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Abstract. Multi-party contract signing (MPCS) protocols allow a group
of signers to exchange signatures on a predefined contract. Previous ap-
proaches considered either completely linear protocols or fully parallel
broadcasting protocols. We introduce the new class of DAG MPCS pro-
tocols which combines parallel and linear execution and allows for paral-
lelism even within a signer role. This generalization is useful in practical
applications where the set of signers has a hierarchical structure, such as
chaining of service level agreements and subcontracting.

Our novel DAG MPCS protocols are represented by directed acyclic
graphs and equipped with a labeled transition system semantics. We
define the notion of abort-chaining sequences and prove that a DAG
MPCS protocol satisfies fairness if and only if it does not have an abort-
chaining sequence. We exhibit several examples of optimistic fair DAG
MPCS protocols. The fairness of these protocols follows from our theory
and has additionally been verified with our automated tool.

We define two complexity measures for DAG MPCS protocols, related
to execution time and total number of messages exchanged. We prove
lower bounds for fair DAG MPCS protocols in terms of these measures.

1 Introduction

A multi-party contract signing (MPCS) protocol is a communication protocol
that allows a number of parties to sign a digital contract. The need for MPCS
protocols arises, for instance, in the context of service level agreements (SLAs)
and in supply chain contracting. In these domains (electronic) contract negotia-
tions and signing are still mainly bilateral. Instead of negotiating and signing one
multi-party contract, in practice, multiple bilateral negotiations are conducted
in parallel [20]. Because negotiations can fail, parties may end up with just a
subset of the pursued bilateral contracts. If a party is missing contracts with
providers or subcontractors, it faces an overcommitment problem. If contracts
with customers are missing, it has an overpurchasing problem [8]. Both problems
can be prevented by using fair multi-party contract signing protocols.

Existing optimistic MPCS protocols come in two flavors. Linear MPCS proto-
cols require that at any point in time at most one signer has enough information
to proceed in his role by sending messages to other signers. Broadcast MPCS
protocols specify a number of communication rounds in each of which all signers
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send or broadcast messages to each other. However, neither of the two kinds of
protocols is suitable for SLAs or supply chain contracting. The reason is that in
both domains, the set of contractors typically has a hierarchical structure, con-
sisting of main contractors and levels of subcontractors. It is undesirable (and
perhaps even infeasible) for the main contracting partners and their subcon-
tractors to directly communicate with another partner’s subcontractors. This
restriction immediately excludes broadcast protocols as potential solutions and
forces linear protocols to be impractically large.

In this paper we introduce MPCS protocol specifications that support arbi-
trary combinations of linear and parallel actions, even within a protocol role.
The message flow of such protocols can be specified as a directed acyclic graph
(DAG) and we therefore refer to them as DAG MPCS protocols.

A central requirement for MPCS protocols is fairness. This means that either
all honest signers get all signatures on the negotiated contract or nobody gets the
honest signers’ signatures. It is well known that in asynchronous communication
networks, a deterministic MPCS protocol requires a trusted third party (TTP)
to achieve fairness [5]. Optimistic MPCS protocols [1] involve the TTP only when
conflicts or faults occur and thus prevent the TTP from becoming a bottleneck.
We focus on optimistic protocols in this paper.

DAGMPCS protocols not only allow for better solutions to the subcontracting
problem, but also have further advantages over linear and broadcast MPCS
protocols and we design three novel MPCS protocols that demonstrate this.
One such advantage concerns communication complexity. Linear protocols can
reach the minimal number of messages necessary to be exchanged in fair MPCS
protocols at the cost of a high number of protocol “rounds”. We call this the par-
allel complexity, which is a generalization of the round complexity measure for
broadcast protocols, and define it in Section 4.3. Conversely, broadcast protocols
can attain the minimal number of protocol rounds necessary for fair MPCS, but
at the cost of a high message complexity. We demonstrate that DAG MPCS
protocols can simultaneously attain best possible order of magnitude for both
complexity measures.

As discussed in our related work section, the design of fair MPCS protocols
has proven to be non-trivial and error-prone. We therefore not only prove our
three novel DAG MPCS protocols to be fair, but we also derive necessary and
sufficient conditions for fairness of any optimistic DAG MPCS protocol. These
conditions can be implemented and verified automatically, but they are still non-
trivial. Therefore, for a slightly restricted class of DAG protocols, we additionally
derive a fairness criterion that is easy to verify.

Contributions. Our main contributions are (i) the definition of a syntax and
interleaving semantics of DAG MPCS protocols (Section 4.1); (ii) the definition
of the message complexity and parallel complexity of such protocols (Section 4.3);
(iii) a method to derive a full MPCS specification from a skeletal graph, including
the TTP logic (Section 5); (iv) necessary and sufficient conditions for fairness
of DAG MPCS protocols (Section 6); (v) minimal complexity bounds for DAG
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MPCS protocols (Section 7.1); (vi) novel fair MPCS protocols (Section 7.2); (vii)
a software tool that verifies whether a given MPCS protocol is fair.1

2 Related Work

We build on the body of work that has been published in the field of fair opti-
mistic MPCS protocols in asynchronous networks. The first such protocols were
proposed by Baum-Waidner and Waidner [2], viz. a round-based broadcast pro-
tocol and a related round-based linear protocol. They showed subsequently [3]
that these protocols are round-optimal. This is a complexity measure that is re-
lated to, but less general than, parallel complexity defined in the present paper.

Garay et al. [6] introduced the notion of abuse-free contract signing. They
developed the technique of private contract signature and used it to create
abuse-free two-party and three-party contract signing protocols. Garay and Mac-
Kenzie [7] proposed MPCS protocols which were later shown to be unfair using
the model checker Mocha and improved by Chadha et al. [4]. Mukhamedov and
Ryan [17] developed the notion of abort chaining attacks and used such attacks
to show that Chadha et al.’s improved version does not satisfy fairness in cases
where there are more than five signers. They introduced a new optimistic MPCS
protocol and proved fairness for their protocol by hand and used the NuSMV
model checker to verify the case of five signers. Zhang et al. [21] have used Mocha
to analyze the protocols of Mukhamedov and Ryan and of Mauw et al. [15].

Mauw et al. [15] used the notion of abort chaining to establish a lower bound
on the message complexity of linear fair MPCS protocols. This complexity mea-
sure is generalized in the present paper to DAG MPCS protocols. Kordy and
Radomirović [10] have shown an explicit construction for fair linear MPCS proto-
cols. The construction covers in particular the protocols proposed by Mukhame-
dov and Ryan [17] and the linear protocol of Baum-Waidner and Waidner [2],
but not the broadcast protocols. The DAG MPCS protocol model and fairness
results developed in the present paper encompass both types of protocols. MPCS
protocols combining linear and parallel behaviour have not been studied yet.

Apart from new theoretical insights to be gained from designing and studying
DAG MPCS protocols, we anticipate interesting application domains in which
multiple parties establish a number of related contracts, such as SLAs. Emerging
business models like Software as a Service require a negotiation to balance a
customer’s requirements against a service provider’s capabilities. The result of
such a negotiation is often complicated by the dependencies between several
contracts [13] and multi-party protocols may serve to mitigate this problem.
Karaenke and Kirn [8] propose a multi-tier negotiation protocol to mitigate
the problems of overcommitment and overpurchasing. They formally verify that
the protocol solves the two observed problems, but do not consider the fairness
problem. SLAs and negotiation protocols have also been studied in the multi-
agent community. An example is the work of Kraus [11] who defines a multi-party

1 Proofs of theorems and additional results including a description of the tool and a
link to it are given in the extended version of this paper [14].
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negotiation protocol in which agreement is reached if all agents accept an offer.
If the offer is rejected by at least one agent, a new offer will be negotiated.

Another interesting application area concerns supply chain contracting [12]. A
supply chain consists of a series of firms involved in the production of a product
or service with potentially complex contractual relationships. Most literature in
this area focuses on economic aspects, like pricing strategies. An exception is the
recent work of Pavlov and Katok [9] in which fairness is studied from a game-
theoretic point of view. The study of multi-party signing protocols and multi-
contract protocols has only recently been identified as an interesting research
topic in this application area [19].

3 Preliminaries

3.1 Multi-party Contract Signing

The purpose of a multi-party contract signing protocol is to allow a number of
parties to sign a digital contract in a fair way. In this section we recall the basic
notions pertaining to MPCS protocols. We use A to denote the set of signers
involved in a protocol, C to denote the contract, and T to denote the TTP.

A signer is considered honest (cf. Definition 5) if it faithfully executes the
protocol specification. An MPCS protocol is said to be optimistic if its execution
in absence of adversarial behaviour and failures and with all honest signers results
in signed contracts for all participants without any involvement of T. Optimistic
MPCS protocols consist of two subprotocols: the main protocol that specifies
the exchange of promises and signatures by the signers, and the resolve protocol
that describes the interaction between the agents and T in case of a failure in
the main protocol. A promise made by a signer indicates the intent to sign C.
A promise ℘P (m,x,Q,T) can only be generated by signer P ∈ A. The content
(m,x) can be extracted from the promise and the promise can be verified by
signer Q ∈ A and by T. A signature SP (m) can only be generated by P and by
T, if T has a promise ℘P (m,x,Q,T). The content m can be extracted and the
signature can be verified by anybody. Cryptographic schemes that allow for the
above properties are digital signature schemes and private contract signatures [6].

MPCS protocols must satisfy at least two security requirements, namely fair-
ness and timeliness. An optimistic MPCS protocol for contract C is said to be
fair for an honest signer P if whenever some signer Q �= P obtains a signature
on C from P , then P can obtain a signature on C from all signers participating in
the protocol. An optimistic MPCS protocol is said to satisfy timeliness, if each
signer has a recourse to stop endless waiting for expected messages. The fairness
requirement will be the guiding principle for our investigations and timeliness
will be implied by the communication model together with the behaviour of the
TTP. A formal definition of fairness is given in Section 6.

3.2 Graphs

Let G = (V,E) with E ⊆ V × V be a directed acyclic graph. Let v, w ∈ V be
vertices. We say that v causally precedes w, denoted v ≺ w, if there is a directed
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path from v to w in the graph. We write v � w for v ≺ w ∨ v = w. We extend
causal precedence to the set V ∪ E as follows. Given two edges (v, w), (v′, w′) ∈
E, we say that (v, w) causally precedes (v′, w′) and write (v, w) ≺ (v′, w′), if
w � v′. Similarly, we write v ≺ (v′, w′) if v � v′ and (v, w) ≺ v′ if w � v′. Let
x, y ∈ V ∪ E. If x causally precedes y we also say that y causally follows x. We
say that a set S ⊆ V ∪ E is causally closed if it contains all causally preceding
vertices and edges of its elements, i.e., ∀x ∈ S, y ∈ V ∪ E : y ≺ x =⇒ y ∈ S.

By in(v) ⊆ E we denote the set of edges incoming to v and by out(v) ⊆ E the
set of edges outgoing from v. Formally, we have in(v) = {(w, v) ∈ E | w ∈ V }
and out(v) = {(v, w) ∈ E | w ∈ V }.

3.3 Assumptions

The communication between signers is asynchronous and messages can get lost or
be delayed arbitrary long. The communication channels between signers and the
TTP T are assumed to be resilient. In order to simplify our reasoning, we assume
that the channels between protocol participants are confidential and authentic.
We consider the problem of delivering confidential and authentic messages in a
Dolev-Yao intruder model to be orthogonal to the present problem setting.

We assume that C contains the contract text along with fresh values (con-
tributed by every signer) which prevent different protocol executions from gener-
ating interchangeable protocol messages. Furthermore we assume that C contains
all information that T needs in order to reach a decision regarding the contract
in case it is contacted by a signer. This information contains the protocol spec-
ification, an identifier for T, identifiers for the signers involved in the protocol,
and the assignment of signers to protocol roles in the protocol specification.

We assume the existence of a designated resolution process per signer which
coordinates the various resolution requests of the signer’s parallel threads. It will
ensure that T is contacted at most once by the signer. After having received the
first request from one of the signer’s threads, this resolution process will contact
T on behalf of the signer and store T’s reply. This reply will be forwarded to all
of the signer’s threads whenever they request resolution.

4 DAG Protocols

Our DAG protocol model is a multi-party protocol model in an asynchronous
network with a TTP and an adversary that controls a subset of parties.

4.1 Specification and Execution Model

A DAG protocol specification (or simply, a protocol specification) is a directed
acyclic graph in which the vertices represent the state of a signer and the edges
represent either a causal dependency between two states (an ε-edge) or the
sending of a message. A vertex’ outgoing edges can be executed in parallel.
Edges labeled with exit denote that a signer contacts T.
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Definition 1. Let R be a set of roles such that T �∈ R and M a set of messages.
Let ε and exit be two symbols, such that ε, exit /∈ M . By Mexit

ε and RT we denote
the sets Mexit

ε = M ∪{ε, exit} and RT = R∪{T}, respectively. A DAG protocol
specification is a labeled directed acyclic graph P = (V,E, r, μ, δ), where

1. (V,E) is a directed acyclic graph;

2. r : V → RT is a labeling function assigning roles to vertices;

3. μ : E → Mexit
ε is an edge-labeling function that satisfies

(a) ∀(v, v′) ∈ E : μ(v, v′) = ε =⇒ r(v) = r(v′),
(b) ∀(v, v′) ∈ E : μ(v, v′) = exit =⇒ r(v′) = T;

4. δ : M∗ → M is a function associated with exit-labeled edges.

A message edge (v, v′) specifies that μ(v, v′) = m is to be sent from role r(v) to
role r(v′). An ε-edge (v, v′) represents internal progress of role r(v) = r(v′) and
allows to specify a causal order in the role’s events. An exit edge denotes that
a role can contact the TTP. The TTP then uses the function δ to determine
a reply to the requesting role, based on the sequence of messages that it has
received. In Section 5 exit messages and the δ function are used to model the
resolve protocol of the TTP.

A B

s

s

A B

ss

A B

ss

Fig. 1. Linear, broadcast, and the novel DAG MPCS protocols

We give three examples of DAG protocols in Figure 1, represented as Message
Sequence Charts (MSCs). The dots denote the vertices, which we group vertically
below their corresponding role names. Vertical lines in the MSCs correspond to
ε-edges and horizontal or diagonal edges represent message edges. We mark edges
labeled with signing messages with an “s” and we leave out the edge labels of
promise messages. We do not display exit edges, they are implied by the MPCS
protocol specification. A box represents the splitting of a role into two parallel
threads, which join again at the end of the box. We revert to a traditional
representation of labeled DAGs if it is more convenient (see, e.g., Figure 2).

The first protocol in Figure 1 is a classical linear 2-party contract signing
protocol. It consists of one round of promises followed by a round of exchanging
signatures. The second protocol is the classical broadcast protocol for two signers.
It consists of two rounds of promises, followed by one round of signatures. The
third protocol is a novel DAG protocol, showing the power of in-role parallelism.
It is derived from the broadcasting protocol by observing that its fairness does
not depend on the causal order of the first two vertices of each of the roles.



162 S. Mauw and S. Radomirović

Let P = (V,E, r, μ, δ) be a protocol specification. The restriction of P to role
P , denoted by PP , is the protocol specification (VP , EP , rP , μP , δP ), where

EP = {(v, v′) ∈ E | r(v) = P ∨ r(v′) = P} , VP = {v, v′ ∈ V | (v, v′) ∈ EP } ,
rP (v) = r(v) for v ∈ VP , μP (e) = μ(e) for e ∈ EP , and δP = δ.

The execution state of a protocol consists of the set of events, connected to
vertices or edges, that have been executed.

Definition 2. Let P = (V,E, r, μ, δ) be a protocol specification. A state of P is
a set s ⊆ V ∪E. The set of states of P is denoted by SP . The initial state of P
is defined as s0 = ∅.

In order to give DAG protocols a semantics, we first define the transition
relation between states of a protocol.

Definition 3. Let P = (V,E, r, μ, δ) be a protocol specification, L = {ε, send ,
recv , exit} the set of transition labels, and s , s ′ ∈ SP the states of P. We say

that P transitions with label α from state s into s ′, denoted by s
α� s ′, iff s �= s ′

and one of the following conditions holds

1. α = recv and ∃v ∈ V , such that in(v) ⊆ s and s ′ = s ∪ {v},
2. α = send and ∃m ∈ M, e ∈ E, such that μ(e) = m, and s ′ = s ∪ {e},
3. α = ε and ∃e = (v, v′) ∈ E, such that μ(e) = ε, v ∈ s and s ′ = s ∪ {e},
4. α = exit and ∃e ∈ E, such that μ(e) = exit and s ′ = s ∪ {e}.
In Definition 3, receive events are represented by vertices, all other events by

edges. By the first condition, a receive event can only occur if all events assigned
to the incoming edges have occurred. In contrast, the sending of messages (second
condition) can take place at any time. The third condition states that an ε-edge
can be executed if the event on which it causally depends has been executed.
Finally, like send events, an exit event can occur at any time. Every event may
occur at most once, however. This is ensured by the condition s′ �= s.

The transitions model all possible behavior of the system. The behavior of
honest agents in the system will be restricted as detailed in the following sub-
section. We denote sequences by [a0, a1, . . . , al] and the concatenation of two
sequences σ1, σ2 by σ1 · σ2.

Definition 4. Let P = (V,E, r, μ, δ) be a protocol specification and L = {ε, send ,
recv , exit} a set of labels. The semantics of P is the labeled transition system
(SP , L,�,s0), which is a graph consisting of vertices SP and edges � with start
state s0. An execution of P is a finite sequence ρ = [s0, α1, s1, . . . , αl, sl], l ≥ 0,

such that ∀i ∈ {0, . . . , l − 1} : si αi+1� si+1. The set of all executions of P is
denoted by Exe(P).

If ρ = [s0, α1, s1, . . . , αl, sl] is an execution of P and PP is the restriction to role
P , then the restricted execution ρP is obtained inductively as follows.

1. [s ]P = [s ∩ (VP ∪EP )] for a state s .
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2. ([s , α, s ′] · σ)P =

{
[s ]P · σP if [s ]P = [s ′]P
[s ]P · [α] · ([s ′] · σ)P else.

Commutativity of restriction and execution is asserted by the following lemma.

Lemma 1. Let P be a protocol specification and PP the restriction to role P .
Then every restricted execution ρP is an execution of PP .

4.2 Adversary Model

An honest agent executes the protocol specification faithfully. The following
definition specifies what this entails for a DAG protocol: the agent waits for the
reception of all causally preceding messages before sending causally following
messages, does not execute an exit edge attached to a vertex v if all messages at
v have been received and never executes more than one exit edge (which in the
context of MPCS protocols corresponds to contacting the TTP at most once),
and does not send any messages which causally follow a vertex from which the
exit edge was executed.

Definition 5. Let P be a DAG protocol specification. An agent P is honest in
an execution ρ of P, if all states s of the restricted execution ρP satisfy the
following conditions:

1. s contains at most one exit edge.

2. If s contains no exit edge, then s is causally closed.

3. If s contains an exit edge e = (v, w), μ(e) = exit, then v �∈ s and s \ {e} is
causally closed.

A dishonest agent is only limited by the execution model. Thus a dishonest
agent can send its messages at any time and in any order, regardless of the causal
precedence given in the protocol specification. A dishonest agent can execute
multiple exit edges and may send and receive messages causally following an
exit edge. Dishonest agents are controlled by a single adversary, their knowledge
is shared with the adversary. The adversary can delay or block messages sent
from one agent to another, but the adversary cannot prevent messages between
agents and the TTP from being delivered eventually. All communication channels
are authentic and confidential.

4.3 Communication Complexity

To define measures for expressing the communication complexity of DAG pro-
tocols, we introduce the notion of closed executions. A closed execution is a
complete execution of the protocol by honest agents.

Definition 6. Let P = (V,E, r, μ, δ) be a protocol specification and (SP , L,�,s0)
be the semantics for P. Given ρ = [s0, α1, s1, . . . , αl, sl] ∈ Exe(P), we say that ρ
is closed if the following three conditions are satisfied
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1. si is causally closed, for every 0 ≤ i ≤ l,

2. αi �= exit , for every 1 ≤ i ≤ l,

3. �α ∈ L \ {exit} , s ∈ SP : ρ · [α, s ] ∈ Exe(P).

The set of all closed executions of P is denoted by ExeC(P).

Let ρ = [s0, α1, s1, . . . , αl, sl] be an execution of a protocol P . By |ρ|send we
denote the number of labels αi, for 1 ≤ i ≤ l, such that αi = send .

Lemma 2. For any two closed executions ρ and ρ′ of a protocol P we have
|ρ|send = |ρ′|send .
The proof is given in [14]. The first measure expressing the complexity of a
protocol P is calledmessage complexity. It counts the overall number of messages
that have been sent in a closed execution of a protocol P .

Definition 7. Let P be a protocol specification and let ρ ∈ ExeC(P). The mes-
sage complexity of P, denoted by MCP , is defined as MCP = |ρ|send .
Lemma 2 guarantees that the message complexity of a protocol is well defined.

The second complexity measure is called parallel complexity. It represents
the minimal time of a closed execution assuming that all events which can be
executed in parallel are executed in parallel. The parallel complexity of a protocol
is defined as the length of a maximal chain of causally related send edges.

Definition 8. The parallel complexity of a protocol P, denoted by PCP , is
defined as

PCP = max
n∈N

∃[e1,e2,...,en]∈E∗ : ∀1≤i≤n : μ(ei) = send ∧ ∀1≤i<n : ei ≺ ei+1.

Example 1. The message complexity of the first protocol in Figure 1 is 4, which
is known to be optimal for two signers [18]. Its parallel complexity is 4, too. The
message complexity of the other two protocols is 6, but their parallel complexity
is 3, which is optimal for broadcasting protocols with two signers [3].

5 DAG MPCS Protocols

We now define a class of optimistic MPCS protocols in the DAG protocol model.

5.1 Main Protocol

The key requirements we want our DAG MPCS protocol specification to satisfy,
stated formally in Definition 9, are as follows. The messages exchanged between
signers in the protocol are of two types, promises, denoted by ℘(), and signatures,
denoted by S(). Every promise contains information about the vertex from which
it is sent. This is done by concatenating the contract C with the vertex v the
promise originates from and is denoted by (C, v). The signers can contact the
TTP at any time. This is modeled with exit edges: Every vertex v ∈ V such
that r(v) ∈ A (the set of all signers) is adjacent to a unique vertex vT ∈ V ,
r(vT) = T. The communication with T is represented by δ. The set of vertices
with outgoing signature messages is denoted by SigSet .
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Definition 9. Let P = (V,E, r, μ, δ) be a protocol specification, A ⊂ R be a
finite set of signers, C be a contract, and SigSet ⊆ V . P is called a DAG MPCS
protocol specification for C, if 2

1. ∃! vT ∈ V : r(vT) = T ∧ ∀v ∈ V \ {vT} : (v, vT) ∈ E,
2. ∀v, w ∈ V : v ≺ w ⇒ (v, w) ∈ E ∨ ∃u ∈ V : v ≺ u ≺ w ∧ r(u) ∈ {r(v), r(w)},
3. ∀(v, w) ∈ E : μ(v, w) =⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ε, if r(v) = r(w),

exit, if w = vT,

Sr(v)(C), if v ∈ SigSet ∧ r(v) �= r(w) �= T,

℘r(v)(C, v, r(w),T), else.

4. δ : M∗ → {
“abort”, (SP (C))P∈A

}
, where (SP (C))P∈A denotes a list of sig-

natures on C, one by each signer.

We write SigSet(P) for the largest subset of SigSet which satisfies

v ∈ SigSet(P) ⇒ ∃w ∈ V : (v, w) ∈ E, μ(v, w) ∈ M.

The set SigSet(P) is called the signing set.

We represent DAG MPCS protocols as skeletal graphs as shown in Figure 2a.
The full graph, shown in Figure 2b, is obtained from the skeletal graph by adding
all edges required by condition 2 of Definition 9 and extending μ according to
condition 3. The ε edges are dashed in the graphs. The shaded vertices in the
graphs indicate the vertices that are in the signing set. We define the knowledge
K(v) of a vertex v to be the set of message edges causally preceding v, and
incoming to a vertex of the same role. The knowledge of a vertex represents the
state right after its receive event.

K(v) = {(w, v′) ∈ E | μ(w, v′) ∈ M, v′ � v, r(v′) = r(v)}
We define the pre-knowledge K≺(v) of a vertex v to be K≺(v) = {(w, v′) ∈

K(v) | v′ ≺ v}. The pre-knowledge represents the state just before the vertex’
receive event has taken place. We extend both definitions to sets S ⊆ V :

K(S) =
⋃
v∈S

K(v) and K≺(S) =
⋃
v∈S

K≺(v).

We define the initial set of P , denoted InitSet(P) to be the set of vertices of
the protocol specification for which the pre-knowledge of the same role does not
contain an incoming edge by every other role. Formally,

v ∈ InitSet(P) ⇐⇒ {r(w) ∈ A | (w, v′) ∈ K≺(v)} ∪ {r(v)} �= A

The end set of P , denoted EndSet(P), is the set of vertices of the protocol
specification at which the corresponding signer possesses all signatures.

v ∈ EndSet(P) ⇐⇒ {r(w) ∈ A | (w, v′) ∈ K(v), w ∈ SigSet(P)} ∪ {r(v)} = A

2 We write ∃! for unique existential quantification.
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Fig. 2. Skeletal and full representation of a DAG MPCS protocol

5.2 Resolve Protocol

Let P = (V,E, r, μ, δ) be a DAG MPCS protocol specification. The resolve
protocol is a two-message protocol between a signer and the TTP T, initi-
ated by the signer. The communication channels for this protocol are assumed
to be resilient, confidential, and authentic. T is assumed to respond imme-
diately to the signer. This is modeled in P via an exit edge from a vertex
v ∈ V \ {vT} to the unique vertex vT ∈ V . T’s response is given by the δ
function, δ : M∗ → {“abort”, (SP (C))P∈A}. If m1, . . . ,mn is the sequence of
messages sent by the signers to T, then δ(m1, . . . ,mn) is T’s response for the
last signer in the sequence. The function will be stated formally in Definition 10.

We denote the resolve protocol in the following by Res(C, v). The signer ini-
tiating Res(C, v) is r(v). He sends the list of messages assigned to the vertices in
his pre-knowledge K≺(v), prepended by ℘r(v)(C, v, r(v),T), to T. This demon-
strates that r(v) has executed all receive events causally preceding v. We denote
r(v)’s message for T by pv:

pv =
(
℘r(v)(C, v, r(v),T), (μ(w, v

′))(w,v′)∈K≺(v)

)
(1)

The promise ℘r(v)(C, v, r(v),T), which is the first element of pv, is used by T
to extract the contract C, to learn at which step in the protocol r(v) claims to
be, and to create a signature on behalf of r(v) when necessary. All messages re-
ceived from the signers are stored. T performs a deterministic decision procedure,
shown in Algorithm 1, on the received message and existing stored messages and
immediately sends back “abort” or the list of signatures (SP (C))P∈A.
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Our decision procedure is based on [10, 17]. The input to the algorithm con-
sists of a message m received by the T from a signer and state information
which is maintained by T. T extracts the contract and the DAG MPCS proto-
col specification from m. For each contract C, T maintains the following state
information. A list EvidenceC of all messages received from signers, a set IC of
vertices the signers contacted T from, a set DishonestC of signers considered to
be dishonest, and the last decision made decisionC. If T has not been contacted
by any signer regarding contract C, then decisionC = “abort”. Else, decisionC is
equal to “abort” or the list (SQ(C)Q∈A) of signatures on C, one by each signer.

T verifies that the request is legitimate in that the received message m is
valid and the requesting signer P is not already considered to be dishonest. If
these preliminary checks pass, the message is appended to EvidenceC. This is
described in Algorithm 1 in lines 1 through 9. The main part of the algorithm,
starting at line 10, concerns the detection of signers who have continued the main
protocol execution after executing the resolve protocol. If P has not received a
promise from every other signer in the protocol (i.e. the if clause in line 10 is not
satisfied), then T sends back the last decision made (line 17). This decision is an
“abort” token unless T has been contacted before and decided to send back a
signed contract. If P has received a promise from every other signer, T computes
the set of dishonest signers (lines 11 through 13) by adding to it every signer
which has carried out the resolve protocol, but can be seen to have continued
the protocol execution (line 12) based on the evidence the TTP has collected.
If P is the only honest signer that has contacted T until this point in time, the
decision is made to henceforth return a signed contract.

Definition 10. Let P = (V,E, r, μ, δ) be a DAG MPCS protocol specification
and δ0 the TTP decision procedure from Algorithm 1. Then δ : M∗ → M is
defined for m1, . . . ,mn ∈ M by

δ(m1, . . . ,mn) = π1(δ1(m1, . . . ,mn)),

where π1 is the projection to the first coordinate and δ1 is defined inductively by

δ1() = (“abort”, “abort”, ∅, ∅, ∅)
δ1(m1, . . . ,mn) = δ0(mn, δ1(m1, . . . ,mn−1)).

Thus the δ function represents the response of the TTP in the Res(C, v)
protocol for all executions of P .

6 Fairness

We say that a DAG MPCS protocol execution is fair for signer P if one of the
following three conditions is true: (i) No signer has received a signature of P ; (ii)
P has received signatures of all other signers; (iii) P has not received an “abort”
token from the TTP.

The key problem in formalizing these conditions is to capture under which
circumstances the TTP responds with an “abort” token to a request by a signer.
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Algorithm 1. TTP decision procedure δ0
input : m,r, decisionC,EvidenceC, IC,DishonestC
output: r,decisionC,EvidenceC, IC,DishonestC

1 if m �= (℘P (C, v, P,T), list) then
2 r = “abort”;
3 return output;

4 if P ∈ DishonestC ∨ ∀w ∈ V : m �= pw ∨ ∃w′ ∈ IC : P = r(w′) then
5 DishonestC := DishonestC ∪ {P};
6 r = “abort”;
7 return output;

8 IC := IC ∪ {v};
9 EvidenceC := (EvidenceC,m);

10 if v /∈ InitSet(P) then
11 for w ∈ IC do
12 if w ≺ (w′, x) ∈ K≺(IC) ∧ r(w′) = r(w) then
13 DishonestC := DishonestC ∪ {r(w)};
14 if ∀w ∈ IC : r(w) /∈ DishonestC =⇒ r(w) = P then
15 decisionC := (SQ(C))Q∈A;

16 r = decisionC;
17 return output;

The TTP’s response is dependent on the decision procedure which in turn de-
pends on the order in which the TTP is contacted by the signers. Since the deci-
sion procedure is deterministic, it follows that the δ function can be determined
for every execution ρ = [s0, α1, s1, . . . , sn] by considering the pre-knowledge of
the vertices from which the exit transitions are taken. Abusing notation, we will
write δ(ρ) instead of δ(m1, . . . ,mk) where mi are the messages sent to the TTP
at the i-th exit transition in the execution.

Definition 11. Let T be the TTP. An execution ρ = [s0, α1, . . . , sn] of P is fair
for signer P if one of the following conditions is satisfied:

1. P has not sent a signature and no signer has received signatures from T.

δ(ρ) = “abort” ∧ ∀(v, w) ∈ sn : r(v) = P, r(w) �= P =⇒ v �∈ SigSet(P)

2. P has received signatures from all other signers.

∃v ∈ s ∩ EndSet(P) : r(v) = P

3. P has not received an “abort” token from T.

∃(v,w) ∈ s : r(v) = P ∧ r(w) = T ⇒ δ([s0, . . . , sk, exit , sk ∪ {(v, w)}]) �= “abort”

If none of these conditions are satisfied, the execution is unfair for P .

Definition 12. An MPCS protocol specification P is said to be fair, if every
execution ρ of P is fair for all signers that are honest in ρ.
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6.1 Sufficient and Necessary Conditions

By the TTP decision procedure, T returns an “abort” token if contacted from a
vertex v ∈ InitSet(P). Thus a necessary condition for fairness is that an honest
signer executes all steps of the initial set causally before all steps of the signing
set that are not in the end set:

∀v ∈ InitSet(P), w ∈ SigSet(P) \ EndSet(P) : r(v) = r(w) =⇒ v ≺ w (2)

If P contacts T from a vertex v �∈ InitSet(P), then T responds with an “abort”
token if it has already issued an “abort” token to another signer who is not in the
set DishonestC. This condition can be exploited by a group of dishonest signers
in an abort chaining attack [16]. The following definition states the requirements
for a successful abort chaining attack. For ease of reading, we define the predicate
hon(v, I). The predicate is true if there is no evidence (pre-knowledge) at the
vertices in I that the signer r(v) has sent a message at or causally after v:

hon(v, I) ≡ ¬∃(x, y) ∈ K≺(I) : v ≺ (x, y) ∧ r(v) = r(x)

This is precisely the criterion used by T to verify honesty in Algorithm 1, line 12.

Definition 13. Let C be a contract and l ≤ |A|. A sequence (v1, . . . , vl | s)
over V is called an abort-chaining sequence (AC sequence) for P if the following
conditions hold:

1. Signer r(v1) receives an abort token: v1 ∈ InitSet(P)
2. No signer contacts T more than once: ∀i�=j r(vi) �= r(vj)
3. The present and previous signer to contact T are considered honest by T:

∀i ≤ l : hon(vi, {v1, . . . , vi}) ∧ hon(vi−1, {v1, . . . , vi})
4. The last signer to contact T has not previously received all signatures:

∀v ≺ vl : r(v) = r(vl) =⇒ v �∈ EndSet(P)

5. The last signer to contact T has sent a signature before contacting T or in
a parallel thread:

s ∈ SigSet(P) \ EndSet(P) : r(s) = r(vl) ∧ vl �� s

The AC sequence represents the order in which signers execute the resolve
protocol with T. A vertex vi in the sequence implies an exit transition via the
edge (vi, vT) in the protocol execution. An abort chaining attack must start at a
step in which T has no choice but to respond with an abort token due to lack of
information. Condition 1 covers this. Each signer may run the resolve protocol
at most once. This is covered by Condition 2. To ensure that T continues to issue
“abort” tokens, Condition 3 requires that there must always be a signer which
according to T’s evidence has not continued protocol execution after contacting
T. To complete an abort chaining attack, there needs to be a signer which has
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issued a signature (Condition 5), but has not received a signature (Conditions 4
and 5) and will not receive a signed contract from T because there is an honest
signer (by Condition 3) which has received an “abort” token.

It is not surprising that a protocol with an AC sequence is unfair. However,
the converse is true, too. The proof of this and the following theorems is given
in [14].

Theorem 1. Let P be a DAG MPCS protocol. Then P is fair if and only if it
has no AC sequences.

6.2 Fairness Criteria

Theorem 1 reduces the verification of fairness from analyzing all executions to
verifying that there is no AC-sequence (Definition 13). This, however, is still
difficult to verify in general. The following two results are tools to quickly assess
fairness of DAG MPCS protocols. The first is an unfairness criterion and the
second is a fairness criterion for a large class of DAG MPCS protocols.

The following theorem states that in a fair DAG MPCS protocol, the union
of paths from the initial set to every vertex v ∈ SigSet(P) must contain all
permutations of all signers (other than r(v)) as subsequences. In the class of
linear MPCS protocols, considered in [10], this criterion was both necessary and
sufficient. We show in Example 2 below that this criterion is not sufficient for
fairness of DAG MPCS protocols.

For I ⊆ V , v ∈ V , let path(I, v) be the set of all directed paths from a vertex
in I to v and let seq(I, v) = {r(p) ∈ A∗ | p ∈ path(I, v)} be the sequences of
signers corresponding to the paths from I to v, where r(p) = (r(v1), . . . , r(vk)).

Theorem 2. Let k = |A|. Let P be an optimistic fair DAG MPCS protocol,

I = {v ∈ InitSet(P) | (v ≺ w ∧ r(v) = r(w)) ⇒ w �∈ InitSet(P)} .
If v ∈ SigSet(P), then for every permutation (P1, . . . , Pk−1) of signers in A \
{r(v)}, there exists a sequence in seq(I, v) which contains (P1, . . . , Pk−1) as a
(not necessarily consecutive) subsequence.

The converse of the theorem is not true as the following example shows. In
particular, this example demonstrates that the addition of a vertex to a fair
DAG MPCS protocol does not necessarily preserve fairness.

Example 2. The protocol in Figure 3a is fair by the results of [10]. By Theorem 2,
for every vertex v ∈ SigSet(P) every permutation of signers in A \ {P} occurs
as a subsequence of a path in seq(I, v). The protocol in Figure 3b is obtained
by adding the vertex Bq as a parallel thread of signer B. Thus the permutation
property on the set of paths is preserved, yet the protocol is not fair: An AC
sequence is (Bq, C3, A4|A3). The vertex Bq is in InitSet(P), the evidence pre-
sented to the TTP at C3 includes the vertices causally preceding C2, thus B
is considered to be honest. The evidence presented by signer A at A4 are the
vertices causally preceding A3 proving that B is dishonest, but C is honest. Thus
A has sent a signature at A3 but will not receive signatures from B and C.
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A4A3A2A1 C1 C3C2B1 B2 B3 B4

(a) A three-party MPCS protocol from a signing sequence [10].
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(c) Adding an ε edge.

Fig. 3. Skeletal graphs of fair protocols (a, c) and an unfair protocol (b)

If a protocol has no in-role parallelism, then the converse of Theorem 2 is
true. Thus we have a simple criterion for the fairness of such protocols.

Theorem 3. Let P be an optimistic DAG MPCS protocol without in-role par-
allelism. Let

I = {v ∈ InitSet(P) | (v ≺ w ∧ r(v) = r(w)) ⇒ w �∈ InitSet(P)} .

If all paths from I to v ∈ SigSet(P) contain all permutations of A \ {r(v)} then
P is fair for r(v).

Example 3. By adding a causal edge between vertex Bq and vertex B2 of the
protocol in Figure 3b, as shown in Figure 3c, we obtain again a fair protocol.

7 Protocols

In this section we illustrate the theory and results obtained in the preceding
sections by proving optimality results and constructing a variety of protocols.

7.1 Minimal Complexity

We prove lower bounds for the two complexity measures defined in our model,
viz. parallel and message complexity.

Theorem 4. The minimal parallel complexity for an optimistic fair DAGMPCS
protocol is n+ 1, where n is the number of signers in the protocol.

Proof. By Theorem 2, every permutation of signers in the protocol must occur
as a subsequence in the set of paths from a causally last vertex in the initial set
to a vertex in the signing set. Since a last vertex v in the initial set must have a
non-empty knowledge K(v), there must be a message edge causally preceding v.
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There are at least n− 1 edges in the path between the vertices associated with
the n signers in a permutation and there is at least one message edge outgoing
from a vertex in the signing set. Thus a minimal length path for such a protocol
must contain n+ 1 edges.

The minimal parallel complexity is attained by the broadcast protocols of
Baum-Waidner and Waidner [2].

Theorem 5. The minimal message complexity for an optimistic fair DAGMPCS
protocol is λ(n)+ 2n− 3, where n is the number of signers in the protocol and λ(n)
is the length of the shortest sequence which contains all permutations of elements
of an n-element set as subsequences.

The minimal message complexities for 2 < n < 8 are n2 + 1. The minimal
message complexities for n ≥ 10 are smaller or equal to n2.

Note that while broadcasting protocols have a linear parallel complexity, they
have a cubic message complexity, since in each of the n + 1 rounds each of
the n signers sends a message to every other signer. Linear protocols on the
other hand have quadratic minimal message and parallel complexities. In the
following we demonstrate that there are DAG protocols which attain a linear
parallel complexity while maintaining a quadratic message complexity.

7.2 Protocol Constructions

Single Contractor, Multiple Subcontractors. A motivation for fair MPCS
protocols given in [10] is a scenario where a single entity, here referred to as
a contractor, would like to sign k contracts with k independent companies, in
the following referred to as subcontractors. The contractor has an interest in
either having all contracts signed or to not be bound by any of the contracts.
The subcontractors have no contractual obligations towards each other. It would
therefore be advantageous if there is no need for the subcontractors to directly
communicate with each other.

The solutions proposed in [10] are linear protocols. Their message and parallel
complexities are thus quadratic. Linear protocols can satisfy the requirement
that subcontractors do not directly communicate with each other only by greatly
increasing the message and parallel complexities.

The protocol we propose here is a DAG, its message complexity is 2(n+1)(n−
1) and its parallel complexity is 2n+ 2 for n signers. It therefore combines the
low parallel complexity typically attained by broadcasting protocols with the
low message complexity of linear protocols. Additionally, the protocol proposed
does not require any direct communication between subcontractors.

Figure 4a shows a single contractor with three subcontractors. The protocol
can be subdivided into five rounds, one round consisting of the subcontractors
sending a message to the contractor followed by the contractor sending a message
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(a) A single contractor and
three subcontractors.
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(b) Two joint subcontractors.

Fig. 4. Two examples of fair DAG MPCS protocols

to the subcontractors. In the first four rounds promises are sent, in the final
round signatures are sent. The protocol can be easily generalized to more than
three subcontractors. For every subcontractor added, one extra round of promises
needs to be included in the protocol specification.

The protocol is fair by Theorem 3. The MSC shown in Figure 4a resembles the
skeletal graph from which it was built. The message contents can be derived by
computing the full graph according to Condition 2 of Definition 9. The result is
as follows. In each round of the protocol, each of the subcontractors sends to the
contractor a promise for the contractor and for each of the other subcontractors.
The contractor then sends to each of the subcontractors all of the promises
received and his own promise. The final round is performed in the same manner,
except that promises are replaced by signatures.

Two Contractors with Joint Subcontractors. Figure 4b shows a protocol
where two contractors want to sign a contract involving two subcontractors. The
subcontractors are independent of each other.

After the initial step, where all signers send a promise to the first contractor
A, there are three protocol rounds, one round consisting of the contractor A
sending promises to the two subcontractors L and R in parallel which in turn
send promises to the second contractorB. A new round is started with the second
contractor sending the promises received with his own promise to contractor A.

This protocol, too, can be generalized to several independent subcontractors.
For every subcontractor added, one extra protocol round needs to be included in
the protocol specification and each protocol step of the subcontractors executed
analogously.
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Fig. 5. In-role parallelism

Parallelism within a Role. Figure 5 shows
an example of a subcontracting protocol with
in-role parallelism for the contractor role. The
contractor initiates the protocol. In the indi-
cated parallel phase, the contractor may im-
mediately forward a promise by one of the
subcontractors along with his own promise to
the other subcontractor without waiting for
the latter subcontractor’s promise. The same
is true in the signing phase. The fairness prop-
erty for this protocol has been verified with a
tool which tested fairness for each signer in all
possible executions.

8 Conclusion

We have identified fair subcontracting as a challenging new problem in the area
of multi-party contract signing. We have made first steps towards solving this
problem by introducing DAG MPCS protocols and extending existing fairness
results from linear protocols to DAG protocols. For three typical subcontracting
configurations we propose novel DAG MPCS protocols that perform well in
terms of message complexity and parallel complexity. Fairness of our protocol
schemes follows directly from our theoretical results and we have verified it for
concrete protocols with our automatic tool.

There are a number of open research questions related to fair subcontracting
that we haven’t addressed. We mention two. The first concerns the implemen-
tation of multi-contracts. In our current approach we consider a single abstract
contract shared by all parties. However, in practice such a contract may con-
sist of a number of subcontracts that are accessible to the relevant signers only.
How to cryptographically construct such contracts and what information these
contracts should share is not evident. Second, a step needs to be made towards
putting our results into practice. Given the application domains identified in
this paper, we must identify the relevant signing scenarios and topical boundary
conditions in order to develop dedicated protocols for each application area.
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