation defined”
and hence optional). This is a step back from the XQuery 1.0 Formal Semantics
[24] which gives sound (but sometime imprecise) typing rules for XQuery.

In contrast, �Duce [4], which is used in production but issued from academic
research, is a statically-typed functional language with, in particular, higher-
order functions and powerful pattern matching tailored for XML data. Its key
characteristic is its type algebra, which is based on semantic subtyping [10] and
features recursive types, type constructors (product, record, and arrow types)
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XQuery code

1 declare function get_links($page, $print) {

2 for $i in $page/descendant::a[not(ancestor::b)]
3 return $print($i)
4 }

5 declare function pretty($link) {

6 typeswitch($link)
7 case $l as element(a)

8 return switch ($l/@class)
9 case "style1"

10 return <a href={$l/@href}><b>{$l/text()}</b></a>
11 default return $l
12 default return $link
13 }

�Duce code

14 let get_links (page: <_>_) (print: <a>_ -> <a>_) : [ <a>_ * ] =

15 match page with

16 <a>_ & x -> [ (print x) ]

17 | < (_\‘b) > l -> (transform l with (i & <_>_) -> get_links i print)
18 | _ -> [ ]

19 let pretty (<a>_ -> <a>_ ; Any\<a>_ -> Any\<a>_)

20 | <a class="style1" href=h ..> l -> <a href=h>[ <b>l ]

21 | x -> x

Fig. 1. Document transformation in XQuery 3.0 and �Duce

and general Boolean connectives (union, intersection, and negation of types) as
well as singleton types. This type algebra is particularly suited to express the
types of XML documents and relies on the same foundation as the one that un-
derpins XML Schema: regular tree languages. Moreover, the �Duce type system
not only supports ad-hoc polymorphism (through overloading and subtyping)
but also has recently been extended with parametric polymorphism [5,6].

Figure 1 highlights the key features as well as the shortcomings of both lan-
guages by defining the same two functions get_links and pretty in each language.
Firstly, get_links (i) takes an XHTML document $page and a function $print as
input, (ii) computes the sequence of all hypertext links (a-labelled elements) of
the document that do not occur below a bold element (b-labelled elements), and
(iii) applies the print argument to each link in the sequence, returning the se-
quence of the results. Secondly, pretty takes anything as argument and performs
a case analysis. If the argument is a link whose class attribute has the value
"style1", the output is a link with the same target (href attribute) and whose
text is embedded in a bold element. Otherwise, the argument is unchanged.

We first look at the get_links function. In XQuery, collecting every “a” element
of interest is straightforward: it is done by the XPath expression at Line 2:

$page/descendant::a[not(ancestor::b)]
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In a nutshell, an XPath expression is a sequence of steps that (i) select sets
of nodes along the specified axis (here descendant meaning the descendants
of the root node of $page), (ii) keep only those nodes in the axis that have
a particular label (here “a”), and (iii) further filter the results according to a
Boolean condition (here not(ancestor::b) meaning that from a candidate “a”
node, the step ancestor::b must return an empty result). At Lines 2–3, the
for_return expression binds in turn each element of the result of the XPath
expression to the variable $i, evaluates the return expression, and concatenates
the results. Note that there is no type annotation and that this function would
fail at runtime if $page is not an XML element or if $print is not a function.

In clear contrast, in the �Duce program, the interface of get_links is fully
specified (Line 14). It is curried and takes two arguments. The first one is page
of type <_>_, which denotes any XML element (_ denotes a wildcard pattern
and is a synonym of the type Any, the type of all values, while <s>t is the
type of an XML element with tag of type s and content of type t). The second
argument is print of type <a>_→ <a>_, which is the type of functions that take
an “a” element (whose content is anything) and return an “a” element. The final
output is a value of type [ <a>_* ], which denotes a possibly empty sequence
of “a” elements (in �Duce’s types, the content of a sequence is described by
a regular expression on types). The implementation of get_links in �Duce is
quite different from its XQuery counterpart: following the functional idiom, it is
defined as a recursive function that traverses its input recursively and performs
a case analysis through pattern matching. If the input is an “a” element (Line
16), it binds the input to the capture variable x, evaluates print x, and puts the
result in a sequence (denoted by square brackets). If the input is an XML element
whose tag is not b (“\” stands for difference, so _\‘b matches any value different
from b)1, it captures the content of the element (a sequence) in l and applies
itself recursively to each element of l using the transform_with construct whose
behavior is the same as XQuery’s for. Lastly, if the result is not an element (or
it is a “b” element), it stops the recursion and returns the empty sequence.

For the pretty function (which is inspired from the example given in §3.16.2
of the XQuery 3.0 recommendation [25]), the XQuery version (Lines 5–13) first
performs a “type switch”, which tests whether the input $link has label a. If so,
it extracts the value of the class attribute using an XPath expression (Line 8)
and performs a case analysis on that value. In the case where the attribute is
"style1", it re-creates an “a” element (with a nested “b” element) extracting the
relevant part of the input using XPath expressions. The �Duce version (Lines
19–21) behaves in the same way but collapses all the cases in a single pattern
matching. If the input is an “a” element with the desired class attribute, it
binds the contents of the href attribute and the element to the variables h and l,
respectively (the “..” matches possible further attributes), and builds the desired
output; otherwise, the input is returned unchanged. Interestingly, this function
is overloaded. Its signature is composed of two arrow types: if the input is an “a”
element, so is the output; if the input is something else than an “a” element, so

1 In �Duce, one has to use ‘b in conjunction with \ to denote XML tag b.
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is the output (& in types and patterns stands for intersection). Note that it is
safe to use the pretty function as the second argument of the get_links function
since (<a>_→<a>_) & (Any\<a>_→Any\<a>_) is a subtype of <a>_→<a>_ (an
intersection is always smaller than or equal to the types that compose it).

Here we see that the strength of one language is the weakness of the other:
�Duce provides static typing, a fine-grained type algebra, and a pattern match-
ing construct that cleanly unifies type and value case analysis. XQuery provides
through XPath a declarative way to navigate a document, which is more concise
and less brittle than using hand-written recursive functions (in particular, at
Line 16 in the �Duce code, there is an implicit assumption that a link cannot
occur below another link; the recursion stops at “a” elements).

Contributions. The main contribution of the paper is to unify the navigational
and pattern matching approaches and to define a formal semantics and type
system of XQuery 3.0. Specifically, we extend �Duce so as it can be seen as a
succinct core λ-calculus that can express XQuery 3.0 programs as follows.

First, we allow one to navigate in �Duce values, both downward and upward.
A natural way to do so in a functional setting is to use zippers à la Huet [18] to
annotate values. Zippers denote the position in the surrounding tree of the value
they annotate as well as its current path from the root. We extend �Duce not
only with zipped values (i.e., values annotated by zippers) but also with zipped
types. By doing so, we show that we can navigate not only in any direction in a
document but also in a precisely typed way, allowing one to express constraints
on the path in which a value is within a document.

Second, we extend �Duce pattern matching with accumulating variables that
allow us to encode recursive XPath axes (such as descendant and ancestor).
It is well known that typing such recursive axes goes well beyond regular tree
languages and that approximations in the type system are needed. Rather than
giving ad-hoc built-in functions for descendant and ancestor, we define the
notion of type operators and parameterize the �Duce type system (and dynamic
semantics) with these operators. Soundness properties can then be shown in
a modular way without hard-coding any specific typing rules in the language.
With this addition, XPath navigation can be encoded simply in �Duce’s pattern
matching constructs and it is just a matter of syntactic sugar definition to endow
�Duce with nice declarative navigational expressions such as those successfully
used in XQuery or XSLT.

The last (but not least) step of our work is to define a “normal form” for
XQuery 3.0 programs, extending both the original XQuery Core normal form of
[24] and its recent adaptation to XQuery 3.0 (dubbed XQH) proposed by Benedikt
and Vu [3]. In this normal form, navigational (i.e., structural) expressions are
well separated from data value expressions (ordering, node identity testing, etc.).
We then provide a translation from XQuery 3.0 Core to �Duce extended with
navigational patterns. The encoding provides for free an effective and efficient
typechecking algorithm for XQuery 3.0 programs (described in Figure 9 of Sec-
tion 5.1) as well as a formal and compact specification of their semantics. Even
more interestingly, it provides a solid formal basis to start further studies on the
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Pre-values w ::= c | (w,w) | μf (t→t;...;t→t)(x).e
Zippers δ ::= • | L (w)δ · δ | R (w)δ · δ
Values v ::= w | (v, v) | (w)δ
Expressions e ::= v | x | ẋ | (e, e) | (e)• | o(e, . . . , e)

| match e with p → e| p → e

Pre-types u ::= b | c | u× u | u → u | u ∨ u | ¬u | �

Zipper types τ ::= • | � | L (u)τ · τ | R (u)τ · τ | τ ∨ τ | ¬τ
Types t ::= u | t× t | t → t | t ∨ t | ¬t | (u)τ

Pre-patterns q ::= t | x | ẋ | (q, q) | q|q | q&&& q | (x := c)
Zipper patterns ϕ ::= τ | L p · ϕ | R p · ϕ | ϕ|ϕ
Patterns p ::= q | (p, p) | p|p | p&&& p | (q)ϕ

Fig. 2. Syntax of expressions, types, and patterns

definition of XQuery 3.0 and its properties. A minima, it is straightforward to
use this basis to add overloaded functions to XQuery (e.g., to give a precise type
to pretty). More crucially, the recent advances on polymorphism for semantic
subtyping [5,6,7] can be transposed to this basis to provide a polymorphic type
system and type inference algorithm both to XQuery 3.0 and to the extended
�Duce language defined here. Polymorphic types are the missing ingredient to
make higher-order functions yield their full potential and to remove any residual
justification of the absence of standardization of the XQuery 3.0 type system.

Plan. Section 2 presents the core typedλ-calculus equipped with zipper-annotated
values, accumulators, constructors, recursive functions, and pattern matching.
Section 3 gives its semantics, type system, and the expected soundness property.
Section 4 turns this core calculus into a full-fledged language using several syntac-
tic constructs and encodings. Section 5 uses this language as a compilation target
for XQuery. Lastly, Section 6 compares our work to other related approaches and
concludes. Proofs and some technical definitions are given in an online appendix
available at http://www.pps.univ-paris-diderot.fr/~gc/.

2 Syntax

We extend the �Duce language [4] with zippers à la Huet [18]. To ensure the
well-foundedness of the definition, we stratify it, introducing first pre-values
(which are standard �Duce values) and then values, which are pre-values possibly
indexed by a zipper; we proceed similarly for types and patterns. The definition
is summarized in Figure 2. Henceforth we denote by V the set of all values and
by Ω a special value that represents runtime error and does not inhabit any type.
We also denote by E and T the set of all expressions and all types, respectively.

2.1 Values and Expressions

Pre-values (ranged over by w) are the usual �Duce values without zipper an-
notations. Constants are ranged over by c and represent integers (1, 2, . . . ),

http://www.pps.univ-paris-diderot.fr/~gc/


A Core Calculus for XQuery 3.0 237

characters (’a’, ’b’, . . . ), atoms (‘nil, ‘true, ‘false, ‘foo, . . . ), etc. A value
(w,w) represents pairs of pre-values. Our calculus also features recursive func-
tions (hence the μ binder instead of the traditional λ) with explicit, overloaded
types (the set of types that index the recursion variable, forming the interface of
the function). Values (ranged over by v) are pre-values, pairs of values, or pre-
values annotated with a zipper (ranged over by δ). Zippers are used to record
the path covered when traversing a data structure. Since the product is the only
construct, we need only three kinds of zippers: the empty one (denoted by •)
which intuitively denotes the starting point of our navigation, and two zippers
L (w)δ · δ and R (w)δ · δ which denote respectively the path to the left and right
projection of a pre-value w, which is itself reachable through δ. To ease the writ-
ing of several zipper related functions, we chose to record in the zipper the whole
“stack” of values we have visited (each tagged with a left or right indication),
instead of just keeping the unused component as is usual.

Example 1. Let v be the value ((1, (2, 3)))•. Its first projection is the value
(1)L ((1,(2,3)))•·• and its second projection is the value ((2, 3))R ((1,(2,3)))•·•, the
first projection of which being (2)L ((2,3))R ((1,(2,3)))•·•·R ((1,(2,3)))•·•

As one can see in this example, keeping values in the zipper (instead of pre-
values) seems redundant since the same value occurs several times (see how δ is
duplicated in the definition of zippers). The reason for this duplication is purely
syntactic: it makes the writing of types and patterns that match such values
much shorter (intuitively, to go “up” in a zipper, it is only necessary to extract
the previous value while keeping it un-annotated —i.e., having Lw · δ in the
definition instead of L (w)δ · δ— would require a more complex treatment to
reconstruct the parent). We also stress that zipped values are meant to be used
only for internal representation: the programmer will be allowed to write just
pre-values (not values or expressions with zippers) and be able to obtain and
manipulate zippers only by applying �Duce functions and pattern matching (as
defined in the rest of the paper) and never directly.

Expressions include values (as previously defined), variables (ranged over by
x , y, . . . ), accumulators (which are a particular kind of variables, ranged over
by ẋ , ẏ , . . . ), and pairs. An expression (e)• annotates e with the empty zipper
•. The pattern matching expression is standard (with a first match policy) and
will be thoroughly presented in Section 3. Our calculus is parameterized by a set
O of built-in operators ranged over by o. Before describing the use of operators
and the set of operators defined in our calculus (in particular the operators for
projection and function application), we introduce our type algebra.

2.2 Types

We first recall the �Duce type algebra, as defined in [10], where types are in-
terpreted as sets of values and the subtyping relation is semantically defined by
using this interpretation (i.e., �t� = {v | � v : t} and s ≤ t

def⇐⇒ �s� ⊆ �t�).
Pre-types u (as defined in Figure 2) are the usual �Duce types, which are

possibly infinite terms with two additional requirements:
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1. (regularity) the number of distinct subterms of u is finite;
2. (contractiveness) every infinite branch of u contains an infinite number of

occurrences of either product types or function types.

We use b to range over basic types (int, bool, . . . ). A singleton type c denotes
the type that contains only the constant value c. The empty type � contains
no value. Product and function types are standard: u1 × u2 contains all the
pairs (w1, w2) for wi ∈ ui, while u1 → u2 contains all the (pre-)value functions
that when applied to a value in u1, if such application terminates then it re-
turns a value in u2. We also include type connectives for union and negation
(intersections are encoded below) with their usual set-theoretic interpretation.
Infiniteness of pre-types accounts for recursive types and regularity implies that
pre-types are finitely representable, for instance, by recursive equations or by
the explicit μ-notation. Contractiveness [2] excludes both ill-formed (i.e., un-
guarded) recursions such as μX.X as well as meaningless type definitions such
as μX.X ∨X or μX.¬X (unions and negations are finite). Finally, subtyping is
defined as set-theoretic containment (u1 is a subtype of u2, denoted by u1≤u2,
if all values in u1 are also in u2) and it is decidable in EXPTIME (see [10]).

A zipper type τ is a possibly infinite term that is regular as for pre-types and
contractive in the sense that every infinite branch of τ must contain an infinite
number of occurrences of either left or right projection. The singleton type • is
the type of the empty zipper and 
 denotes the type of all zippers, while L (u)τ ·τ
(resp., R (u)τ · τ) denotes the type of zippers that encode the left (resp., right)
projection of some value of pre-type u. We use τ1 ∧ τ2 to denote ¬(¬τ1 ∨ ¬τ2).

The type algebra of our core calculus is then defined as pre-types possibly
indexed by zipper types. As for pre-types, a type t is a possibly infinite term
that is both regular and contractive. We write t ∧ s for ¬(¬t ∨ ¬s), t \ s for
t ∧ ¬s, and � for ¬�; in particular, � denotes the super-type of all types (it
contains all values). We also define the following notations (we use ≡ both for
syntactic equivalence and definition of syntactic sugar):

– �prod ≡ �× � the super-type of all product types
– �fun ≡ � → � the super-type of all arrow types
– �basic ≡ � \ (�prod∨�fun∨(�)�) the super-type of all basic types
– �NZ ≡ μX.(X ×X)∨(�basic ∨ �fun) the type of all pre-values (i.e., Not Zipped)

It is straightforward to extend the subtyping relation of pre-types (i.e., the one
defined in [10]) to our types: the addition of (u)τ corresponds to the addition of a
new type constructor (akin to → and ×) to the type algebra. Therefore, it suffices
to define the interpretation of the new constructor to complete the definition
of the subtyping relation (defined as containment of the interpretations). In
particular, (u)τ is interpreted as the set of all values (w)δ such that � w : u
and � δ : τ (both typing judgments are defined in Appendix B.1). From this we
deduce that (�)� (equivalently, (�NZ)�) is the type of all (pre-)values decorated
with a zipper. The formal definition is more involved (see Appendix A) but the
intuition is simple: a type (u1)τ1 is a subtype of (u2)τ2 if u1 ≤ u2 and τ2 is a
prefix (modulo type equivalence and subtyping) of τ1. The prefix containment
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translates the intuition that the more we know about the context surrounding a
value, the more numerous are the situations in which it can be safely used. For
instance, in XML terms, if we have a function that expects an element whose
parent’s first child is an integer, then we can safely apply this function to an
element whose type indicates that its parent’s first child has type (a subtype of)
integer and that its grandparent is, say, tagged by a.

Finally, as for pre-types, the subtyping relation for types is decidable in EX-
PTIME. This is easily shown by producing a straightforward linear encoding
of zipper types and zipper values in pre-types and pre-values, respectively (the
encoding is given in Definition 16 in Appendix A).

2.3 Operators and Accumulators

As previously explained, our calculus includes accumulators and is parameterized
by a set O of operators. These have the following formal definitions:

Definition 2 (Operator). An operator is a 4-tuple (o, no,
o
�,

o→) where o is
the name (symbol) of the operator, no is its arity, o

� ⊆ Vno × E ∪ {Ω} is its
reduction relation, and o→ : T no → T is its typing function.

In other words, an operator is an applicative symbol, equipped with both a
dynamic (�) and a static (→) semantics. The reason for making o

� a relation
is to account for non-deterministic operators (e.g., random choice). Note that an
operator may fail, thus returning the special value Ω during evaluation.

Definition 3 (Accumulator). An accumulator ẋ is a variable equipped with
a binary operator Op(ẋ ) ∈ O and initial value Init(ẋ ) ∈ V.

2.4 Patterns

Now that we have defined types and operators, we can define patterns. Intu-
itively, patterns are types with capture variables that are used either to extract
subtrees from an input value or to test its “shape”. As before, we first recall the
definition of standard �Duce patterns (here called pre-patterns), enrich them
with accumulators, and then extend the whole with zippers.

A pre-pattern q, as defined in Figure 2, is either a type constraint t, or a cap-
ture variable x , or an accumulator ẋ , or a pair (q1, q2), or an alternative q1|q2, or
a conjunction q1&&& q2, or a default case (x := c). It is a possibly infinite term that
is regular as for pre-types and contractive in the sense that every infinite branch
of q must contain an infinite number of occurrences of pair patterns. Moreover,
the subpatterns forming conjunctions must have distinct capture variables and
those forming alternatives the same capture variables. A zipper pattern ϕ is a
possibly infinite term that is both regular and contractive as for zipper types.
Finally, a pattern p is a possibly infinite term with the same requirements as
pre-patterns. Besides, the subpatterns q and ϕ forming a zipper pattern (q)ϕ
must have distinct capture variables. We denote by Var(p) the set of capture
variables occurring in p and by Acc(p) the set of accumulators occurring in p.
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E ::= [ ] | (E, e) | (e, E) | (E)• | match E with p1 → e1| p2 → e2 | o(e, ..., E, ..., e)

(v1, . . . , vno)
o
� e

o(v1, . . . , vno) � e

{ẋ �→ Init(ẋ ) | ẋ ∈ Acc(p1)};� � v/p1 � σ, γ

match v with p1 → e1| p2 → e2 � e1[σ; γ]

{ẋ �→ Init(ẋ ) | ẋ ∈ Acc(p1)};� � v/p1 � Ω {ẋ �→ Init(ẋ ) | ẋ ∈ Acc(p2)};� � v/p2 � σ, γ

match v with p1 → e1| p2 → e2 � e2[σ; γ]

e � e′

E [e] � E [e′] e � Ω

(
if no other rule applies
and e is not a value

)

Fig. 3. Operational semantics (reduction contexts and rules)

3 Semantics

In this section, the most technical one, we present the operational semantics and
the type system of our calculus, and state the expected soundness properties.

3.1 Operational Semantics

We define a call-by-value, small-step operational semantics for our core calculus,
using the reduction contexts and reduction rules given in Figure 3, where Ω is
a special value representing a runtime error.

Of course, most of the actual semantics is hidden (the careful reader will
have noticed that applications and projections are not explicitly included in the
syntax of our expressions). Most of the work happens either in the semantics
of operators or in the matching v/p of a value v against a pattern p. Such a
matching, if it succeeds (i.e., if it does not return Ω), returns two substitutions,
one (ranged over by γ) from the capture variables of p to values and the other
(ranged over by δ) from the accumulators to values. These two substitutions are
simultaneously applied (noted ei[σ; γ]) to the expression ei of the pattern pi that
succeeds, according to a first match policy (v/p2 is evaluated only if v/p1 fails).
Before explaining how to derive the pattern matching judgments “_ � v/p � _”
(in particular, the meaning of the context on the LHS of the turnstile “�”), we
introduce a minimal set of operators: application, projections, zipper erasure,
and sequence building (we use sans-serif font for concrete operators). We only
give their reduction relation and defer their typing relation to Section 3.2.

Function application: the operator app(_,_) implements the usual β-reduction:

v, v′
app
� e[v/f ; v

′
/x] if v = μf (...)(x).e

and v, v′
app
� Ω if v is not a function. As customary, e[v/x] denotes the capture-

avoiding substitution of v for x in e, and we write e1 e2 for app(e1, e2).

Projection: the operator π1(_) (resp., π2(_)) implements the usual first (resp.,
second) projection for pairs:

(v1, v2)
πi
� vi for i ∈ {1, 2}

The application of the above operators returns Ω if the input is not a pair.
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Zipper erasure: given a zipper-annotated value, it is sometimes necessary to
remove the zipper (e.g., to embed this value into a new data structure). This is
achieved by the following remove rm(_) and deep remove drm(_) operators:

(w)δ
rm
� w

v
rm
� v if v �≡ (w)δ

w
drm
� w

(w)δ
drm
� w

(v1, v2)
drm
� (drm(v1), drm(v2))

The former operator only erases the top-level zipper (if any), while the latter
erases all zippers occurring in its input.

Sequence building: given a sequence (encoded à la Lisp) and an element, we define
the operators cons(_) and snoc(_) that insert an input value at the beginning
and at the end of the input sequence:

v, v′ cons
� (v, v′) v, ‘nil

snoc
� (v, ‘nil)

v, (v′, v′′) snoc
� (v′, snoc(v, v′′))

The applications of these operators yield Ω on other inputs.

To complete our presentation of the operational semantics, it remains to de-
scribe the semantics of pattern matching. Intuitively, when matching a value v
against a pattern p, subparts of p are recursively applied to corresponding sub-
parts of v until a base case is reached (which is always the case since all values
are finite). As usual, when a pattern variable is confronted with a subvalue, the
binding is stored as a substitution. We supplement this usual behavior of pattern
matching with two novel features. First, we add accumulators, that is, special
variables in which results are accumulated during the recursive matching. The
reason for keeping these two kinds of variables distinct is explained in Section 3.2
and is related to type inference for patterns. Second, we parameterize pattern
matching by a zipper of the current value so that it can properly update the
zipper when navigating the value (which should be of the pair form).

These novelties are reflected by the semantics of pattern matching, which is
given by the judgment σ; δ? � v/p � σ′, γ, where v is a value, p a pattern, γ a
mapping from Var(p) to values, and σ and σ′ are mappings from accumulators
to values. δ? is an optional zipper value, which is either δ or a none value � (we
consider (v)� to be v). The judgment “returns” the result of matching the value
v against the pattern p (noted v/p), that is, two substitutions: γ for capture
variables and σ′ for accumulators. Since the semantics is given compositionally,
the matching may happen on a subpart of an “outer” matched value. Therefore,
the judgment records on the LHS of the turnstile the context of the outer value
explored so far: σ stores the values already accumulated during the matching,
while δ? tracks the possible zipper of the outer value (or it is � if the outer value
has no zipper). The context is “initialized” in the two rules of the operational
semantics of match in Figure 3, by setting each accumulator of the pattern to
its initial value (function Init()) and the outer zipper to �.

Judgments for pattern matching are derived by the rules given in Figure 4.
The rules pat-acc, pat-pair-zip, and zpat-* are novel, as they extend pattern
matching with accumulators and zippers, while the others are derived from [4,9].
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( � v : t)

σ; δ? � v/t � σ,∅
pat-type

σ; δ? � v/ẋ � σ[ Op(ẋ)(vδ? , σ(ẋ))/̇x ],∅
pat-acc

σ; δ? � v/x � σ, {x �→ vδ?}
pat-var

σ; δ? � v/(x := c) � σ, {x �→ c} pat-def

σ;� � v1/p1 � σ′, γ1 σ′;� � v2/p2 � σ′′, γ2
σ;� � (v1, v2)/(p1, p2) � σ′′, γ1 ⊕ γ2

pat-pair

σ; L (w1, w2)δ · δ � w1/p1 � σ′, γ1 σ′;R (w1, w2)δ · δ � w2/p2 � σ′′, γ2

σ; δ � (w1, w2)/(p1, p2) � σ′′, γ1 ⊕ γ2
pat-pair-zip

σ; δ? � v/p1 � σ′, γ

σ; δ? � v/p1| p2 � σ′, γ
pat-or1

σ; δ? � v/p1 � Ω σ; δ? � v/p2 � σ′, γ

σ; δ? � v/p1| p2 � σ′, γ
pat-or2

σ; δ? � v/p1 � σ′, γ1 σ′; δ? � v/p2 � σ′′, γ2

σ; δ? � v/p1&&& p2 � σ′′, γ1 ⊕ γ2
pat-and

σ; δ � w/q � σ′, γ1 σ′ � δ/ϕ � σ′′, γ2
σ;� � (w)δ/(q)ϕ � σ′′, γ1 ⊕ γ2

pat-zip
( � δ : τ )

σ � δ/τ � σ,∅
zpat-type

σ;� � (w)δ/p � σ′, γ1
σ′ � δ/ϕ � σ′′, γ2 γ = γ1 ⊕ γ2

σ � L (w)δ · δ/L p · ϕ � σ′′, γ
zpat-left

σ;� � (w)δ/p � σ′, γ1
σ′ � δ/ϕ � σ′′, γ2 γ = γ1 ⊕ γ2

σ � R (w)δ · δ/R p · ϕ � σ′′, γ
zpat-right

σ � δ/ϕ1 � σ′, γ

σ � δ/ϕ1|ϕ2 � σ′, γ
zpat-or1

σ � δ/ϕ1 � Ω σ � δ/ϕ2 � σ′, γ

σ � δ/ϕ1|ϕ2 � σ′, γ
zpat-or2

(otherwise)

σ; δ? � v/p � Ω
pat-error

(otherwise)

σ � δ/ϕ � Ω
zpat-error

where γ1 ⊕ γ2
def
= {x �→ γ1(x ) | x ∈ dom(γ1)\dom(γ2)}
∪ {x �→ γ2(x ) | x ∈ dom(γ2)\dom(γ1)}
∪ {x �→ (γ1(x), γ2(x)) | x ∈ dom(γ1) ∩ dom(γ2)}

Fig. 4. Pattern matching

There are three base cases for matching: testing the input value against a type
(rule pat-type), updating the environment σ for accumulators (rule pat-acc),
or producing a substitution γ for capture variables (rules pat-var and pat-def).
Matching a pattern (p1, p2) only succeeds if the input is a pair and the matching
of each subpattern against the corresponding subvalue succeeds (rule pat-pair).
Furthermore, if the value being matched was below a zipper (i.e., the current
zipper context is a δ and not—as in pat-pair— �), we update the current zipper
context (rule pat-pair-zip); notice that in this case the matched value must be a
pair of pre-values since zipped values cannot be nested. An alternative pattern
p1|p2 first tries to match the pattern p1 and if it fails, tries the pattern p2 (rules
pat-or1 and pat-or2). The matching of a conjunction pattern p1&&& p2 succeeds if
and only if the matching of both patterns succeeds (rule pat-and). For a zipper
constraint (q)ϕ, the matching succeeds if and only if the input value is annotated
by a zipper, e.g., (w)δ , and both the matching of w with q and δ with ϕ succeed
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(rule pat-zip). It requires the zipper context to be � since we do not allow nested
zipped values. When matching w with q, we record the zipper δ into the context
so that it can be updated (in the rule pat-pair-zip) while navigating the value.

The matching of a zipper pattern ϕ against a zipper δ (judgments σ � δ/ϕ �

σ′, γ derived by the zpat-* rules) is straightforward: it succeeds if both ϕ and δ are
built using the same constructor (either L or R) and the componentwise matching
succeeds (rules zpat-left and zpat-right). If the zipper pattern is a zipper type,
the matching tests the input zipper against the zipper type (rule zpat-type),
and alternative zipper patterns ϕ1|ϕ2 follow the same first match policy as
alternative patterns. If none of the rules is applicable, the matching fails (rules
pat-error and zpat-error). Note that initially the environment σ contains Init(ẋ)
for each accumulator ẋ in Acc(p) (rules for match in Figure 3).

Intuitively, γ is built when returning from the recursive descent in p, while σ is
built using a fold-like computation. It is the typing of such fold-like computations
that justifies the addition of accumulators (instead of relying on plain functions).
But before presenting the type system of the language, we illustrate the behavior
of pattern matching by some examples.

Example 4. Let v ≡ (2, (‘true, (3, ‘nil))), Init(ẋ ) = ‘nil, Op(ẋ ) = cons, and
σ ≡ {ẋ �→ ‘nil}. Then, we have the following matchings:
1. σ;� � v/(int, (x ,_)) � ∅, {x �→ ‘true}
2. σ;� � v/μX.((x &&& int|_, X)|(x := ‘nil)) � ∅, {x �→ (2, (3, ‘nil))}
3. σ;� � v/μX.((ẋ , X)|‘nil) � {ẋ �→ (3, (‘true, (2, ‘nil)))},∅

In the first case, the input v (the sequence [2 ‘true 3] encoded à la Lisp)
is matched against a pattern that checks if the first element has type int (rule
pat-type), binds the second element to x (rule pat-var), and ignores the rest of
the list (rule pat-type, since the anonymous variable “_” is just an alias for �).

The second case is more involved since the pattern is recursively defined.
Because of the first match policy of rule pat-or1, the product part of the pattern
is matched recursively until the atom ‘nil is reached. When that is the case, the
variable x is bound to a default value ‘nil. When returning from this recursive
matching, since x occurs both on the left and on the right of the product (in
x &&& int and in X itself), a pair of the binding found in each part is formed (third
set in the definition of ⊕ in Figure 4), thus yielding a mapping {x �→ (3, ‘nil)}.
Returning again from the recursive call, only the “_” part of the pattern matches
the input ‘true (since it is not of type int, the intersection test fails). Therefore,
the binding for this step is only the binding for the right part (second case of
the definition of ⊕). Lastly, when reaching the top-level pair, x &&& int matches 2
and a pair is formed from this binding and the one found in the recursive call,
yielding the final binding {x �→ (2, (3, ‘nil))}.

The third case is more intuitive. The pattern just recurses the input value,
calling the accumulation function for ẋ along the way for each value against
which it is confronted. Since the operator associated with ẋ is cons (which builds
a pair of its two arguments) and the initial value is ‘nil, this has the effect of
computing the reversal of the list.
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Note the key difference between the second and third case. In both cases,
the structure of the pattern (and the input) dictates the traversal, but in the
second case, it also dictates how the binding is built (if v was a tree and not
a list, the binding for x would also be a tree in the second case). In the third
case, the way the binding is built is defined by the semantics of the operator
and independent of the input. This allows us to reverse sequences or flatten tree
structures, both of which are operations that escape the expressiveness of regular
tree languages/regular patterns, but which are both necessary to encode XPath.

3.2 Type System

The main difficulty in devising the type system is to type pattern matching and,
more specifically, to infer the types of the accumulators occurring in patterns.

Definition 5 (Accepted input of an operator). The accepted input of an
operator (o, n,

o
�,

o→) is the set �(o), defined as:
�(o) = {(v1, ..., vn)∈Vn | (((v1, ..., vn)

o
�e) ∧ (e�∗v)) ⇒ v �=Ω}

Definition 6 (Exact input). An operator o has an exact input if and only if
�(o) is (the interpretation of) a type.

We can now state a first soundness theorem, which characterizes the set of all
values that make a given pattern succeed:

Theorem 7 (Accepted types). Let p be a pattern such that for every ẋ
in Acc(p), Op(ẋ ) has an exact input. Then, the set of all values v such that
{ẋ �→ Init(ẋ ) | ẋ ∈ Acc(p)};� � v/p �� Ω is a type. We call this set the accepted
type of p and denote it by �p�.

We next define the type system for our core calculus, in the form of a judgment
Γ � e : t which states that in a typing environment Γ (i.e., a mapping from
variables and accumulators to types) an expression e has type t. This judgment
is derived by the set of rules given in Figure 10 in Appendix. Here, we show only
the most important rules, namely those for accumulators and zippers:

Γ � ẋ : Γ (ẋ)

� w : t � δ : τ t ≤ �NZ

Γ � (w)δ : (t)τ

� e : t t ≤ �NZ

Γ � (e)• : (t)•

which rely on an auxiliary judgment � δ : τ stating that a zipper δ has zipper
type τ . The rule for operators is:

∀i = 1..no, Γ � ei : ti t1, . . . , tno

o→ t

Γ � o(e1, . . . , eno) : t
for o ∈ O

which types operators using their associated typing function. Last but not least,
the rule to type pattern matching expressions is:

t ≤ �p1� ∨ �p2�
t1 ≡ t ∧ �p1� t2 ≡ t ∧ ¬�p1�
Σi ≡ {ẋ �→ Init(ẋ ) | ẋ ∈ Acc(pi)}

Γ � e : t
Γi ≡ � ti/pi Γ ′

i ≡ Σi;� ti�pi
Γ ∪ Γi ∪ Γ ′

i � ei : t
′
i

Γ � match e with p1 → e1| p2 → e2 :
∨

{i | ti ���}
t′i

(i = 1, 2)
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This rule requires that the type t of the matched expression is smaller than
�p1� ∨ �p2� (i.e., the set of all values accepted by any of the two patterns),
that is, that the matching is exhaustive. Then, it accounts for the first match
policy by checking e1 in an environment inferred from values produced by e and
that match p1 (t1 ≡ t ∧ �p1�) and by checking e2 in an environment inferred
from values produced by e and that do not match p1 (t2 ≡ t ∧ ¬�p1�). If one of
these branches is unused (i.e., if ti � � where � denotes semantic equivalence,
that is, ≤ ∩ ≥), then its type does not contribute to the type of the whole
expression (cf. §4.1 of [4] to see why, in general, this must not yield an “unused
case” error). Each right-hand side ei is typed in an environment enriched with the
types for capture variables (computed by � ti/pi) and the types for accumulators
(computed by Σi;� ti�pi). While the latter is specific to our calculus, the former
is standard except it is parameterized by a zipper type as for the semantics
of pattern matching (its precise computation is described in [9] and already
implemented in the �Duce compiler except the zipper-related part: see Figure 11
in Appendix for the details). As before, we write τ? to denote an optional zipper
type, i.e., either τ or a none type �, and consider (t)� to be t.

To compute the types of the accumulators of a pattern p when matched against
a type t, we first initialize an environment Σ by associating each accumulator
ẋ occurring in p with the singleton type for its initial value Init(ẋ) (Σi ≡ {ẋ �→
Init(ẋ) | ẋ ∈ Acc(pi)}). The type environment is then computed by generating a
set of mutually recursive equations where the important ones are (see Figure 12
in Appendix for the complete definition):

Σ; τ? t�ẋ = Σ[s/̇x ] if (t)τ? , Σ(ẋ)
Op(ẋ)→ s

Σ; τ? t�p1| p2 = Σ; τ? t�p1 if t ≤ �p1�

Σ; τ? t�p1| p2 = Σ; τ? t�p2 if t ≤ ¬�p1�

Σ; τ? t�p1| p2 = (Σ; τ? (t ∧ �p1�)�p1)
⊔
(Σ1; τ

? (t ∧ ¬�p1�)�p2) otherwise

When an accumulator ẋ is matched against a type t, the type of the accumulator
is updated in Σ, by applying the typing function of the operator associated with
ẋ to the type (t)τ? and the type computed thus far for ẋ , namely Σ(ẋ). The other
equations recursively apply the matching on the subcomponents while updating
the zipper type argument τ? and merge the results using the “�” operation. This
operation implements the fact that if an accumulator ẋ has type t1 in a subpart
of a pattern p and type t2 in another subpart (i.e., both subparts match), then
the type of ẋ is the union t1 ∨ t2.

The equations for computing the type environment for accumulators might be
not well-founded. Both patterns and types are possibly infinite (regular) terms
and therefore one has to guarantee that the set of generated equations is finite.
This depends on the typing of the operators used for the accumulators. Before
stating the termination condition (as well as the soundness properties of the type
system), we give the typing functions for the operators we defined earlier.
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Function application: it is typed by computing the minimum type satisfying
the following subtyping relation: s, t

app→ min{t′ | s ≤ t → t′}, provided that
s ≤ t → � (this min always exists and is computable: see [10]).

Projection: to type the first and second projections, we use the property that
if t ≤ � × �, then t can be decomposed in a finite union of product types (we
use Πi to denote the set of the i-th projections of these types: see Lemma 19 in
Appendix B for the formal definition): t

πi→ ∨
s∈Πi(t)

s, provided that t ≤ �×�.

Zipper erasure: the top-level erasure rm→ simply removes the top-level zipper
type annotation, while the deep erasure drm→ is typed by recursively removing
the zipper annotations from the input type. Their precise definition can be found
in Appendix B.4.

Sequence building: it is typed in the following way:

t1, ‘nil
cons→ μX.((t1 ×X) ∨ ‘nil)

t1, μX.((t2 ×X) ∨ ‘nil)
cons→ μX.(((t1 ∨ t2)×X) ∨ ‘nil)

t1, ‘nil
snoc→ μX.((t1 ×X) ∨ ‘nil)

t1, μX.((t2 ×X) ∨ ‘nil)
snoc→ μX.(((t1 ∨ t2)×X) ∨ ‘nil)

Notice that the output types are approximations: the operator “cons(_)” is less
precise than returning a pair of two values since, for instance, it approximates
any sequence type by an infinite one (meaning that any information on the length
of the sequence is lost) and approximates the type of all the elements by a single
type which is the union of all the elements (meaning that the information on the
order of elements is lost). As we show next, this loss of precision is instrumental
in typing accumulators and therefore pattern matching.

Example 8. Consider the matching of a pattern p against a value v of type t:

p ≡ μX.((ẋ &&&(‘a|‘b))|‘nil|(X,X))
v ≡ (‘a, ((‘a, (‘nil, (‘b, ‘nil))), (‘b, ‘nil)))
t ≡ μY.((‘a× (Y × (‘b× ‘nil))) ∨ ‘nil)

where Op(ẋ ) = snoc and Init(ẋ ) = ‘nil. We have the following matching and
type environment:

{ẋ �→ ‘nil};� � v/p � {ẋ �→ (‘a, (‘a, (‘b, (‘b, ‘nil))))},∅
{ẋ �→ ‘nil};� t�p = {ẋ �→ μZ.(((‘a ∨ ‘b)× Z) ∨ ‘nil)}

Intuitively, with the usual sequence notation (precisely defined in Section 4),
v is nothing but the nested sequence [[[‘a [[[ ‘a [[[ ]]] ‘b ]]] ‘b ]]] and pattern matching
just flattens the input sequence, binding ẋ to [[[ ‘a ‘a ‘b ‘b ]]]. The type environ-
ment for ẋ is computed by recursively matching each product type in t with
the pattern (X,X), the singleton type ‘a or ‘b with ẋ &&&(‘a|‘b), and ‘nil
with ‘nil. Since the operator associated with ẋ is snoc and the initial type is
‘nil, when ẋ is matched against ‘a for the first time, its type is updated to
μZ.((‘a× Z) ∨ ‘nil). Then, when ẋ is matched against ‘b, its type is updated



A Core Calculus for XQuery 3.0 247

to the final output type which is the encoding of [[[ (‘a ∨ ‘b)∗ ]]]. Here, the approx-
imation in the typing function for snoc is important because the exact type of ẋ
is the union for n∈� of [[[ ‘an ‘bn ]]], that is, the sequences of ‘a’s followed by the
same number of ‘b’s, which is beyond the expressivity of regular tree languages.

We conclude this section with statements for type soundness of our calculus
(see Appendix C for more details).

Definition 9 (Sound operator). An operator (o, n,
o
�,

o→) is sound if and
only if ∀v1, . . . , vno ∈ V such that � v1 : t1, . . . , � vno : tno , if t1, . . . , tno

o→ s

and v1, . . . , vno

o
� e then � e : s.

Theorem 10 (Type preservation). If all operators in the language are sound,
then typing is preserved by reduction, that is, if e � e′ and � e : t, then � e′ : t.
In particular, e′ �= Ω.

Theorem 11. The operators app, π1, π2, drm, rm, cons, and snoc are sound.

4 Surface Language

In this section, we define the “surface” language, which extends our core calculus
with several constructs:

• Sequence expressions, regular expression types and patterns
• Sequence concatenation and iteration
• XML types, XML document fragment expressions
• XPath-like patterns

While most of these traits are syntactic sugar or straightforward extensions, we
took special care in their design so that: (i) they cover various aspects of XML
programming and (ii) they are expressive enough to encode a large fragment of
XQuery 3.0.

Sequences: we first add sequences to expressions

e ::= . . . | [[[ e · · · e ]]]

where a sequence expression denotes its encoding à la Lisp, that is, [[[ e1 · · · en ]]]
is syntactic sugar for (e1, (. . ., (en, ‘nil))).

Regular expression types and patterns: regular expressions over types and pat-
terns are defined as

(Regexp. over types) R ::= t | R|R | RR | R∗ | ε
(Regexp. over patterns) r ::= p | r|r | r r | r∗ | ε

with the usual syntactic sugar: R? ≡ R|ε and R+ ≡ RR∗ (likewise for regexps
on patterns). We then extend the grammar of types and patterns as follows:

t ::= . . . | [[[R ]]] p ::= . . . | [[[ r ]]]

Regular expression types are encoded using recursive types (similarly for reg-
ular expression patterns). For instance, [[[ int∗ bool? ]]] can be rewritten into the
recursive type μX.‘nil ∨ (bool× ‘nil) ∨ (int×X).
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Sequence concatenation is added to the language in the form of a binary infix
operator _@_ defined by:

‘nil, v
@
� v

(v1, v2), v
@
� (v1, v2 @ v)

[[[R1 ]]], [[[R2 ]]]
@→ [[[R1R2 ]]]

Note that this operator is sound but cannot be used to accumulate in patterns
(since it does not guarantee the termination of type environment computation).
However, it has an exact typing.

Sequence iteration is added to iterate transformations over sequences without
resorting to recursive functions. This is done by a family of “transform”-like
operators trsp1,p2,e1,e2(_), indexed by the patterns and expressions that form
the branches of the transformation (we omit trs’s indexes in trs

� ):

‘nil
trs
� ‘nil

(v1, v2)
trs
� (match v1 with p1 → e1| p2 → e2) @ trsp1,p2,e1,e2(v2)

Intuitively, the construct “transform e with p1 → e1| p2 → e2” iterates all the
“branches” over each element of the sequence e. Each branch may return a se-
quence of results which is concatenated to the final result (in particular, a branch
may return “‘nil” to delete elements that match a particular pattern).

XML types, patterns, and document fragments: XML types (and thus patterns)
can be represented as a pair of the type of the label and a sequence type rep-
resenting the sequence of children, annotated by the zipper that denotes the
position of document fragment of that type. We denote by <t1>t2τ the type
(t1 × t2)τ , where t1 ≤ �basic, t2 ≤ [[[ �∗ ]]], and τ is a zipper type. We simply write
<t1>t2 when τ = 
, that is, when we do not have (or do not require) any in-
formation on the zipper type. The invariant that XML values are always given
with respect to a zipper must be maintained at the level of expressions. This is
ensured by extending the syntax of expressions with the construct:

e ::= . . . | <e>e

where <e1>e2 is syntactic sugar for (e1, drm(e2))•. The reason for this encoding
is best understood with the following example:

Example 12. Consider the code:

1 match v with
2 ( <a>[[[ _ x _∗ ]]] )� -> <b>[[[ x ]]]
3 | _ -> <c>[[[ ]]]

According to our definition of pattern matching, x is bound to the second XML
child of v and retains its zipper (in the right-hand side, we could navigate from
x up to v or even above if v is not the root). However, when x is embedded
into another document fragment, the zipper must be erased so that accessing
the element associated with x in the new value can create an appropriate zipper
(with respect to its new root <b>[[[ . . . ]]]).
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self0{x | t} ≡ ẋ &&& t |

self{x | t} ≡ (self0{x | t})�
child{x | t} ≡ (< >[[[ (self0{x | t})∗ ]]] | )�

desc-or-self0{x | t} ≡ μX.(self0{x | t}&&& < >[[[X∗ ]]]) |
desc-or-self{x | t} ≡ (desc-or-self0{x | t})�

desc{x | t} ≡ (< >[[[ (desc-or-self0{x | t})∗ ]]] | )�
foll-sibling{x | t} ≡ ( )L ( , [[[ (self0{x | t})∗ ]]])�·�

parent{y | t} ≡ ( )L · μX.((R (ẏ &&& t| )�· (L ·�|•)) | R ·X) |

prec-sibling{y | t} ≡ ( )L · μX.(R (ẏ &&& t, )�·X) | (R ·(L ·�|•)) |

anc{y | t} ≡ ( )L · μX.μY.((R (ẏ &&& t| )�·(L ·X|•)) | R ·Y ) |

anc-or-self{y | t} ≡ (self{y | t}&&& anc{y | t}) |

where Op(ẋ ) = snoc, Init(ẋ) = ‘nil, Op(ẏ) = cons, and Init(ẏ) = ‘nil

Fig. 5. Encoding of axis patterns

XPath-like patterns are one of the main motivations for this work. The syntax
of patterns is extended as follows:

(Patterns) p ::= . . . | axis{x | t}
(Axes) axis ::= self | child | desc | desc-or-self | foll-sibling

| parent | anc | anc-or-self | prec-sibling
The semantics of axis{x | t} is to capture in x all fragments of the matched docu-
ment along the axis that have type t. We show in Appendix D how the remaining
two axes (following and preceding) as well as “multi-step” XPath expressions can
be compiled into this simpler form. We encode axis patterns directly using recur-
sive patterns and accumulators, as described in Figure 5. First, we remark that
each pattern has a default branch “ . . .| ” which implements the fact that even if
a pattern fails, the value is still accepted, but the default value ‘nil of the accu-
mulator is returned. The so-called “downward” axes —self, child, desc-or-self, and
desc— are straightforward. For self, the encoding checks that the matched value
has type t using the auxiliary pattern self0, and that the value is annotated with
a zipper using the zipper type annotation (_)�. The child axis is encoded by
iterating self0 on every child element of the matched value. The recursive axis
desc-or-self is encoded using the auxiliary pattern desc-or-self0 which matches
the root of the current element (using self0) and is recursively applied to each
element of the sequence. Note the double recursion: vertically in the tree using a
recursive binder and horizontally at a given level using a star. The non-reflexive
variant desc evaluates desc-or-self0 on every child element of the input.

The other axes heavily rely on the binary encoding of XML values and are
better explained on an example. Consider the XML document and its binary
tree representation given in Figure 6. The following siblings of a node (e.g., <c>)
are reachable by inspecting the first element of the zipper, which is necessarily
an L one. This parent is the pair representing the sequence whose tail is the
sequence of following siblings (R3 and R2 in the figure). Applying the self{x | t}
axis on each element of the tail therefore filters the following siblings that are
sought (<d> and <e> in the figure). The parent axis is more involved. Consider
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<>

a
L4

( , )

<>

b

( , )

<>

c

‘nil

( , )

<>

d

‘nil

( , )

<>

e

( , )

<>

f

‘nil
L1

‘nil
R1L2

‘nil
R2R3R4L3

‘nil
R5

Fig. 6. A binary tree representation of an XML document
doc = <a>[ <b>[ <c>[ ] <d>[ ] <e>[ <f>[ ] ] ] ]

for instance node <e>. Its parent in the XML tree can be found in the zipper
associated with <e>. It is the last R component of the zipper before the next
L component (in the figure, the zipper of <e> starts with L2, then contains its
previous siblings reachable by R2 and R3, and lastly its parent reachable by R4

(which points to node <b>). The encoding of the parent axis reproduces this walk
using a recursive zipper pattern, whose base case is the last R before the next L,
or the last R before the root (which has the empty zipper •). The prec-sibling axis
uses a similar method and collects every node reachable by Rs and stops before
the parent node (again, for node <e>, the preceding siblings are reached by R2

and R3). The anc axis simply iterates the parent axis recursively until there is
no L zipper anymore (i.e., until the root of the document has been reached). In
the example, starting from node <f>, the zippers that denote the ancestors are
the ones starting with an R, just before L2, L3, and L4 which is the root of the
document. Lastly, anc-or-self is simply a combination of anc and self.

For space reasons, the encoding of XPath into the navigational patterns is
given in Appendix D. We just stress that, with that encoding, the �Duce version
of the “get_links” function of the introduction becomes as compact as in XQuery:

let get_links (page: <_>_) (print: <a>_ -> <a>_) : [ <a>_ * ] =
transform page/desc::a[not(anc::b)] with x -> [ (print x) ]

As a final remark, one may notice that patterns of forward axes use snoc (i.e.,
they build the sequence of the results in order), while reverse axes use cons
(thus reversing the results). The reason for this difference is to implement the
semantics of XPath axis steps which return elements in document order.

5 XQuery 3.0

This section shows that our surface language can be used as a compilation target
for XQuery 3.0 programs. We proceed in two steps. First, we extend the XQuery
1.0 Core fragment and XQH defined by Benedikt and Vu [3] to our own XQuery
3.0 Core, which we call XQ+

H . As with its 1.0 counterpart, XQ+
H

1. can express all navigational XQuery programs, and
2. explicitly separates navigational aspects from data value ones.
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query ::= () | c | <l>query</l> | query, query | x | x/axis::test
| for x in query return query | some x in query statisfies query

| query(query, . . . ,query) | fun x1 : t1 , . . . , xn : tn as t. query

| switch query
case c return query
default return query

| typeswitch query
case t as x return query
default return query

test ::= node() | text() | l (node test)

where t ranges over types and l ranges over element names.

Fig. 7. Syntax of XQ+
H

We later use the above separation in the translation to straightforwardly map
navigational XPath expressions into extended �Duce pattern matching, and to
encode data value operations (for which there can be no precise typing) by built-
in �Duce functions.

5.1 XQuery 3.0 Core

Figure 7 shows the definition of XQ+
H , an extension of XQH. To the best of our

knowledge, XQH was the first work to propose a “Core” fragment of XQuery
which abstracts away most of the idiosyncrasies of the actual specification while
retaining essential features (e.g., path navigation). XQ+

H differs from XQH by the
last three productions (in the yellow/gray box): it extends XQH with type and
value cases (described informally in the introduction) and with type annotations
on functions (which are only optional in the standard). It is well known (e.g.,
see [24]) that full XPath expressions can be encoded using the XQuery fragment
in Figure 7 (see Appendix E for an illustration).

Our translation of XQuery 3.0, defined in Figure 8, thus focuses on XQ+
H and

has following characteristics. If one considers the “typed” version of the standard,
that is, XQuery programs where function declarations have an explicit signature,
then the translation to our surface language (i) provides a formal semantics and
a typechecking algorithm for XQuery and (ii) enjoys the soundness property
that the original XQuery programs do not yield runtime errors. In the present
work, we assume that the type algebra of XQuery is the one of �Duce, rather
than XMLSchema. Both share regular expression types for which subtyping is
implemented as the inclusion of languages, but XMLSchema also features nom-
inal subtyping. The extension of �Duce types with nominal subtyping is beyond
the scope of this work and is left as future work.

In XQuery, all values are sequences: the constant “42” is considered as the
singleton sequence that contains the element “42”. As a consequence, there are
only “flat” sequences in XQuery and the only way to create nested data structures
is to use XML constructs. The difficulty for our translation is thus twofold:
(i) it needs to embed/extract values explicitly into/from sequences and (ii) it
also needs to disambiguate types: an XQuery function that takes an integer as
argument can also be applied to a sequence containing only one integer.
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�()�X� = ‘nil

�c�X� = [[[ c ]]]

�<l>q</l>�X� = [[[ <l>�q�X� ]]]

�q1, q2�X� = �q1�X� @ �q2�X�
�$x �X� = x

�

�
switch q1
case c return q2
default return q3

�

�

X�

=
match �q1�X� with
[[[ c ]]] → �q2�X�

| _ → �q3�X��

�
typeswitch q1
case t as $x return q2
default return q3

�

�

X�

=
match �q1�X� with
x &&& seq(t) → �q2�X�

|_ → �q3�X�

�$x/axis::test�X� = transform x with axis{y | t(test)} → y

�for $x in q1 return q2�X� = transform �q1�X� with x → �q2�X�
�some $x in q1 statisfies q2�X� = match ( transform �q1�X� with

x → match �q2�X� with
[[[ ‘true ]]] → [[[ ‘dummy ]]]

| [[[ ‘false ]]] → [[[ ]]] )
with ‘nil → [[[ ‘false ]]] | _ → [[[ ‘true ]]]

�fun $x1 : t1 , . . . , $xn : tn as t. q�X� = μ_seq(t1)×...×seq(tn)→seq(t)(x0).
match x0 with (x1, (. . . , xn)) → �q�X�

�q(q1, . . . , qn)�X� = �q�X� (�q1�X� , (. . . , �qn�X�))

where seq(t) ≡ (t ∧ [[[�∗ ]]]) ∨ ([[[ t \ [[[�∗ ]]] ]]])
and t(node()) ≡ �, t(text()) ≡ String, t(l) ≡ <l>�

Fig. 8. Translation of XQ+
H into �Duce

The translation is defined by a function �_�X� that converts an XQuery query
into a �Duce expression. It is straightforward and ensures that the result of a
translation �q�X� always has a sequence type. We assume that both languages
have the same set of variables and constants. An empty sequence is translated
into the atom ‘nil, a constant is translated into a singleton sequence contain-
ing that constant, and similarly for XML fragments. The sequence operator is
translated into concatenation. Variables do not require any special treatment.
An XPath navigation step is translated into the corresponding navigational pat-
tern, whereas “for in” loops are encoded similarly using the transform construct
(in XQuery, an XPath query applied to a sequence of elements is the concatena-
tion of the individual applications). The “switch” construct is directly translated
into a “match with” construct. The “typeswitch” construct works in a similar way
but special care must be taken with respect to the type t that is tested. Indeed,
if t is a sequence type, then its translation returns the sequence type, but if
t is something else (say int), then it must be embedded into a sequence type.
Interestingly, this test can be encoded as the �Duce type seq(t) which keeps
the part of t that is a sequence unchanged while embedding the part of t that
is not a sequence (namely t \ [[[ �∗ ]]]) into a sequence type (i.e., [[[ t \ [[[ �∗ ]]] ]]]). The
“some $x in q1 statisfies q2” expression iterates over the sequence that is the result
of the translation of q1, binding variable x in turn to each element, and evaluates
(the translation of) q2 in this context. If the evaluation of q2 yields the single-
ton sequence true, then we return a dummy non-empty sequence; otherwise,
we return the empty sequence. If the whole transform yields an empty sequence,
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Γ �xq q : s s ≤ t

Γ �xq q : t

Γ �xq q1 : [[[ s∗ ]]] Γ, x : [[[ s ]]] �xq q2 : t t ≤ [[[�∗ ]]]
Γ �xq for $x in q1 return q2 : t

{ẏ �→‘nil};� s�axis{y | t(test)} = {ẏ �→ t}
Γ �xq x : [[[ s∗ ]]] t ≤ [[[�∗ ]]] t′ = min{t′ | t ≤ [[[ t′∗ ]]]}

Γ �xq $x/axis::test : [[[ t′∗ ]]] typ-path

Γ �xq q : t

{
t �≤ ¬[[[ c ]]] ⇒ Γ �xq q1 : s
t �≤ [[[ c ]]] ⇒ Γ �xq q2 : s

Γ �xq

switch q
case c return q1
default return q2

: s

t1 = s ∧ seq(t) Γ, x : t1 �xq q1 : t′1
Γ �xq q : s t2 = s ∧ ¬seq(t) Γ �xq q2 : t′2

Γ �xq

typeswitch q
case t as $x return q1
default return q2

:
∨

{i | ti ���} t
′
i

Γ �xq q1 : [[[ s∗ ]]] Γ, x : [[[ s ]]] �xq q2 : [[[ bool ]]]

Γ �xq some $x in q1 statisfies q2 : [[[ bool ]]]

Γ, x1 : seq(t1), · · · , xn : seq(tn) �xq q : seq(t)

Γ �xq fun $x1 : t1 , . . . , $xn : tn as t. q : seq(t1)× · · · × seq(tn) → seq(t)

Γ �xq q : t1 × · · · × tn → t Γ �xq qi : ti (i = 1..n)

Γ �xq q(q, . . . , q) : t

Fig. 9. Typing rules for XQ+
H

it means that none of the iterated elements matched satisfied the predicate q2
and therefore the whole expression evaluates to the singleton false, otherwise
it evaluates to the singleton true. Abstractions are translated into �Duce func-
tions, and the same treatment of “sequencing” the type is applied to the types of
the arguments and type of the result. Lastly, application is translated by building
nested pairs with the arguments before applying the function.

Not only does this translation ensure soundness of the original XQuery 3.0
programs, it also turns �Duce into a sandbox where one can experiment various
typing features that can be readily back-ported to XQuery afterwards.

5.2 Toward and beyond XQuery 3.0

We now discuss the salient features and address some shortcomings of XQ+
H . First

and foremost, we can define a precise and sound type system directly on XQ+
H

as shown in Figure 9 (standard typing rules are omitted and for the complete
definition, see Appendix E). While most constructs are typed straightforwardly
(the typing rules are deduced from the translation of XQ+

H into �Duce) it is in-
teresting to see that the rules match those defined in XQuery Static Semantics
specification [24] (with the already mentioned difference that we use �Duce types
instead of XMLSchema). Two aspects however diverge from the standard. Our
use of �Duce’s semantic subtyping (rather than XMLSchema’s nominal subtyp-
ing), and the rule typ-path where we use the formal developments of Section 3
to provide a precise typing rule for XPath navigation. Deriving the typing rules
from our translation allows us to state the following theorem:

Theorem 13. If Γ �xq query : t, then Γ � �query�X� : t.
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A corollary of this theorem is the soundness of the XQ+
H type system (since the

translation of a well-typed XQ+
H program yields a well-typed �Duce program

with the same type).
While the XQ+

H fragment we present here is already very expressive, it does
not account for all features of XQuery. For instance, it does not feature data
value comparison or sorting (i.e., the order by construct of XQuery) nor does
it account for built-in functions such as position(), node identifiers, and so
on. However, it is known that features such as data value comparison make
typechecking undecidable (see for instance [1]). We argue that the main point
of this fragment is to cleanly separate structural path navigation from other
data value tests for which we can add built-in operators and functions, with an
hardcoded, ad-hoc typing rule.

Lastly, one may argue that, in practice, XQuery database engines do not
rely on XQuery Core for evaluation but rather focus on evaluating efficiently
large (multi-step, multi-predicate) XPath expressions in one go and, therefore,
that normalizing XQuery programs into XQ+

H programs and then translating the
latter into �Duce programs may seem overly naive. We show in Appendix D
that XPath expressions that are purely navigational can be rewritten in a single
pattern of the form: axis{x | t} which can then be evaluated very efficiently
(that is, without performing the unneeded extra traversals of the document that
a single step approach would incur).

6 Related Work and Conclusion

Our work tackles several aspects of XML programming, the salient being: (i)
encoding of XPath or XPath-like expressions (including reverse axes) into regular
types and patterns, (ii) recursive tree transformation using accumulators and
their typing, and (iii) type systems and typechecking algorithms for XQuery.

Regarding XPath and pattern matching, the work closest to ours is the im-
plementation of paths as patterns in XTatic. XTatic [11] is an object-oriented
language featuring XDuce regular expression types and patterns [16,17]. In [12],
Gapeyev and Pierce alter XDuce’s pattern matching semantics and encode a
fragment of XPath as patterns. The main difference with our work is that they
use a hard-coded all-match semantics (a variable can be bound to several sub-
terms) to encode the accumulations of recursive axes, which are restricted by
their data model to the “child” and “descendant” axes. Another attempt to use
path navigation in a functional language can be found in [19] where XPath-like
combinators are added to Haskell. Again, only child or descendant-like naviga-
tion is supported and typing is done in the setting of Haskell which cannot readily
be applied to XML typing (results are returned as homogeneous sequences).

Our use of accumulators is reminiscent of Macro Tree Transducers (MTTs,
[8]), that is, tree transducers (tree automata producing an output) that can also
accumulate part of the input and copy it in the output. It is well known that
given an input regular tree language, the type of the accumulators and results
may not be regular. Exact typing may be done in the form of backward type
inference, where the output type is given and a largest input type is inferred [20].
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It would be interesting to use the backward approach to type our accumulators
without the approximation introduced for “cons” for instance.

For what concerns XQuery and XPath, several complementary works are of
interest. First, the work of Genevès et al. which encodes XPath and XQuery in
the μ-calculus ([14,15] where zippers to manage XPath reverse axes were first
introduced) supports our claim. Adding path expressions at the level of types
is not more expensive: subtyping (or equivalently satisfiability of particular for-
mulæ of the μ-calculus which are equivalent to regular tree languages) remains
EXPTIME, even with upward paths (or in our case, zipper types). In contrast,
typing path expressions and more generally XQuery programs is still a challeng-
ing topic. While the W3C’s formal semantics of XQuery [24] gives a polynomial
time typechecking algorithm for XQuery (in the absence of nested “let” or “for”
constructs), it remains far too imprecise (in particular, reverse axes are left un-
typed). Recently, Genevès et al. [13] also studied a problem of typing reverse
axes by using regular expressions of μ-calculus formulæ as types, which they call
focused-tree types. Since, as our zipped types, focused-tree types can describe
both the type of the current node and its context, their type system also gives
a precise type for reverse axis expressions. However, while focused-tree types
are more concise than zipper types, it is difficult to type construction of a new
XML document, and thus their type system requires an explicit type annotation
for each XML element. Furthermore, their type system does not feature arrow
types. That said, it will be quite interesting to combine their approach with ours.

We are currently implementing axis patterns and XPath expressions on top
of the �Duce compiler. Future work includes extensions to other XQuery con-
structs as well as XMLSchema, the addition of aggregate functions by associating
accumulators to specific operators, the inclusion of navigational expressions in
types so as to exploit the full expressivity of our zipped types (e.g., to type
functions that work on the ancestors of their arguments), and the application of
the polymorphic type system of [5,6] to both XQuery and navigational �Duce
so that for instance the function pretty defined in the introduction can be given
the following, far more precise intersection of two arrow types:

(<a class="style1" href=β ..>γ -> <a href=β>[<b>γ])
& (α\<a class="style1" href=_ ..>_ -> α\<a class="style1" href=_ ..>_ )

This type (where α, β, and γ denote universally quantified type variables) pre-
cisely describes, by the arrow type on the first line, the transformation of the
sought links, and states, by the arrow on the second line, that in all the other
cases (i.e., for every type α different from the sought link) it returns the same
type as the input. This must be compared with the corresponding type in Fig-
ure 1, where the types of the attribute href, of the content of the a element, and
above all of any other value not matched by the first branch are not preserved.
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