
Leakiness is Decidable for Well-Founded

Protocols�

Sibylle Fröschle

OFFIS & University of Oldenburg, 26121 Oldenburg, Germany
froeschle@informatik.uni-oldenburg.de

Abstract. A limit to algorithmic verification of security protocols is
posed by the fact that checking whether a security property such as se-
crecy is satisfied is undecidable in general. In this paper we introduce the
class of well-founded protocols. It is designed to exclude what seems to
be common to all protocols used in undecidability proofs: the protocol
syntax ensures that honest information cannot be propagated unbound-
edly without the intruder manipulating it. We show that the secrecy
property of leakiness is decidable for well-founded protocols.

Consider the insecurity problem that stands behind classical protocol veri-
fication: Given a protocol P and an attack goal G, is there a run of protocol
P controlled by the Dolev-Yao intruder that obtains G? This problem is well-
known to be undecidable in general [13,17]. One can distinguish between two
directions to restrict the problem to analyse the decidability border.

One direction is to restrict the sources of infinity the Dolev-Yao intruder can
make use of: an attack may involve messages of unbounded size, an unbounded
number of freshly generated data, and an unbounded number of sessions. This
direction is well-investigated and many positive results have been obtained. in-
security turns out to be NP-complete when the number of sessions is bounded
[23,7], and EXPTIME-complete when both the number of freshly generated data
and the message size is bounded [12,14]. insecurity remains undecidable when
only one of these two restrictions is imposed. A recent survey of this area can
be found in [14].

The second direction for borderline investigations is to leave the sources of
infinity a priori unconstrained, but impose restrictions on the message format.
In [10,9] insecurity was shown to be PTIME decidable for ping-pong protocols.
These protocols have a very restricted message format that makes it possible to
formalize them by a form of context-free grammars. More directly motivated by
protocol verification, works by Lowe [18] and Ramanujam and Suresh [20,22,21]
investigate decidability when imposing conditions that make encrypted messages
context-explicit. The idea is that such protocols merely satisfy the prudent engi-
neering practice recommended by Abadi and Needham [1]. These works achieve

� This work is partially supported by the Niedersächsisches Vorab of the Volkswagen
Foundation and the Ministry of Science and Culture of Lower Saxony as part of
the Interdisciplinary Research Center on Critical Systems Engineering for Socio-
Technical Systems.

c© Springer-Verlag Berlin Heidelberg 2015
R. Focardi and A. Myers (Eds.): POST 2015, LNCS 9036, pp. 176–195, 2015.
DOI: 10.1007/978-3-662-46666-7_10

froeschle@informatik.uni-oldenburg.de

Leakiness is Decidable for Well-Founded Protocols 177

decidability results for the problem of non-secrecy without temporary secrets,
which we call leakiness here.

Our Contribution. In this paper, we tackle the decidability of context-explicit
protocols ‘from the top’, trying to pinpoint in an abstract manner why the usual
undecidability reductions do not carry over to such protocols. More concretely,
we introduce the class of well-founded protocols. It is designed to exclude what
seems to be common to all protocols used in undecidability results: the message
format allows that honest information can be propagated unboundedly without
the intruder manipulating it. We prove that leakiness is decidable for well-
founded protocols. Our class strictly contains those of [18,20,22,21].

Related Work. In [18] Lowe obtains a small model property (from which decid-
ability of leakiness is immediate) by a condition that requires that encrypted
components are textually distinct, and that each encrypted component includes
all protocol roles. Together this ensures that every encryption that occurs in a
protocol run can be uniquely assigned to a protocol position and the set of agents
involved in the run. The structured protocols of [20] introduce a condition that is
similar to the first part of Lowe’s: between any two terms that occur in distinct
communications, no encrypted subterm of one can be unified with a subterm of
the other. In the full version of this paper [22] the authors obtain NEXPTIME
decidability of leakiness for their class of context-explicit protocols: these pro-
tocols are structured and in addition require that each encryption to be sent
out is tagged by a freshly generated nonce. This ensures that each instantiation
of an encryption can be traced back to exactly one session. In [21] Ramanujam
and Suresh obtain decidability of leakiness for their tagged protocols. These
are essentially an instance of their context-explicit protocols: the structured con-
dition is implemented by using constants to identify encrypted subterms; they
also require the additional dynamic tagging with freshly generated nonces. The
novelty of [21] lies in the fact that the result also works for untyped messages,
and hence, unbounded message length.

The three results [18,22,21] have in common that they establish a small model
property: if there is an attack then there is a small attack and the problem
reduces to checking protocol runs with a bounded number of events. The three
works do not allow composed keys nor blind forwarding of ciphertexts. Since [18]
and [22] work with a typed algebra together with the latter this means that the
message size is bounded, and decidability follows from the small model property.
[21] lifts the typing restriction, and thereby admits messages of unbounded size.
In addition to the small model property it is shown that if there is an attack
then there is a well-typed attack.

In [2] Arapinas and Duflot provide a general approach for bounding the size of
messages in an attack: they introduce a condition of well-formedness and show
that a protocol admits an attack iff it admits a well-typed attack for a partic-
ular typing system that bounds message size. They also show that the tagging
scheme of Blanchet and Podelski [3] implements well-formedness. The tagging
system is light in that it only introduces a different constant in each encryption.
The tagging system is used in [3] to enforce termination of a resolution-based

178 S. Fröschle

verification method. (The verification method is approximate so this does not
give a decidability result.) In [5] the approach of [2] is extended to equivalence
checking and a more general typing system. As an application decidability of
trace equivalence for tagged protocols is obtained for a fixed number of nonces.
The setting admits symmetric encryption and assumes session identifiers.

Dougherty and Guttman are first to apply the idea of context-explicitness in
a rich algebraic setting [11]. They introduce a class of lightweight Diffie-Hellman
protocols with simple signatures. The simple signatures are defined by requiring
an ordering on the occurrences of signatures in a protocol to be acyclic. They
obtain a small model property for their class, which together with other algebraic
results leads to decidability of their security goals for lightweight Diffie-Hellman
protocols.

Synopsis. In Section 1 we present the necessary definitions. In Section 2 we
introduce well-founded protocols motivated by a notion of honest causality, and
prove their characteristic property. In Section 3 we introduce a normal form for
intruder deductions and protocol runs, so-called well-structured source trees and
bundles. We obtain two structural insights on well-structured bundles. In Sec-
tion 4 this allows us to transform honest cause components of non-leaky bundles
into bundles. The transformation also works for minimal leaky bundles and pre-
serves leaks. Altogether, this means that the size of minimal leaky bundles is
bounded by the size of honest cause components. (Indeed, this holds for pro-
tocols in general.) For well-founded protocols we obtain a bound on the size
of honest cause components, and thereby of minimal leaky bundles. With this
decidability is immediate. The ideas behind this work were presented at [15]. A
full version of the paper can be found on the web page of the author.

1 Preliminaries

Terms and Messages. Let Atoms be a set of atomic messages or atoms, and
AVars a set of variables for atoms. Then ATerms = Atoms ∪ AVars is the set
of atomic terms. The set of atoms, and variables for atoms respectively, can be
be further structured into several atomic message types. Here we only assume
a set of agent names Agents ⊂ Atoms , and a set of variables for agent names
VarsAgents respectively. Set TermsAgents = Agents ∪ VarsAgents . Moreover, let
Vars be a set of variables to present any message.

The set of terms, denoted by Terms , is generated from the set of basic terms
ATerms ∪Vars by the following operators:

– priv (ag) where ag ∈ TermsAgents ,
– 〈t1, t2〉 where t1, t2 ∈ Terms ,
– {t}k where t ∈ Terms and k ∈ ATerms ,
– {|t|}ag where t ∈ Terms and ag ∈ TermsAgents .

priv (ag) depicts the private key of agent ag , 〈t1, t2〉 represents the concatenation
of terms t1 and t2, {t}k models the symmetric encryption of t by atomic key k,

Leakiness is Decidable for Well-Founded Protocols 179

and {|t|}ag stands for the asymmetric encryption of t with the public key of agent
ag . As usual we equate the public keys of agents with their names.

Given two terms t1, t2, we write t1 � t2 if t1 is a subterm of t2. We also define
a relation �s to express when a term t1 is source-contained in a term t2. This is
inductively defined as follows:

– t �s a where a ∈ ATerms iff t = a,
– t �s priv (ag), iff t = priv (ag) or t = ag ,
– t �s 〈t1, t2〉 iff t = 〈t1, t2〉 or t �s t1 or t �s t2,
– t �s {t′}k iff t = {t′}k or t �s t

′,
– t �s {|t′|}ag iff t = {|t′|}ag or t �s t

′.

A message is a ground, i.e., variable-free term. A message template is a term
that does not contain any elements of Atoms. We denote the set of messages by
Mesg and the set of message templates by TMesg . A ground substitution is a
function that assigns messages to variables such that the types are preserved.

x y

〈x, y〉 Cpair
〈x, y〉
x Dpair1

〈x, y〉
y Dpair2

x ya

{x}ya
Csenc

{x}ya ya
x Dsenc

x yag

{|x|}yag
Caenc

{|x|}yag priv(yag)
x Daenc

where x, y ∈ Vars , ya ∈ AVars , and yag ∈ VarsAgents .

Fig. 1. The Dolev-Yao intruder deduction system IDY

.

Intruder Deduction Capabilities. We assume the deduction capabilities of
the standard Dolev-Yao intruder, modelled by the inference system IDY depicted
in Fig. 1. The rules of inference fall into matching composition and decomposition
rules. The composition rules model the intruder’s ability to build new messages
from messages he has already deduced while the decomposition rules capture
when he can decompose deduced messages into their parts.

Let T be a set of terms, and u be a term. We say u is deducible from T in
IDY , written u ∈ DY(T), iff there is a proof tree of T � u in IDY . A proof of
T � u in an inference system I is a proof tree Π such that:

– Every leaf of Π is labelled with a term v such that v ∈ T .
– For every node labelled with v0 having n children labelled with v1, . . . , vn,

there is an instance of an inference rule with conclusion v0 and premises v1,
. . . , vn. We say that Π ends with this instance if the node is the root of Π .

– The root is labelled with u.

180 S. Fröschle

Let Π be a proof tree of T � u. Let n be a node of Π . We write lab(n) for the
label of n. We denote the subtree that is rooted in n by subtree(n). Clearly, it is
a proof tree of T � lab(n). We denote the root node of Π by root(Π), and the
set of leaves of Π by leaves(Π). We denote by Concl (Π) the label of the root
of Π , and by Hyp(Π) the set of labels of the leaves of Π . If Π only contains
instances of decomposition rules we say Π is a decomposition tree, and if it only
contains instances of composition rules a composition tree respectively. The size
of a proof tree is the number of its nodes. A proof tree of T � u is minimal if
there is no other proof tree of T � u with size strictly smaller than Π .

Protocol Specifications. A protocol is a pair P = (rolesP , scriptP), where
rolesP is a finite set of roles, and scriptP is a function that maps every role in
rolesP to a role script. Given r ∈ rolesP , scriptP (r) is a finite sequence

p1M1 p2M2 . . . pnMn

where n ≥ 1, and for every i ∈ [1, n], pi ∈ {+,−} and Mi is a message template,
i.e. a term without any atom. A term prefixed with a ‘+’ is thought to be sent,
and a term prefixed with a ‘−’ to be received respectively. For i ∈ [1, n] define
freshr(i) to be the set {x ∈ Vars | pi = ‘ + ’ & x � Mi & ∀j ∈ [1, i[, x �� Mj}.
We require the following three axioms:

r1 p1 = ‘−’, and ∃A ∈ VarsAgents∃M ′
1 ∈ TMesg . M1 = A ∨ M1 = 〈A,M ′

1〉,
r2 ∀i ∈ [1, n], freshr(i) ⊆ AVars, and
r3 ∀i ∈ [1, n], if pi = ‘+’ then

{Mj | j ∈ [1, i[& pj = ‘− ’} ∪ {priv (A)} ∪ freshr(i) � Mi ,
where A is given as in axiom (r1).

Role scripts will be interpreted as follows. The ownership of the session will be
defined by the agent name to be received in the first component of the first
message. This is the reason behind Axiom (r1). If a variable appears for the first
time in a message pattern to be received then any value that respects the sort
of the variable can be matched to it. If a variable appears for the first time in a
message pattern to be sent then a fresh value will be assigned to it at this step.
Axiom (r2) ensures that only atoms can be freshly generated. The received or
freshly generated value is henceforward understood to be bound to the variable.
Axiom (r3) ensures that each message to be sent can be assembled from the
messages already received, the private key of the owner of the session, and the
atoms to be freshly generated at this step. Our interpretation that variables that
first appear in a message pattern to be sent are assumed to be freshly generated
is no restriction: public session parameters such as agent names can be received
in a message to be sent by the intruder. Our use of message templates is no
restriction either: constants can be modelled by types with one element or via
adapting the definitions so that agents have prior knowledge of constants.

Example 1. The Needham-Schroeder Public Key (NSPK) Protocol [19] is infor-
mally described by the message exchange shown on the left below. Formally, it

Leakiness is Decidable for Well-Founded Protocols 181

is specified by P = (rolesP , scriptP), where rolesP = {A,B}, and scriptP (A)
and scriptP (B) are defined as follows.

1. A −→ B : {|NA, A|}B
2. B −→ A : {|NA, NB|}A
3. A −→ B : {|NB|}B

A B

1 −A,B −B,A

2 +{|NA, A|}B −{|NA, A|}B
3 −{|NA, NB|}A +{|NA, NB|}A
4 +{|NB|}B −{|NB|}B

Strands and Bundles. We now define protocol executions in terms of the
strand space model (e.g. [16]). More precisely, we work with a variation of the
strand space model: first, our definition of bundle will not make use of the usual
intruder strands but uses deduction trees whose leaves are mapped to output
events. Second, we add a total order to the concept of bundle, which means we
have available the execution order of events as well as the causal relationship
between them. In the following, assume a fixed protocol P = (rolesP , scriptP).

A strand represents an instantiation of a role script of the protocol or a prefix
thereof. (We admit prefixes to be able to model incomplete protocol sessions; a
situation that naturally arises in a snaphshot of a protocol execution.) Formally,
a strand of P is a totally ordered labelled graph s = (E,⇒, l) where

– E = {(s, 1), . . . , (s, n)}, n > 0,
– (s, i) ⇒ (s, j) iff j = i+ 1,
– l : E → {+,−}×Mesg , and

there are r ∈ rolesP , a prefix of scriptP (r) of the form p1M1 p2M2 . . . pnMn,
and a ground substitution σ such that for all i ∈ [1, n] we have:

S1 l(s, i) = piMiσ,
S2 if x ∈ freshr(i) then

(a) for all j ∈ [1, i[, xσ �� Mjσ,
(b) for all x′ ∈ freshr(i), xσ = x′σ implies x = x′.

Observe how the two axioms ensure that s can indeed be understood as an
instantiation of the partial role script via σ. Axiom (S1) ensures that the signed
message is an instance of the respective signed message template. Axiom (S2)
guarantees that if an atom is to be freshly generated for message Mi then (a) it
does not occur earlier on the strand, and (b) it is distinct from all other atoms
freshly generated for message Mi.

We call E the set of events of s. Given an event e of s, we call the first
component of l(e) the sign of e, written sign(e), and the second component the
message of e, written msg(e). If sign(e) = ‘+’, we call e an output event, and
if sign(e) = ‘−’ an input event respectively. We say atom a originates on event
(s, i) if (s, i) is an output event, a � msg(s, i), and for all j ∈ [1, i[, a �� msg(s, j).
In our technical framework we have the following convenient fact:

Proposition 2. Let s be a strand such that s is a (partial) instance of r ∈ rolesP
via substitution σ. For all events (s, i) of s we have: x ∈ freshr(i) iff xσ originates
on (s, i).

182 S. Fröschle

We assume a special strand init , which consists of a finite set of output events
that models the intruder’s initial knowledge he has prepared for the protocol run.
We assume that he has available at least his own private key, denoted by priv (i),
and an atom of each atomic type. By abuse of notation we usually consider this
strand as one event init .

An ordered strand space of P is a pair S = (S,<) where S is a set of strands
of P , and < is a total order on the events of S such that

S1 init ∈ S,
S2 ⇒ ⊆ <, and
S3 init < e for every event e �= init .

Axiom (S1) models that the intruder is always expected to prepare some initial
knowledge. Axiom (S2) expresses that if e′ precedes e in a session then e′ must
have happened before e. Axiom (S3) expresses that the intruder generates all
atoms he will use in the attack in advance.

In the context of an ordered strand space S = (S,<), we denote the set
of events of S by E, the set of input events by Ein , and the set of output
events by Eout respectively. Given e ∈ E, the downwards closure of e in S is
defined by e ⇓ = {e′ | e′ ≤ e}, and the strict downwards closure of e in S by
e ↓ = {e′ | e′ < e}. When S is not uniquely determined by the context we also
use e⇓S , and e↓S respectively.

Let S be an ordered strand space. A source (proof) tree wrt S is a pair (Π, src)
where Π is a proof tree, and src : leaves(Π) → Eout is a map from the leaf nodes
of Π to the output events of S such that src(nl) = e implies lab(nl) = msg(e).
Given a messagem, we say (Π, src) is a source tree form wrt S if Concl (Π) = m.

A bundle represents a snapshot of a protocol execution. Formally, a bundle of
P is a tuple B = (S, {(Πe, srce)}e∈Ein) where

– S = (S,<) is an ordered strand space of P , and
– ∀e ∈ Ein , (Πe, srce) is a source tree for msg(e) wrt e↓

such that

B1 every atom a occurring in S has a unique origin in S: there is exactly one
event e ∈ E such that a originates on e.

The required family of source trees ensures that the message of every input
event can be deduced by the intruder from the messages of the previous out-
put events (including the intruder’s own event init .) Axiom (B1) together with
Prop. 2 ensures that if an atom is thought to be freshly generated on some strand
then on any other strand it has to be received before it can be sent. Given an
atom a that occurs in S, define the origin of a, denoted by origin(a), to be the
unique event on which a originates as guaranteed by Axiom (B1).

Define → ⊆ Eout × Ein by: e → e′ iff there is a leaf nl ∈ Πe′ such that
srce′ (nl) = e. It is easy to check that → ⊆ <. We denote the relation → ∪ ⇒
by ≺1. ≺1 expresses immediate causality: if e → e′ then e is an immediate cause
of e′ due to the intruder deduction causality between messages captured by the

Leakiness is Decidable for Well-Founded Protocols 183

intruder to deduce a message that is then injected by him into a protocol session.
If e ⇒ e′ then e is an immediate cause of e′ due to the execution order causality
within a protocol session. The transitive closure of ≺1, denoted by ≺, is a strict
order, which captures causality. It is compatible with the execution order <: we
have ≺ ⊆ <, and hence, ≺ is a strict order.

A bundle skeleton of P is an ordered strand space S of P that can be extended
to form a bundle, i.e., there is a family of source trees {(Πe, srce)}e∈Ein such that
(S, {(Πe, srce)}e∈Ein) is a bundle of P .

We carry over our notations E, Ein , Eout , e ⇓, and e ↓ from ordered strand
spaces to bundles and bundle skeletons in the obvious way. Moreover, we write
DY(S) and DY(B) short for DY(M), where M is the set of messages of output
events of S, and B respectively.

The Leakiness Problem. We now define the secrecy problem as formulated
by Ramanujam and Suresh (e.g. [22]). We call the problem leakiness to avoid
confusion with other notions of secrecy. We also slightly generalize it to include
leaks of private keys. Informally, a protocol run is considered to be leaky if
(1) some atom is secret at some intermediate state of the run but known to
the intruder at the end of the run, or (2) the private key of some agent other
than the intruder is known to the intruder at the end of the run. The leakiness
problem is then to check whether a protocol has a leaky run.

Let P be a protocol, and S be a bundle skeleton of P . An atom a origi-
nates secretly in S if a �∈ DY(origin(a) ⇓). We say an atom a is a leak in S
if a originates secretly in S but a ∈ DY(S). We say a private key priv (ag)
is a leak in S if ag �= i but priv (ag) ∈ DY(S). S is leaky if there is a leak in
S and non-leaky otherwise. These notions carry over to bundles in the usual way.

leakiness:

Given: A protocol P .
Decide: Is there a bundle B of P such that B is leaky?

2 Honest Causality and Well-Founded Protocols

Well-founded protocols are defined to syntactically exclude what is common
to all protocols used in undecidability results: that honest information can be
propagated unboundedly without the intruder manipulating it. First, we define
two core concepts, honest encryptions and source paths. Based on these concepts
we formalize the idea of unmanipulated information propagation in terms of a
relation ≺h, called honest causality. This will lead us to our definition of well-
founded protocols We then confirm that for well-founded protocols the honest
causal depth of each bundle is indeed bounded by the depth of the protocol.
Finally, we define the concept of honest cause components.

Honest Encryptions and Source Paths. Let M be a set of messages the
intruder has available at some stage of a protocol run. We wish to single out

184 S. Fröschle

those encryptions that he can deduce but that he cannot analyse nor synthesize.
We call them the honest encryptions wrt M since they must have come from an
honest agent.

Given a set of messages M , an honest encryption wrt M is a message h ∈
DY(M) such that

1. h is a symmetric encryption {m}k such that k �∈ DY(M), or

2. h is a public key encryption {|m|}ag such that m �∈ DY(M).

We denote the set of honest encryptions wrt M by HEnc(M). Given a strand
space S, we write HEnc(S) short for HEnc(M), whereM = {msg(e) | e ∈ Eout}.

Let m be a message, and Π be a proof tree. Say m is source-contained in the
conclusion of Π . We are interested in tracing back where m originates from in
the deduction. We translate this into the concept of source path. Given a message
m, and a proof tree Π , we define a path π of Π to be an intermediate source
path of m in Π iff

Base case: π = nr such that nr is the root of Π , and m �s lab(nr), or

Inductive case: π = π′n such that π′ is an intermediate source path of m in
Π , and one of the following holds with respect to the last node n′ of π′ and
the rule instance it is conclusion of:

c1 : m1 [c2 : m2]

n′ : m′ R

1. R = Cpair , n is the left child c1, and m �s m1,
2. R = Cpair , n is the right child c2, and m �s m2,

3. R = Csenc or Caenc , n is the left child c1, and m �s m1,

4. R = Dpairi
for i = 1, or 2, or

5. R = Dsenc or Daenc, and n is the left child c1.

We say π is a soure path of m in Π if it is a maximal intermediate source path
of m in Π .

Proposition 3. Let m be a message, Π be a proof tree, and π be a source path
of m in Π. For all nodes n of π, we have m �s lab(n).

Note that if there are several occurrences of m in Concl(Π) then there can
be several source paths of m in Π . A source path will trace back m either to a
leaf, or to the conclusion of a composition node. Since atoms and private keys
cannot be composed they can always be traced back to leaves. Moreover, if m is
an honest encryption wrt Hyp(Π) then it can also be traced back to leaves since
it can neither be composed nor decomposed.

Proposition 4. Let M be a set of messages, m a message, and Π a proof tree
of M � m. If h ∈ HEnc(M) such that h �s m then there is a source path π of
h in Π such that π ends in a leaf.

Leakiness is Decidable for Well-Founded Protocols 185

Honest Causality. Let P be a protocol, and let B = (S,<, {(Πe, srce)}e∈Ein)
be a bundle of P . We define a relation →h ⊆ Eout × Ein as follows: e′ →h

e iffthere is h ∈ HEnc(e↓) such that there is a source path of h in Πe ending
in a leaf node nl with srce(nl) = e′.

We denote the relation →h ∪ ⇒ by ≺1
h. ≺1

h expresses that information is
propagated unmanipulated directly from one protocol event to another. If e′ ⇒ e
this is so because e′ precedes e in a protocol session. If e′ →h e this is so because
an encryption is passed from e′ to e in unmanipulated form: because it can
neither be analysed nor synthesized by the intruder at that point. The transitive
closure of ≺1

h, denoted by ≺h, is a strict order, which captures unmanipulated
information propagation. We call it honest causality. It is straightforward to
check that ≺h is a strict order.

Given an event e ∈ E, we define the honest causal depth of e, written depth≺h
(e),

inductively as follows: if e is minimal wrt ≺h then depth≺h
(e) = 0; otherwise

depth≺h
(e) = 1 + max {depth≺h

(e′) | e′ ≺1
h e}. The honest causal depth of B,

denoted by depth≺h
(B), is given by max {depth≺h

(e) | e ∈ E}.

Well-Founded Protocols. We now design a protocol class, which satisfies:
given a protocol P of the class, there is n ∈ Nat such that for every bundle B of
P , depthh(B) is bounded by n. We base the definition on a preorder on protocol
positions that captures potential unmanipulated information propagation.

Let P be a protocol. We define the set of protocol positions of P by Pos =
{(r, i) | r ∈ rolesP & 1 ≤ i ≤ |scriptP (r)|}. Define the output positions of P
by Posout = {(r, i) ∈ Pos | pi = ‘+’ in scriptP (r)}, and the input positions by
Pos in = {(r, i) ∈ Pos | pi = ‘−’ in scriptP (r)} respectively.

First, define a relation ⇒P ⊆ Pos × Pos by (r, i) ⇒P (r′, j) iff r = r′ and
i < j. Second, define a relation →P ⊆ Posout ×Pos in , which describes when an
enryption sent can possibly match an encryption received during a protocol run:
p →P p′ iff there are substitutions σ and σ′, and an encryption me such that
me � msg(p)σ, and me � msg(p′)σ′.

We denote the relation →p ∪ ⇒p by ≺1
p. p ≺1

p p′ expresses that information
might be passed in a protected manner directly from an instance of p to an
instance of p′. If p ⇒p p′ then this is so because p precedes p′ in a role script. If
p →p p′ this is so because an encryption, which is possibly neither analysable nor
composable by the intruder, might be sent from an instance of p to an instance
of p′. The reflexive and transitive closure of ≺1

p, denoted by �p, is a preorder
that captures potential unmanipulated information propagation.

Definition 5. We say a protocol P is well-founded iff ≺1
p is acyclic, or �p is

a partial order equivalently.

Let P be a well-founded protocol. Given a position p ∈ Pos , we define the
depth of p, written depth≺p

(p), inductively as follows: if p is minimal wrt to ≺p

then depth≺p
(p) = 0; otherwise depth≺p

(p) = 1 + max {depth≺p
(p′) | p′ ≺1

p p}.
The depth of protocol P , denoted by depth(P), is given by max {depth≺p

(p) | p ∈
Pos}.

186 S. Fröschle

Example 6. Recall the NSPK protocol from Example 1. It is easy to check that
≺1

p is acyclic, and hence, the NSPK protocol is well-founded. Moreover, observe
that it has depth 6.

Example 7. The Woo and Lam protocol (c.f. [6]) is a flawed authentication pro-
tocol where B wants to verify that A is present with the help of a server S.

1. A −→ B : A

2. B −→ A : NB

3. A −→ B : {NB}sh(A,S)

4. B −→ S : {A, {NB}sh(A,S)}sh(B,S)

5. S −→ B : {NB}sh(B,S)

Formally, the protocol is specified by the following role scripts:1

A B S

1 −A,B, S −B,A, S −S,A,B

2 +A −A −{A, {NB}sh(A,S)}sh(B,S)

3 −NB +NB +{NB}sh(B,S)

4 +{NB}sh(A,S) −X

5 +{A,X}sh(B,S)

6 −{NB}sh(B,S)

The Woo and Lam protocol is not well-founded: e.g., we have (B, 4) ⇒p

(B, 5) →p (B, 4), and (S, 2) ⇒p (S, 3) →p (S, 2). The first situation is an exam-
ple of how blind copies always cause ≺1

p to be cyclic.

Example 8. The Otway-Rees protocol (c.f. [6]) establishes a shared secret be-
tween two agents with the help of a trusted server.

1. A −→ B : A,B, {NA, A,B}sh(A,S)

2. B −→ S : A,B, {NA, A,B}sh(A,S), {NB , A,B}sh(B,S)

3. S −→ B : {NA,KAB}sh(A,S), {NB ,KAB}sh(B,S)

4. B −→ A : {NA,KAB}sh(A,S)

Formally, it has the following role scripts:

A B S

1 −A,B, S −B,A, S −S,A,B

2 +A,B, {NA, A,B}sh(A,S) −A,B,X −A,B, {NA, A,B}sh(A,S), {NB, A,B}sh(B,S)

3 −{NA,KAB}sh(A,S) +A,B,X, {NB, A,B}sh(B,S) +{NA,KAB}sh(A,S), {NB,KAB}sh(B,S)

4 −Y, {NB,KAB}sh(B,S)

5 +Y

It is easy to see that ≺1
p is cyclic due to blind copies: e.g., we have (B, 2) ⇒p

(B, 3) →p (B, 2) by substituting any encryption for X . Note that in this example
blind copies are merely relayed from an input concatenation to an output con-
catenation, and the Dolev-Yao intruder could have provided the relaying himself.
Hence, the following simplified formalization is adequate with respect to most
analysis problems (including leakiness).

1 Long-term shared keys sh(A,B) can be added to our framework analogously to
public keys.

Leakiness is Decidable for Well-Founded Protocols 187

A B S

1 −A,B, S −B,A, S −S,A,B

2 +A,B, {NA, A,B}sh(A,S) −A,B −A,B, {NA, A,B}sh(A,S), {NB , A,B}sh(B,S)

3 −{NA,KAB}sh(A,S) +A,B, {NB , A,B}sh(B,S) +{NA, KAB}sh(A,S), {NB ,KAB}sh(B,S)

4 −{NB ,KAB}sh(B,S)

It is easy to check that this transformed version is well-founded.

The examples are representative for other well-known authentication and key
establishment protocols of the Clark/Jacob library [6] and the collection of Boyd
and Mathuria [4]. Protocols for authentication and key establishment without a
trusted third party are typically well-founded. For example, this also includes the
corrected NSPK by Lowe, the ISO/IEC 9798-2 three pass mutual authentication
protocol, and the revised Andrew protocol of Burrows et al. Protocols with
a trusted third party typically involve that the server sends a ticket to one
of the agents, who then passes it on to another agent. Since tickets formally
lead to blind copies such protocols are not well-founded. However, many can be
transformed into equivalent well-founded protocols similarly to the Otway-Rees
protocol in Example 8. This includes Kerberos Version 5, Yahalom, and Bauer-
Berson-Feiertag. Other protocols send the ticket in an encryption and will not
allow this transformation. Examples are Needham-Schroeder Shared Key, and
the Denning-Sacco protocol. Interestingly, it seems difficult to find real protocols
without flaws that fail to be well-founded without this being due to blind copies.

The Characteristic. We are now ready to establish the characteristic of well-
founded protocols P : for every bundle B of P , the honest causal depth of B is
bounded by the depth of P . This follows from: More precisely, for every event e of
B, the honest causal depth of e is bounded by the depth of the protocol position
that is instantiated by e.

Lemma 9. Let P be a well-founded protocol, and let B be a bundle of P . For
all e ∈ E we have: depth≺h

(e) ≤ depth≺p
(pos(e)).

Theorem 10. Let P be a well-founded protocol. For all bundles B of P we have:
depth≺h

(B) ≤ depth(P).

Honest Cause Components. Let P be a protocol in general, and let B =
(S,<, {Πe, srce}e∈Ein) be a bundle of P . Given e′ ∈ E, define the honest cause
set of e′ by e′ ⇓h= {e′′ | e′′ �h e′}, and the strict honest cause set of e′ by
e′ ↓h= {e′′ | e′′ ≺h e′} respectively. When B is not uniquely determined by the
context we also use e′ ⇓B

h and e′ ↓Bh . The honest cause component induced by e′

is defined by (S � EC , <� EC , {Πe, srce}e∈Ein�EC) where EC = e′⇓h ∪{init}.

3 Well-Structured Source Trees and Bundles

This section is about well-structured source trees and bundles. First we introduce
two basic concepts, bricks and the event of first deducibility of a message. Then
we provide the definition based on these concepts. We show that every bundle can

188 S. Fröschle

be transformed into a well-structured bundle with the same underlying skeleton.
Finally, we prove two structural lemmas: the BWS Lemma, and the WS Lemma
respectively. The latter will allow us to transform honest cause components into
bundles in Section 4. In the following, fix a protocol P .

Basic Concepts. Given a set of messagesM , we wish to capture those messages
that form the smallest units the intruder has available to build new messages.
Such bricks are deducible atoms, private keys, and encryptions that can neither
be analysed nor synthesized, i.e. honest encryptions. Formally, a brick wrt M is
a message b ∈ DY(M) such that (1) b is an atom, (2) b is a private key, or (3) b is
an honest encryption wrt M . We denote the set of bricks wrt M by Bricks(M).
Given an ordered strand space S, we write Bricks(S) short for Bricks(M) where
M = {msg(e) | e ∈ Eout}. We use Bricks(e ↓), Bricks(e ⇓), and Bricks(B) with
the analogous interpretation. Note that Bricks(M) is not the same as the fringe
of analz (M): a public key encryption might be synthesizable by the intruder but
not analyzable.

Let S = (S,<) be an ordered strand space. Given a message m ∈ DY(S), we
single out the event e at which m becomes deducible for the first time wrt <.
Formally, the event of first deducibility of m wrt S, denoted by efdS(m), is
defined to be the event e ∈ E such that m ∈ DY(e ⇓), and e is minimal wrt <,
i.e. for all other events e′ ∈ E such that m ∈ DY(e′ ⇓), e < e′.

Definition and Existence. The general idea behind well-structured bundles
is this: if the intruder needs to deduce a message m at the current stage of the
protocol run then he will compose m from units that are bricks at this stage; and
he will deduce each thus employed brick b by a decomposition using the message
of the event, say e, at which b has first become deducible in the protocol run,
and units that have been available as bricks at the stage before e. And this is
continued in an inductive fashion.

Assume an ordered strand space S = (S,<). We first define when a source
tree is brick-well-structured wrt S. This is the case when its conclusion, say b,
is a brick wrt S, and b is the result of a minimal decomposition of the message
of efdS(b), say e, and elements of Bricks(e↓). The latter are deduced by source
trees that are brick-well-structured wrt e↓ in an inductive fashion.

Let (Π, src) be a source tree wrt S. Formally, we define when (Π, src) is brick-
well-structured wrt S by induction on the size of S (i.e. the number of events of
S).
Base case |S| = 0: There are no source trees wrt such S.
Inductive case |S| > 0: (Π, src) is brick-well-structured wrt S iff, setting b =
Concl(Π), e = efdS(b), and m = msg(e),

– there is a minimal proof tree Πd of Bricks(e ↓) ∪ {m} � b with leaves l1 :
m, . . . , lj : m, l′1 : b1, . . . , l′k : bk for some j > 0, k ≥ 0, and

– for all i ∈ [1, k], there is a brick-well-structured source tree (Πi, srci) with
Concl (Πi) = bi wrt e↓,

such that

Leakiness is Decidable for Well-Founded Protocols 189

l1 : m . . . lj : m . . . l′1 : b1 . . . l′k : bk

. . .

r : b

Π1 Πk

Πd

bws source tree
l1 : b1 lk : bk

. . .

. . .

r : m

ws source tree

Π1 Πk

Πc

Fig. 2. Well-structured source trees

1. b ∈ Bricks(S),
2. Π is the composition of Πd, Π1, . . . , Πk by replacing for each i ∈ [1, k] the

leaf l′i by the proof tree Πi, and
3. src = {(li, e) | i ∈ [1, j]} ∪⋃{srci | i ∈ [1, k]}.
We say a source tree (Π, src) is brick-well-structured for b wrt S if it is brick-
well-structured wrt S and Concl (Π) = b.

A source tree with conclusion m is well-structured wrt S if it deduces m in
two stages: first, it composes m from bricks wrt S in a minimal way; second, it
deduces each employed brick b by a source tree that is brick-well-structured wrt
S. Let (Π, src) be a source tree wrt S. Formally, we say (Π, src) is well-structured
wrt S iff, setting m = Concl(Π),

– there is a minimal proof treeΠc of Bricks(S) � m with leaves l1 : b1, . . . , lk :
bk for some k > 0, and

– for all i ∈ [1, k], there is a brick-well-structured source tree (Πi, srci) for bi
wrt S

such that

1. Π is composed of Πc, Π1, . . . , Πk by replacing for each i ∈ [1, k] the leaf li
by the proof tree Πi, and

2. src =
⋃{srci | i ∈ [1, k]}.

We say a source tree (Π, src) is well-structured form wrt S if it is well-structured
wrt S and Concl(Π) = m.

Proposition 11. Let S be an ordered strand space, and m ∈ DY(S). Then there
is a well-structured source tree for m wrt S.

190 S. Fröschle

Let B = (S, {(Πe, srce)}e∈Ein) be a bundle. B is well-structured if for every
e ∈ Ein , (Πe, srce) is a well-structured source tree wrt e↓.
Theorem 12. For every bundle B, there is a well-structured bundle B′ such
that B′ has the same underlying skeleton as B.

In the following, we abbreviate brick-well-structured by bws, and well-structured
by ws respectively. Moreover, we make use of the fact that it can be proved that
bws trees are decomposition trees, and that Πc in ws trees is a composition tree.

The BWS Lemma. We now prove a characteristic lemma about bws source
trees, called the BWS Lemma. Assume an ordered strand space S, and a bws
source tree (Π, src) wrt S. Given a node n of Π such that n is labelled by a
brick b ∈ Bricks(S), it is easy to trace back from which leaf b stems from. This
is so because Π is a decomposition tree.

Proposition 13. Let n be a node of Π such that n is labelled by a brick b ∈
Bricks(S). There is exactly one source path of b in subtree(n). Moreover, it ends
in a leaf. We call it srcpath↑Π(n).

The BWS Lemma says: either we can trace back the source of b to the event of
first deducibility of b wrt S, or we can exhibit a leak in S. The latter is the case
when b exists wrapped by an encryption at some stage of the run, but b becomes
first deducible only at a later stage when the encryption can be decrypted by
the intruder. We translate this into the tool of leak witness situations.

Definition 14. Let S be an ordered strand space, and e ∈ E. We say a proof
tree Π contains a leak witness situation wrt S and e iff Π contains

1. an instance of rule Dsenc

nl : {m}k nr : k
np : m Dsenc

such that {m}k ∈ HEnc(e↓) and k ∈ DY(e⇓), or
2. an instance of rule Daenc

nl : {|m|}ag nr : priv (ag)
np : m Daenc

such that {|m|}ag ∈ HEnc(e↓) and priv (ag) ∈ DY(e⇓) respectively.
We call nl the cipher node and nr the d-key node of the leak witness situation.

Proposition 15. Let S be a bundle skeleton, (Π, src) be a source tree wrt S,
and e ∈ E. If Π contains a leak witness situation wrt S and e then S is leaky.
More precisely, the label of the d-key node is a leak at e.

Lemma 16 (BWS Lemma). Let S be a bundle skeleton, and let (Π, src) be
a bws source tree wrt S. For each node n of Π such that n is labelled by a brick
b ∈ Bricks(S) one of the following situations holds:

Leakiness is Decidable for Well-Founded Protocols 191

1. srcpath↑Π(n) ends in a leaf nl such that src(nl) = efdS(b), or
2. srcpath↑Π(n) passes through a node n′ such that n′ is the cipher node of a

leak witness situation wrt S and efdS(b).

The proof of the lemma proceeds by case analysis. Assume Π is of the format
of Fig. 2, and set π = srcpathΠ(n). There are three cases to consider: (1) π is
entirely contained in Πd and does not intersect with the roots of the Πi; then
the first situation can be shown to apply. (2) π starts in Πd but passes through
a Πi. Then we can exhibit a leak witness situation at the transition from Πd

into Πi, and the second situation applies. (3) π is entirely contained in one of
the Πi. Then we can argue by induction hypothesis.

By Prop. 15 a leak witness situation indeed implies a leak. Then we further
obtain the corollary below, where the following fact yields a special case.

Proposition 17. Let S be a non-leaky bundle skeleton. For all atoms a ∈
DY(S) we have: efdS(a) = originS(a).

Corollary 18. Let S be a non-leaky bundle skeleton, and let (Π, src) be a bws
source tree wrt S. For each node n of Π such that n is labelled by a brick b ∈
Bricks(S), we have: srcpath↑Π(n) ends in a leaf nl such that src(nl) = efdS(b).
Moreover, if b is an atom then src(nl) = originS(a).

The WS Lemma. Let B be a ws bundle, and let (Π, src) be the source tree of
some input event e of B. Assume Π is of the format of Fig. 2. The WS Lemma
gives us insights about the source events of the leaves of Π .

Let nl be a leaf ofΠ . Consider the largest path π that traces all ancestor nodes
of nl such that the first and only the first node of π is labelled by a brick wrt e↓.
Since nl belongs to some bws source tree, say Πi, the path π clearly exists. Call
its first node n, and let the label of n be b. Since Πi is a decomposition tree, π
is a source path of b in subtree(n). Hence, it coincides with srcpath↑Πi

(n).

Proposition 19. Let nl be a leaf of Π, and let Πi be the bws source tree within
Π that nl belongs to. nl has an ancestor node n such that n is labelled by a brick
b ∈ Bricks(e ↓) and srcpath↑Πi

(n) ends in nl. We call n the special ancestor of
nl, denoted by anc(nl).

Using the existence of anc(nl) we obtain the following statement about the
source event of nl:

Lemma 20 (WS Lemma). Let B be a ws bundle, and let (Π, src) be the source
tree of some input event e of B. Let nl be a leaf of Π, and let b be the label of
anc(nl). We have:

1. If b is an atom and B is non-leaky then src(nl) = originB(a).

2. If b is a private key and B is non-leaky then b = priv (i), and src(nl) = init .

3. If b ∈ HEnc(e↓) then src(nl) ≺h e.

192 S. Fröschle

The first case is a consequence of Corollary 18. The second case is immediate.
To see the third case assume b ∈ HEnc(e↓) and observe that n must be the root
of Πi (where Πi is given as in Prop. 19). This is so since Πi is a decomposition
tree (hence b cannot be the left child of a decryption node), and we do not
consider compositional keys (hence b cannot be the right child of a decryption
node). Consider the path that traces all ancestor nodes of n in Πc from the
root. Since Πc is a composition tree this path must be a source path of b. If we
combine it with srcpathΠi

(n) we obtain a source path of b in Π that ends in nl,
and hence by definition src(nl) →h e.

4 Transforming Honest Cause Components into Bundles

The main result of this section is this: given a ws bundle B, if B is minimal leaky
then B coincides with the honest cause component induced by the last event of
B. We achieve this as follows. Based on the WS Lemma we show how honest
cause components of non-leaky ws bundles can be transformed into bundles. The
transformation also works for minimal leaky bundles and preserves leakiness.
Then by a minimality argument the main result stated above is immediate. In
the following, fix a protocol P .

Let B be a non-leaky ws bundle, and C be an honest cause component of B.
The only reason why, in general, C is not a bundle is that leaves in the source
trees of C might have their sources outside of EC , i.e. in EB \ EC . Let’s take a
closer look at this situation. Consider a source tree (Πe, srce) of C, and a leaf nl of
Πe such that srce(nl) �∈ EC . By Prop. 19 we know that nl has a special ancestor
node n that is labelled by a brick b of e↓B. By Lemma 20 we further obtain that b
must be an atom that does not originate on an event in C: if b is a private key then
srce(nl) = init , which implies srce(nl) ∈ EC , a contradiction; if b ∈ HEnc(e ↓)
then srce(nl) ≺h e, which also implies srce(nl) ∈ EC , a contradiction; if b is an
atom then srce(nl) = originB(a), and hence originB(a) �∈ EC by our assumption
srce(nl) �∈ EC .

Lemma 21. Let B be a non-leaky ws bundle, and C be an honest cause compo-
nent of B. Let (Πe, srce) be a source tree for some input event e of C. Then for
all leaves nl of Πe with srce(nl) �∈ EC we have: anc(nl) is labelled by an atom a
with originB(a) �∈ EC .

Since for such atoms we do not need to respect unique origination constraints
wrt EC we can substitute them by intruder atoms. Thereby we can transform
C into a bundle. For the transformation we first define the concept of atom
substitution. An atom substitution is a function α : A → A′ such that A,A′ ⊆
Atoms and the map preserves atomic types. We generalize atom substitutions
α to proof trees and strands in the obvious way. Given a proof tree Π we write
Πα for the result of applying α to all terms of Π . Given a strand s, we write sα
for the result of applying α to all terms of s.

In Fig. 3 we provide the algorithm, PruneSubst(C). We first define an atom
substitution that substitutes every atom of C that does not originate in C by an

Leakiness is Decidable for Well-Founded Protocols 193

PruneSubst(Π, src, α)

1. Traverse Π upwards from the root and for each encountered node n do:
(a) if lab(n) = a for some a ∈ domain(α) then do:

i. Π := Π \ {subtree(c) | c is a child of n}
ii. src := src \ {(n, e′) | (n, e′) ∈ src for any e′}
iii. src := src ∪ {(n, init)}

2. Π := Πα

PruneSubst(C)

1. α = {(a, c) | a is an atom of C such that originB(a) �∈ EC

& c is an atom known to the intruder of the same type as a} .
2. For every input event e of C do PruneSubst (Πe, srce, α)
3. For every strand s of C do s := sα

Fig. 3. Algorithm PruneSubst

intruder atom. Then for every proof tree of an input event e ∈ EC we proceed
as follows. We traverse the proof tree from the root upwards until we hit a node
that is labelled by an atom to be substituted. We prune the tree so that such
nodes become leaves. We assign init to be the source of such new leaves. We then
apply the atom substitution to the entire tree. Thereby init provides indeed an
appropriate source for the new leaves. Finally, we apply the substitution to the
strands of C. By Lemma 21 we thereby eliminate all leaves that do not have their
source in EC . Moreover, since we only substitute atoms that do not originate in
EC unique origination constraints are not compromised. Together this ensures
that the result is a bundle.

Theorem 22. Let B be a non-leaky ws bundle, and let C be an honest cause
component of B. Then PruneSubst(C) is a bundle.

Since minimal leaky bundles are non-leaky bundles with one additional output
event the transformation carries over to minimal leaky bundles. Moreover, the
transformation is not too strong in that it preserves leakiness. This is non-trivial
to show and requires a variant of Lemma 21.

Theorem 23. Let B be a minimal leaky ws bundle, and let C be the honest
cause component of the last event of B. Then PruneSubst(C) is a leaky bundle.
(Indeed, it is also minimal leaky.)

Now the main result is immediate: given B and C as above, B must coincide
with C. Otherwise there is an event in B that is not in C. Then PruneSubst(C)
yields a leaky bundle that is smaller than B, a contradiction to the assumption
that B is minimal leaky.

Corollary 24. Let B be a minimal leaky ws bundle, and let C be the honest
cause component of the last event of B. Then B = C.

194 S. Fröschle

5 Main Result and Further Research

Theorem 25. leakiness is decidable for well-founded protocols.

To decide leakiness we only need to check whether there exists a minimal
leaky bundle. By Theorem 12 it is sufficient to only consider minimal leaky
well-structured bundles. By Corollary 24 their size is bounded by that of the
honest cause components of ws bundles. For well-founded protocols the latter
are bounded. This follows from Theorem 10, and the fact that the message size
is bounded: we work with typed messages, and the definition of well-foundedness
excludes blind copies. Altogether this means we only have to consider bundles of
bounded size. As usual we can then work with a fixed alphabet, guess a candidate
bundle, and check whether it is indeed a minimal leaky bundle.

For technical ease we have proved the result for a simple message algebra with
symmetric and asymmetric encryption. It is straightforward to lift all concepts
and proofs to include other cryptographic operations such as digital signatures,
MACs, and cryptographic hash functions. Rather than only defining honest en-
cryptions one can work with honest ciphertexts that fall into the corresponding
subcases. Moreover, by the approach of Arapinas in [2] the decidability result
can be lifted to an untyped message algebra.

Non-trivial extensions include generalizing the result to allow compositional
keys and a restricted form of ciphertext forwarding that cannot be dealt with
by the simple transformation suggested for Example 8. Now that the proof is
in place we can also investigate which standard algebraic theories [8] can be
plugged into the framework. One will only have to check that certain properties
of honest ciphertexts are satisfied. That this is possible is also indicated by [11],
where similar ideas are independently used to obtain decidability in the context
of Diffie-Hellmann protocols.

We see our result on leakiness as a major step towards obtaining decidability
for a class of standard authentication properties. We hope that some of the
insights of Dougherty and Guttman in [11] might help to achieve this. Their
security problem is expressed as geometric sequents, and hence, is much more
general than leakiness; on the other hand, their proof relies on the fact that
there are no temporary secrets. This is naturally given since their class of Diffie-
Hellman protocols does not include encryption. Hence, a combination of the
techniques might cover a wide class of protocols and security properties.
Acknowledgements. The author is very grateful to Joshua Guttman who has shepherded

this paper. His comments and feedback have made this a much improved paper. The

author would also like to thank the anonymous referees for their valuable comments.

References

1. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Trans. Softw. Eng. 22(1), 6–15 (1996)

2. Arapinis, M., Duflot, M.: Bounding messages for free in security protocols. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 376–387.
Springer, Heidelberg (2007)

Leakiness is Decidable for Well-Founded Protocols 195

3. Blanchet, B., Podelski, A.: Verification of Cryptographic Protocols: Tagging En-
forces Termination. Theoretical Computer Science 333(1-2), 67–90 (2005), Special
issue FoSSaCS 2003

4. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer (2003)

5. Chrétien, R., Cortier, V., Delaune, S.: Typing messages for free in security proto-
cols: The case of equivalence properties. In: Baldan, P., Gorla, D. (eds.) CONCUR
2014. LNCS, vol. 8704, pp. 372–386. Springer, Heidelberg (2014)

6. Clark, J., Jacob, J.: A survey of authentication protocol literature: Version 1.0
(1997)

7. Comon-Lundh, H., Cortier, V., Zălinescu, E.: Deciding security properties for cryp-
tographic protocols. application to key cycles. ACM Trans. Comput. Logic 11(9),
9:1–9:42 (2010)

8. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)

9. Dolev, D., Yao, A.C.-C.: On the security of public key protocols (extended ab-
stract). In: FOCS, pp. 350–357 (1981)

10. Dolev, S., Even, S., Karp, R.M.: On the security of ping-pong protocols. Inform.
and Control 55(1-3), 57–68 (1982)

11. Dougherty, D., Guttman, J.: Decidability for lightweight diffie-hellman protocols.
In: CSF 2014, pp. 217–231. IEEE Computer Society (2014)

12. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset rewriting and the com-
plexity of bounded security protocols. J. of Computer Security 12(2), 247–311
(2004)

13. Even, S., Goldreich, O.: On the security of multi-party ping-pong protocols. In:
Symposium on the Foundations of Computer Science, pp. 4–39. IEEE Computer
Society (1983)

14. Fröschle, S.: From Security Protocols to Security APIS: Foundations and Verifica-
tion. To appear in the Information Security and Cryptography series of Springer

15. Fröschle, S.: On well-founded security protocols. In: Joint Workshop on Founda-
tions of Computer Security and Formal and Computational Cryptography (FCS-
FCC 2014) (2014)

16. Guttman, J.D., Thayer, F.J.: Authentication tests and the structure of bundles.
Theor. Comput. Sci. 283(2), 333–380 (2002)

17. Heintze, N., Tygar, J.D.: A model for secure protocols and their compositions.
IEEE Transactions on Software Engineering 22, 2–13 (1996)

18. Lowe, G.: Towards a completeness result for model checking of security protocols.
Journal of Computer Security 7(1), 89–146 (1999)

19. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

20. Ramanujam, R., Suresh, S.P.: A decidable subclass of unbounded security proto-
cols. In: WITS 2003, pp. 11–20 (2003)

21. Sarukkai, S., Suresh, S.P.: Tagging makes secrecy decidable with unbounded nonces
as well. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914,
pp. 363–374. Springer, Heidelberg (2003)

22. Ramanujam, R., Suresh, S.P.: Decidability of context-explicit security protocols.
Journal of Computer Security 13(1), 135–165 (2005)

23. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. In: CSFW 2001, pp. 174–187. IEEE Computer Society (2001)

	Leakiness is Decidable for Well-FoundedProtocols

	1 Preliminaries
	2 Honest Causality and Well-Founded Protocols
	3 Well-Structured Source Trees and Bundles
	4 Transforming Honest Cause Components into Bundles
	5 Main Result and Further Research
	References

