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Abstract. In many data processing tasks, declarative query program-
ming offers substantial benefit over manual data analysis: the query pro-
cessors found in declarative systems can use powerful algorithms such as
query planning to choose high-level execution strategies during compi-
lation. However, the principal downside of such languages is that their
primitives must be carefully curated, to allow the query planner to cor-
rectly estimate their overhead. In this paper, we examine this challenge
in one such system, PQL/Java. PQL/Java adds a powerful declarative
query language to Java to enable and automatically parallelise queries
over the Java heap. In the past, the language has not provided any sup-
port for custom user-designed datatypes, as such support requires com-
plex interactions with its query planner and backend.

We examine PQL/Java and its intermediate language in detail and
describe a new system that simplifies PQL/Java extensions. This sys-
tem provides a language that permits users to add new primitives with
arbitrary Java computations, and new rewriting rules for optimisation.
Our system automatically stages compilation and exploits constant in-
formation for dead code elimination and type specialisation. We have
re-written our PQL/Java backend in our extension language, enabling
dynamic and staged compilation.

We demonstrate the effectiveness of our extension language in several
case studies, including the efficient integration of SQL queries, and by
analysing the run-time performance of our rewritten prototype backend.

1 Introduction

Modern CPUs are equipped with increasingly many CPU cores. Consequently,
parallel execution is becoming more and more important as a means for higher
software performance. However, traditional general-purpose mechanisms for par-
allel programming (such as threads and locks) come with complex semantics [17]
and may increase code size substantially, raising the risk of program bugs. Hence,
modern languages are beginning to provide language facilities that simplify com-
mon parallel patterns.
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Our past work, PQL/Java [14], presented one such system, implemented as
a language extension that adds a Parallel Query Language (PQL) on top of
Java. PQL/Java provides easy access to embarrassingly parallel computations
(computations that can be completed in constant time with enough CPU cores)
and fold -like reductions, both constructing and querying Java containers. Unlike
other parallel language extensions such as Java 8 Streams and Parallel LINQ,
PQL/Java automatically decides which part of a query to parallelise, and how.

Consider a simple example: a user wishes to compute the intersection of two
hash sets, s1 and s2, and at the same time eliminate all set elements e that have
some property, such as e.x < 0. In Java 8 streams, such a computation can be
parallelised with a parallel stream and a filter, as follows:

s1.parallelStream()

.filter(e -> s2.contains(e) && e.x >= 0).collect(Collectors.toSet());

This prescribes the following execution: Java will iterate over s1, possibly in
parallel (after partitioning the set), and for each set element (a) check if it is also
contained in s2, and, if so, (b) also check if it satisfies the filtering condition. All
elements that pass are then collected in an output set.

The same intent can be expressed in PQL as the following:

query(Set.contains(e)):
s1.contains(e) && s2.contains(e) && e.x >= 0;

PQL, unlike Java Streams, does not prescribe an execution strategy for the
above. The PQL/Java system may choose to evaluate the above query ex-
actly as in the Java Streams example, or it may choose to test e.x >= 0 before
s2.contains(e) (since the former will typically be much faster and will elimi-
nate some of the latter checks), it may choose to iterate over s2 instead of s1,
and it may even choose to execute the query sequentially if it predicts that the
overhead for parallel execution would be too high.

PQL can thus perform complex strategic optimisations over parallel queries
that are beyond the scope of other parallel language extensions. Partly this is
due to more restricted semantics of operations (e.g., guarantee of no side-effects,
which allows the order of two conditions to be exchanged).

However, even within a more restricted semantic framework, the ability to
optimise comes at a price:

– PQL must be aware of different execution strategies for language constructs.
For our example above, it must be aware both of the iteration strategy and
of the is-contained-check strategy.

– PQL requires a cost model for each execution strategy in order to be able to
choose between different implementation alternatives.

For example, if a user wishes to query a custom matrix datatype, PQL will
not be able to help, as PQL has no built-in knowledge about this type. The user
can at best convert the datatype, but support for custom queries (such as ‘sum
up all matrix elements for all rows at column 2’) or for parallelism would require
changes to the compiler.
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We have therefore designed an extension specification language PQL-ESL that
simplifies the task of extending PQL, to allow programmers to easily add support
for their own datatypes and computations. In addition to providing PQL-ESL for
language extensions, we have re-implemented the PQL/Java backend in PQL-
ESL. This has allowed us to perform additional optimisations, particularly run-
time query optimisation.

Run-time query optimisation applies common ideas from staged execution to
query processing: we re-optimise queries as new information becomes available.
In our earlier example, the dynamic execution system may determine the sizes of
s1 and s2 before deciding which execution strategy to apply. This is critical for
efficient execution: recall that we iterate over one set and check for containment
in the other. Iteration is O(n) over the size of the set, but containment checks are
O(1) for hash sets. Iterating over the smaller set therefore provides substantial
performance benefits.

Our contributions in this paper are as follows:

– We describe PQL-ESL, an extension specification language for our paral-
lel declarative query programming language PQL/Java. PQL-ESL allows
programmers to provide compact, human-readable implementations of exe-
cution strategies, while exploiting static and dynamic information about the
program (static and dynamic types of query parameters).

– We show how PQL-ESL can be used to facilitate run-time query optimisation
in PQL/Java.

– We describe an implementation of PQL mostly in PQL-ESL, and compare
the performance of the PQL/Java system with and without PQL-ESL.

– We provide five case studies to show how PQL-ESL allows users to quickly
extend PQL with new primitives, including an SQL connector.

Section 2 provides background to our PQL/Java system and summarises rele-
vant aspects, with a focus on our intermediate language. Section 3 then describes
our extension specification language, and Section 4 describes how we process and
compile the language. Section 5 evaluates our new backend. Section 6 discusses
related work, and Section 7 concludes.

2 Background

PQL/Java consists of several layers: The query language PQL itself, which we
summarise in Section 2.1, the intermediate language PQIL, basis for our optimi-
sations, which we describe in section 2.2, and the PQL runtime, which supports
all of the above. We expand the description of our pre-existing work from [14]
in this section before discussing our new extension mechanism in Section 3.

2.1 PQL

With parallelism becoming increasingly important, we designed the Parallel
Query Language (PQL) to guarantee that everything written in the language
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can be parallelised effectively. As we learned from the research area of “Descrip-
tive Complexity” [12], the complexity class that most closely corresponds to our
notion of ‘embarrassingly parallel’ problems matches first-order logic over finite
structures. We thus designed PQL on top of first-order logic, with an extension
to support fold -like reductions (which are not embarrassingly parallel, but are
present in most practical parallel frameworks, such as Map-Reduce).

Our goal is to guarantee that any computation expressed in PQL is either
trivial or highly parallelisable. This is certainly the case with our original set of
primitives. While user extensions and convenience support for user data types
may violate this guarantee, our compiler can be set up to issue suitable warnings.

Below is a brief PQL example:

exists int x: s1.contains(x) && x > 0;

Here, x is a logically quantified variable of type int. This query tests whether
there exists any element in set s1 that is greater than zero and returns true or
false accordingly. Analogously, we provide universal queries via forall.

PQL queries may include Java expressions as logical constants, as long as
these expressions do not depend on logically quantified variables. For example:

exists int x: s1.contains(x) && x > arbitraryMethod();

Here, we treat the subexpression arbitraryMethod() as a logical constant—we
execute it precisely once, and supply its constant result to the query. Note that
we do not allow PQL programs to use arbitraryMethod(x), as x is a logically
quantified variable. This is a design decision to ensure that programmers don’t
have to worry about the order of side effects if arbitraryMethod is not pure.

We further provide query, which constructs a container; we have already seen
it used to construct sets, but it can also construct arrays and maps:

query(Map.get(int x) = int y): s1.contains(x) && y==x*x;

constructs a map from all values in s1 to their square values.
reduce signifies a value reduction:

reduce(addInt) int x: s1.contains(x);

sums up all values from set s1. Here, addInt can be a user-defined static binary
method that we require to be associative, and annotated with a neutral element
(0 in this case, to be returned in case s1 is empty). We require the method to be
associative, to permit parallel computation with subsequent merging. Note that
in the above we will reduce all viable x values, meaning that x determines both
the set of possibilities we consider and the bag of values we combine. In some
cases, these are not the same and x may occur more than once; to support this
scenario, we provide the following syntax:

reduce(addInt) int x over int y: x = a[y] * b[y];

which computes a vector dot product over all vector indices y.
Our query constructions may be nested freely. For example,

query(Map.get(int x) = int y):

s1.contains(x) && y = reduce(mulInt) int z: range(0, x, z);
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would compute a map from all values in s1 to their factorial values. Here, range
is a method that constructs a set of values from 0 to x and tests whether z

is contained within; our system has special support for evaluating this method
efficiently (i.e., without generating an intermediate set).

In addition, our query expressions may contain any Java expressions, though
only some of them may contain logical variables. Specifically, logical variables
may occur in any primitive computation or expression (i.e., we model all unary
and binary operators, including instanceof and the ?: ternary operator), as well
as .contains(), get(), and array index accesses on sets, maps, and arrays. We
further simplify syntax so that map and array accesses can use the same notation.

2.2 The PQL Intermediate Language, PQIL

Our focus in this paper is on our system’s backend, which operates on our re-
lational intermediate language, PQIL. Every operator in the language can be
viewed as a predicate, i.e., a virtual (not necessarily physically materialised)
database table. Our system performs computations as a generalised version of
a database join. We use the term ‘join operators’ for the PQIL primitives, and
each operator takes a number of parameter variables. For example, the PQL ex-
pression s1.contains(x) && s2.contains(x) may be represented by the following
PQIL program, consisting of two primitive operators in sequence within a block:

{ Contains(s1, x); Contains(s2, x); }

The above will compute a join over s1 and s2, with Contains(s1, x) iterating
over all possible values for x, and Contains(s2, x) filtering out all values that are
not also in s2. We thus translate logical expressions that would have a boolean

value in Java into queries that search for the exact values that will make the
expression come true.

In the above example, Contains(s1, x) writes x and Contains(s2, x) reads
x. PQIL can make this distinction explicit by marking the variables as ‘?x’
for reading and ‘!x’ for writing, i.e., {Contains(?s1, !x);Contains(?s2, ?x); }.
Variables being in ‘read mode’ or ‘write mode’ thus describes the operational be-
haviour of each join operator: Contains(?s1, !x) must write !x and thus iterates
over ?s1, while Contains(?s2, ?x) only reads its parameters and thus performs
a containment check. For optimisation purposes, we support a further variable
mode, ‘ ’, which stands for ‘ignore’: this can be useful e.g. in the PQL query

query(Set.contains(x)): exists y: a[x] = y;

where y is immaterial and we only care about the index values of array a. Here,
our PQIL representation is ArrayLookup〈int〉(?a, !x, ) which our backend can
exploit to generate efficient code that never dereferences any array elements.

Each PQIL program has a program context that assigns each variable v a type
τ(v) and a value binding val(v). Whenever the value is not a known constant, we
set val(v) = �. For example, when performing a range check range(1, 10, x),
the numbers 1 and 10 will be represented by variables with such a known value.
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Join operators are typed; for example, Range(x : int, y : int, z : int) joins
over three integer variables. PQIL allows mismatching actual parameter types;
our backend generates implicit conversion code, including (un)boxing, as needed.

PQL provides join operators to support all of Java’s unary, binary, and ternary
operators, as well as operators to interface with sets, maps, and arrays, as well
as to support conversions, field accesses, and container accesses. Each operator
is monomorphic, so we use different variants for all viable types. Figure 1 lists
some of our operators.

Field〈τ, f〉(o1, o2) o2 = ((τ )o1).f
Contains(s, v) s.contains(v)
RangeContains〈τ 〉(s, e, v) for τ in int, long: s ≤ v ≤ e
ArrayLookup〈τ 〉(a, k, v) a[k] = v
Type〈τ 〉(v) Checks that v has type τ ; checks bounds for integral types

Fig. 1. List of five of our primitive PQIL predicates (“join operators”). The remaining
operators are analogous.

The semantics of each operator is that it will attempt to produce all viable
bindings for all parameter variables !x that match any given, previously bound
variables ?y and then proceed. We may later backtrack to the same operator, at
which point it may proceed again. If no more bindings are available, the operator
aborts. For example, Contains(?s, !x) on a set with three elements will succeed
three times, then abort. We treat ( ) as write-mode variables with fresh names.

We permit duplicate variable bindings where appropriate, so that PQIL ob-
serves a Bag semantics. Formost primitive operators, such asAdd〈int〉(?x, ?y, !z),
variables can only be bound once (there is only one z for any given x and y such
that integer addition yields z = x + y), but for other operators, especially con-
tainer accesses, multiple bindings are possible (as in Contains).

The alternative Add〈int〉(?x, ?y, ?z) reads and compares z and produces one
binding (succeeds, if z = x+ y) or zero bindings (aborts, otherwise).

In addition to the above primitive operators, PQIL provides a number of con-
trol structures: boolean materialisation (translating successful/failed bindings
into true/false values), disjunctive and conjunctive blocks, and reductions.

We have already used conjunctive blocks in our earlier examples (denoted by
curly braces, { j0, ..., jk }). The semantics of such a block are j0 �� . . . �� jk,
i.e., we join each primitive with its neighbour (again with bag semantics). PQIL
also supports a disjunctive block to model the semantics of the ‘or’ operator.

Finally, we use the reduction operator Reduce to express generalised reduc-
tions, which include map, set, and array construction. For example, we express
the PQL query reduce(Map.get(x) == y) : s1.contains(x) && y == x+1 as:

Reduce[MAP(?x, ?y, !m)] {Contains(?s1, !x);Add〈int〉(?x, 1, !y); }
Here, MAP(?x, ?y, !m) is a reductor that specifies that for each viable binding
produced by the body of the reduction (the block containing Contains and
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Add), the fresh map m obtains a mapping from x to y. Multiple mismatching
bindings for x cause an exception. The reduction provides a singular binding of
variable m. Reductions can construct sets, maps, maps with default values, and
arrays, or fold (reduce) values through a user-supplied method.

2.3 Optimising PQIL

Before compiling PQIL to Java bytecode, we perform high-level optimisations:

– Nested Block Flattening splices conjunctive blocks into their parent conjunc-
tive block, if it exists (analogously with disjunctive blocks).

– Common Sub-Join Elimination combines redundant primitive join operators
within the same conjunctive block, if one is equal to or generalises the other.

– Type Bound Elimination eliminates unnecessary occurrences of Type〈τ〉(x).
– Access Path Selection re-orders join primitives (see below).
– Map Reduction Nesting merges nested reductions that are part of a map/ar-
ray construction into a single reduction [14].

– Read/Write Assignment assigns each variable occurrence a flag to determine
whether the variable is read, written, or ignored (Section 2.2). The accom-
panying must-define flow analysis is an important subroutine in Access Path
Selection, and it enables Common Sub-Join Elimination.

Access path selection (or ‘query planning’) is a standard database optimisa-
tion [15] that we apply to each conjunctive block. This technique searches for
the most efficient strategy for satisfying a sequence of constraints (as expressed
in our join operators). PQL uses a single-phase access path selector that re-
orders individual join operators within a conjunctive block. This optimisation is
mandatory in our compilation process, as it assigns variables’ read/write modes.

Consider the intermediate code in Figure 2 (‘Unoptimised’). The reduction
here contains five primitive join operators, of which Type Bound Elimination can
eliminate one (Type〈Point〉(e)). Access path selection can re-order the remain-
ing four. Our access path selection employs a beam search strategy (retaining
the best partial access paths found so far) to limit the search space.

We model the cost for executing each join operator in four cost attributes :

– size: how many bindings do we expect the operator to generate?
– cost : how much does generating one binding cost?
– selectivity: what fraction of past bindings will our current join not filter out?
– parallel : is this join operator parallelisable?

Not all of this information is available at compile time, and estimate where
necessary. This can lead to sub-optimal decisions (Section 5), highlighting the
need for staged compilation.

We use the parallel flag to discount size, but only if the join operator occurs
in the head of its block, which is where our backend can parallelise the operator.

Each join operator can have different sets of cost attributes depending on its
variables’ access modes. For example, the size of Contains(?s, ?v) is always 1,
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import static edu.umass.pql.Query;
public class C {
public static void main(...) {

int[] a = ...;
Set<Point> r =

query(Set.contains(Point e)):
s1.contains(e) && s2.contains(e)

&& e.x >= 0;...
} }

C.class

C$$PQL0.class

Reduce[SET(e, r)] {
Type〈Point〉(e);
Contains(s1, e);
Contains(s2, e);
Field〈Point, x〉(e, t0);
GE〈int〉(t0, 0); }

Reduce[SET(?e, !r)] {
Contains(?s1, !e);
Field〈Point, x〉(?e, !t0);
GE〈int〉(?t0, 0);
Contains(?s2, ?e); }

Reduce[SET(?e, !r)] {
Contains(?s2, !e);
Field〈Point, x〉(?e, !t0);
GE〈int〉(?t0, 0);
Contains(?s1, ?e); }

javac

Frontend

OptOpt

Unoptimised

Plan 1 Plan 2

Backend

Fig. 2. An example of PQL compilation. Here,GE is the join operator for greater-than-
or-equal. The frontend emits PQIL (Section 2.2), which we then optimise (Section 2.3).
Access path selection identifies multiple query plans (Plan 1, Plan 2) and chooses the
most efficient one. The backend generates Java bytecode either to disk (depicted) or
into memory at runtime (Section 4).

whereas the size of Contains(?s, !v) is exactly the size of the set s. Some com-
binations of access modes are disallowed, if our system lacks an implementation.

Each variable x is marked as ‘write’ (!x) precisely the first time it appears (or
never, if it is a logical constant and val(x) �= �), so our search algorithm can
unambiguously determine access modes and the correct cost from our model.
In our example, the possible solutions cannot start with Field〈Point, x〉(e, t0)
because e is not bound yet. Similarly, we cannot start with GE〈int〉(t0, 0) be-
cause t0 is not bound yet. Our algorithm will only consider Contains(?si, !e)
(for i ∈ {1, 2}) as initial join operation in the block. Filtering by set is slower yet
equally selective to loading and comparing an integer field, so our access path
selector will generate either Plan 1 or Plan 2 here.

3 PQL Extension Specification Language

Reflecting PQL, our intermediate language PQIL is a powerful language with a
large degree of variability in how each of its join operators might be implemented.
This poses a challenge for implementing new join operators or extending existing
ones. We thus opted for an extension specification language, PQL-ESL, which
allows us to compactly (re-)implement old and new operators.

We designed PQL-ESL so that it should be (a) easy to compile to efficient Java
bytecode, (b) simplify the implementation of PQIL and future extensions, and
(c) be compact and expressive. To that end, we based our language syntax and
semantics on Java’s, for expressions, statements, and method definitions, and
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borrowed from Java’s annotation syntax for special attributes. The language
includes a number of changes and adds several features:

– Reference semantics for operator parameters
– Type inference (parameters and locals need not be explicitly typed)
– Access mode specifications and tests
– sections
– Control operators to signal successful variable binding, or binding failure
– PQIL property tests for parameters
– Templates
– Explicit parallelism support
– Cost model attribute computations

Figure 3 summarises the most salient features of our grammar. In the fol-
lowing, we discuss some of the more interesting features from the above list by
looking at examples from our specifications.

3.1 Access Mode Specifications

Consider the following example:

1 @accessModes{rr}

2 lt(val1, val2) {

3 local:
4 if ( @type{int} val1 < val2) proceed;
5 else abort;
6 }

This program describes the implementation of the PQIL operator for ‘less
than’. The first line describes the possible access modes for all parameter vari-
ables, which we here restrict to be read mode (r) for both. We permit listing
multiple access modes, with read, write (w), and wildcard mode ( ) annotations,
plus a meta-wildcard (.) operator for any of r, w, .

Line 2 specifies the operator and its parameters. PQL-ESL infers variable
types automatically in most cases, so users need not specify them here.

3.2 Sections

Line 3 is a section specifier. Each PQL-ESL program can describe up to four
sections: global, which marks one-time initialisation code (which we don’t need
here), local, which marks code that must be executed each time we start evalu-
ating the PQIL operator, iterate, which marks code that we must evaluate every
time we backtrack to this operator due to the failure of a subsequent operator,
and model, which computes cost model attributes (Section 3.7). Section markers
may be conditional: we use this to permit conditionally moving computations
from the local to the global section.

Lines 4 and 5 contain a standard Java conditional. The only noteworthy fea-
ture is the use of @type{int}, which can resolve type ambiguity in overloaded
operators. This is optional (Section 3.5); omitting the specification would permit
our implementation to compare any numeric type.
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opdef ::= 〈generic〉∗ (〈init〉 ‘{’ 〈stmt〉∗ ‘}’)?
init ::= 〈accessm〉 ID ‘(’ (ID (‘,’ ID )∗)? ‘)’
generic ::= ‘@generic’ ‘{’ ID ‘}’ ‘{’ STR (‘,’ STR)∗ ‘}’
accessm ::= ‘@accessModes’ ‘{’ (ACC (‘,’ ACC)∗)? ‘}’
stmt ::= 〈if〉 | 〈section〉 | 〈goto〉 | 〈return〉 | 〈while〉 | 〈do〉 | 〈assign〉 | 〈call〉
return ::= ‘abort’ ‘;’ | ‘proceed’ ‘;’ | ‘proceed’ ‘on’ ID ‘?=’ 〈expr〉 ‘;’
assign ::= 〈typeinfo〉? ID ‘=’ 〈expr〉 ‘;’
typeinfo ::= ‘@type’ ‘{’ TYPE ‘}’

Fig. 3. Partial EBNF grammar for PQL-ESL, eliding more standard language con-
structions (nested expressions, while loops, new object constructions, method calls,
etc.) that are syntactically similar or identical to Java

3.3 Special Control Operators

Finally, lines 4 and 5 also describe what we should do if the comparison succeeds
(proceed) and what we should do if it fails (abort). Here, proceed signals a
successful evaluation of the PQIL operator, proceeding e.g. to the next nested
operator in a conjunctive block or to a reductor that aggregates a successful con-
clusion of a reduction body. abort, meanwhile, signals that the reductor cannot
produce any (or any more) bindings and must backtrack. It then backtracks to
the most closely nested operator that provides an iterate section. All control
flow must end with an explicit abort or proceed; we do not permit leaving the
body of an PQL-ESL program implicitly.

3.4 Property Tests on Parameter Variables

Since each operator may supply multiple access modes, PQL-ESL code provides
a means for testing these access modes, using the operator isMode( (a1, ...,

an), (m1 || ... || mk) ), which evaluates to ‘true’ iff the access modes for
variables a1 to an match one of the access modes mi (1 ≤ i ≤ k).

As an example, consider the following (slightly simplified) fragment from our
original implementation of negation, Neg(a, b):

if (isMode( (b), (r) )) {

tmp = !a;

if (b == tmp) proceed;
else abort;

} else {

b = !a;

proceed; }

This shows the variability when dealing with two access modes (read vs. write)
for the second parameter: if b is in read mode, we must compare to determine
if we should proceed or abort, if it is in write mode, we assign to it. Wildcard
mode would require another isMode check.
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We have found the above to be a very common pattern expression and function
operators so we provide a short form, proceed on v ?= expr, that expands to
the above and also handles wildcard mode. The proceed-on operator simplifies
the above example to proceed on b ?= !a;

We provide a second test on parameters, isConst(x), which evaluates to
‘true’ iff val(x) �= �; we use it to move initialisations related to x from the local
section to the global section to reduce initialisation overhead to constant time.

3.5 Templates

Our earlier definition of lt is not the actual code that we use, as that would
require a substantial amount of repetition both to support PQL’s primitive nu-
meric types and to support similar operations. Instead, PQL-ESL provides a
template programming mechanism that allows us to re-use such specifications,
as in the example below:

@generic{operator}{"<=", "<"}

@generic{type}{"int", "long", "double"}

@accessModes{rr}

lt_lte(val1, val2) {

local:
if ( @type{#type#} val1 #operator# val2)

proceed;
else abort;

}

This program has two template parameters: operator, which can be ‘less-than
or equal’ (<=) or ‘less-than’ (<), and type, which can be int, long, and double.
The PQL-ESL template processor generates all 6 possible pairs of substitutions
for the two parameters. Such instantiation is critical for performance, as each
of the 6 different operations uses different bytecode operations. Note that we
could omit @type{#type#} and the explicit template specification for type, as
type inference will implicitly introduce suitable template parameters as needed.

3.6 Explicit Parallelism

Support for parallel execution is a centralPQL feature, soPQL-ESLprovides a spe-
cial interface for parallel access. Operator specifications call isParallelMode()
to detect whether the operator should run in parallel. In parallel mode, two pre-
defined variables are available: __thread_index (indicating the current operator’s
thread ID) and __threads_nr (indicating the total number of threads in use).

For example, an implementation of ArrayLookup(?a, !i, !v) may explore the
array a in parallel on multiple cores. It reads __thread_index and __threads_nr

and computes the beginning and end of the array indices it should explore; the
perspective of the individual operator is that it will explore only that fraction
of the index space. Each operator implementation provides its own solution for
parallel execution.
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3.7 Cost Attributes

Effective language extensions for PQL must also be able to provide cost models
to our access path selection mechanism; otherwise we may use them ineffectively
(i.e., pick a less efficient access path over a more efficient one). We therefore
provide a special section, model, that only serves to compute cost attributes.
This model section is divided into three subsections: size, cost and selectivity
(cf. Section 2.3). Let’s have a look at the formulas to calculate the cost of an
entire given conjunctive block:

c0 = 0, cn = (cn−1 + costn) · sn−1

s0 = 1, sn = sn−1 ·sizen ·selectivityn

c1 = (c0 + cost1) · s0 =
(0 + 2.5) · 1 = 2.5
s1 = s0 · size1 · selectivity1 =
1 · 1024 · 0.04 = 40.96

c2 = (c1 + cost2) · s1 =
(2.5 + 1) · 40.96 = 143.36
s2 = s1 · size2 · selectivity2 =
40.96 · 1 · 1 = 40.96

c3 = (c2 + cost3) · s2 =
(143.36+1)· 40.96 = 5872.0256
s3 = s2 · size3 · selectivity3 =
40.96 · 1 · 0.5 = 20.48

Contains(?set, !e)
cost1 = 2.5
size1 = size(set) = 1024
selectivity1 = 0.04

Field〈Point, x〉(?e, !t0)
cost2 = 1
size2 = 1
selectivity2 = 1

GE〈int〉(?t0, 0)
cost3 = 1
size3 = 1
selectivity3 = 0.5

.

.

.

In this example we calculated the cost for the earlier example Plan 1 of figure 2.
The cost till operator i is respectively in ci. Assignments to distinguished variables
in these sections (e.g., size), are handed to the access path selector. Note that
the parallel cost attribute need not be specified, as we can infer it from uses of
isParallelMode().

Since this section is part of the specification body, it can take advantage
of access mode, constantness, and parallelism information, as well as dynamic
properties (such as actual container sizes).

4 Translation with PQL-ESL

PQL-ESL allows us to specify what bytecode we should generate for which join
operator. However, the exact bytecode can vary substantially based on (a) access
modes for each parameter x, (b) type information τ(x) and value bindings val(x),
as provided by the program context (where known), and (c) whether we are
generating code for parallel execution or for sequential execution.

We first precompile all PQL-ESL specifications into Java code; this step is
only required to add or change PQIL operators. Precompilation reads PQL-ESL
specifications, performs name and type analysis as well as template expansion,
and generates the PQL-ESL static compiler backend.

At static compile time (invoking our extended javac), we process any PQL
source code as per Figure 2, then feed the resultant PQIL into this PQL-ESL
backend. Static compilation determines all compilation possibilities for each of
our PQIL operators in the given context. For each viable configuration of each
operator, it generates a snippet, consisting of bytecode (via ASM [3]) and meta-
data for linking. The dynamic compiler later chooses between snippets.
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4.1 Static Compilation and Snippets

The static compiler backend takes in a PQIL program (passed down from the
compiler frontend, Figure 2) and compiles it to a dynamic code generator. Since
each PQIL operator may be compiled in one of several alternative ways (de-
pending on access modes, etc.), the static compiler performs various checks to
determine which compilation patterns to apply. We derive these checks directly
from each PQL-ESL specification. Consider compiling Contains(s, v). To pro-
vide a correct translation, we must check for numerous alternatives:

(a) What is the mode of v? Read, write, or wildcard? (b) What is the type
of s? An unknown/user-defined set type that we cannot parallelise, or a known
set type whose internal representation we know how to parallelise? (c) Are we
performing parallel access in write or wildcard mode?

As we discussed in the previous section, PQL-ESL can capture all possibilities
concisely. Consider the following example:

1 local:
2 if (isConst(s))

3 global:

4 if (s instanceof PSet) ...

First, consider line 4. Here, we check whether s is of type PSet or a general
set, where PSet is PQL’s set implementation, specially optimised for parallel
evaluation. Additional parallelisable set types can be supported easily.

The default interpretation of the above instanceof check is that we should per-
form it locally, i.e., every time we enter the operator for the first time (possibly
with a new s). This correctly captures the possibility that s might change fre-
quently. Lines 2 and 3 capture a first optimisation: if we know that s is going
to be constant during the evaluation of the query, we only need to execute this
code once (which we accomplish by moving it into the global section).

Thus, the code explicitly handles the distinction between evaluation at oper-
ator execution vs. evaluation at query execution start time. Our system handles
remaining distinctions automatically: if the dynamic compiler knows whether s
is constant and/or whether its dynamic type will be a subtype of PSet, it will
perform constant folding/dead code elimination, though we precompute this op-
timisation at static compile time. That is, the static compiler compiles the same
operator multiple times under different assumptions, such as known PSet (only
compiling the true branch), known not PSet (only compiling the false branch),
and unknown whether PSet (compiling both branches and a dynamic check).

The result of static compilation is a multitude of different bytecode sequences
that contains all of the variations that are plausible from the static compiler’s
perspective. We further separate this bytecode into the static and local+iterate
sections, as these need to be executed at different times. We accompany the
resultant bytecode sections with a brief relocation table, to resolve back-tracking
jumps to the iterate section start. Each such combination we refer to as a snippet.
Simultaneously, our static compiler generates a composition scaffold for each
operator, which is effectively a nested switch table to pick the optimal snippet.
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4.2 Dynamic Compilation

Of our PQIL optimisations (Section 2.3), two (Type Bound Elimination and Ac-
cess Path Selection) potentially benefit from run-time information. Since access
path selection can have a substantial impact on the execution time of a query, our
dynamic compiler re-runs access path selection before dynamic code generation,
factoring in newly available information (e.g., run-time container sizes).

The result is a re-ordered PQIL specification, which we then pass into the
composition scaffold. The scaffold examines each operator parameter’s access
modes and may further examine constantness, dynamic types, and whether the
operator is to be compiled for parallel execution. It then picks the optimally
specialised snippet for each operator and configuration, and links it against its
neighbouring snippets, emitting bytecode that is ready for execution.

5 Evaluation

To test the utility of our PQL-ESL language, we used it to re-implement our
PQL/Java bytecode backend. We found the language to be entirely suitable
to this task, though implementing the Field operator’s field access operation
required the addition of a single PQL-ESL feature.

To further evaluate our language, we performed three forms of evaluation: We
evaluated the usability of PQL-ESL by implementing four new extensions, we ex-
amined in detail the performance of our dynamic compiler with four pre-existing
PQL benchmarks [14] and two new synthetic benchmarks and we implemented
support for communicating with SQL data sources via JDBC.

5.1 Case Studies

To evaluate the generality of our language, we selected four language extensions
that we did not previously support in PQL and added them to our system.

sqrt: Our first extension was a square-root function on doubles. This addition
permits two access modes, one for computing and one for testing the square root.

primes: We further added support for prime numbers. We added two ex-
tensions, PrimeCheck, which determines whether a number is prime by try-
ing to divide by all smaller non-even numbers up to the number’s square root,
and PrimeRange, which computes all prime numbers in a given range, us-
ing the Sieve of Eratosthenes. Our rewriting engine automatically introduces
PrimeRange when PrimeCheck and Range affect the same variable.

Java 8 streams: To bridge the gap between Java 8 streams and PQL, we
added a StreamContains(s, v) operator analogous to our Contains(s, v) op-
erator. In access mode Contains(?s, ?v), it uses a Java 8 EqualityPredicate to
text whether v is contained in the stream s. For access mode Contains(?s, !v),
it iterates over all stream elements and binds them to v, again unifying two
mechanisms into a single interface.
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Extension LOC Snippets

Sqrt 5 4

PrimeCheck 20 2

PrimeRange 42 4

StreamContains 21 4

Modulo 8→61 16→32

Fig. 4. Sizes of our new operators, count-
ing global, local, and iterate sections.
The arrows for the pre-existing Modulo

operator indicate changes due to our ex-
tensions.

Benchmark Snippets Bytes

threegrep 16 1155

wordcount 8 1747

bonus 18 1773

webgraph 16 1608

setnested 8 1407

arraynested 10 993

Fig. 5. Snippet statistics for our bench-
marks. Here, total bytes is the size of
all bytecodes in the final linked bytecode
for the query, in bytes.

modulo: For our last extension, we modified the existing Modulo(x, y, z) op-
erator, for int and long parameters, to permit access modes Modulo(?x, !y, ?z)
and Modulo(!x, ?y, ?z), allowing users to find all x for a given y and z such
that x mod y = z (analogously for y).

Figure 4 summarises the sizes of our extensions, counting their lines of code
and number of snippets. Despite the large amount of variability in many of the
extensions, we found the code sizes to be very manageable.

5.2 JDBC Link

Our JDBC link adds three new user-facing operators: one that represent a
database, one that represents a table in the database, and one that represents
access to a field in the database. In an approach comparable to that of Che-
ung et al.’s QBS [7] we then automatically promote PQL operators to database
operators where possible, using our rewriting engine. We further filter expect-
ed/required result fields automatically through a custom PQIL analysis. In total,
this link uses ten custom operators with 9–53 lines of code. Operators include
a single highly-polymorphic operator that represents all numeric comparisons
between fields and constants, operators for simplified access to three particular
database systems, and the SQL LIKE operator. Automatic promotion to joins
between tables is not supported yet, though the PQL-ESL-specified operators
are as expressive as JDBC permits them to be.

While database access via JDBC can inherently not be parallelised, our JDBC
link allows users to take advantage of our query language and to optimise inter-
actions with data sources on the Java heap.

5.3 Performance Evaluation

We examined our system with the following benchmarks:

– threegrep, which find all strings (in a set of 100-character strings) that contain
the substring “012” [8].
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– wordcount, which computes the absolute numbers of occurrences of words in
documents. We represent words by unique integer IDs. The result is a map
from word IDs to the number of times they occur in a set of documents.

– bonus, which is a well-known example from the databases literature [19] that
computes employee salary boni, given each employee’s department, the de-
partment’s bonus policy, and the employee’s accumulated bonus. The result
is again a map, from each employee to their aggregate bonus.

– webgraph, as defined by Yang et al. [19], in which we compute the set of all
documents in a graph structure that point to themselves via one point of
indirection.

– setnested, which computes the intersection of two random sets of integers,
plus a size bound (similar to our initial motivating example, but without a
field access). One of the sets contains only a single element, while the other
contains 500,000.

– arraynested, which computes the set intersection of two random arrays, again
with a size bound. Sizes of the arrays are identical to setnested.

Figure 5 summarises the number of snippets for each benchmark. Even for
our four more complex benchmarks, our static compiler is effective at keeping
the number of relevant alternatives small. While some important snippets can
reach a substantial size (up to around 650 bytes for a snippet in wordcount that
represents a nested reduction into a default map, to aggregate the total counts),
the size of the ultimately generated bytecode remains below 2kB, within the size
of what we might expect for such a computation.

We took each benchmark’s PQL implementation and compiled it both with
our original backend [14] and with the new PQL-ESL backend. For comparison,
we also ran best-effort manual implementations. We ran all benchmarks 13 times,
discarding the first 3 runs as warm-up runs. Compared to our earlier backend, we
configured our benchmarks to ‘50% mode’, which reduces the workload for each
benchmark by at least 50%, thereby making the dynamic compilation overhead
more easily visible and putting our original system at a deliberate advantage.

We ran all benchmarks on the Oracle JDK 1.8.0 05, on a Sun SPARC64 (Sparc
v9) Enterprise-T5120 system, with 8 cores at 8 SMT threads each. We left all
system configuration at its defaults, other than increasing the default heap size
to 13200 MiB. Access path selection used a search window size of 16.

Our current PQL-ESL backend does not yet serialise snippets to class files.
For our experiments, we therefore ran the static and dynamic compilation phases
in the same JVM, taking care to separate the execution phases. We avoided
including the rest of the PQL/Java compiler by separately compiling all PQL
source code into PQIL and feeding the result directly into our backend.

Figure 6 shows our total execution time, excluding dynamic recompilation
time. The quality of the code generated by our new backend is competitive with
our existing backend for all existing benchmarks, outperforming it in webgraph
and, for small and large numbers of threads, in bonus.

Figure 6 separately shows dynamic recompilation time, which is currently
in the millisecond range, meaning that dynamic recompilation is only effective
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Fig. 6. Benchmark execution times: Execution time (y axis) by number of threads
(x axis). The figure shows manual java implementation (manual), the new backend
(v2 ) and the original backend (comp).
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Fig. 7. Dynamic compilation overhead, split into snippet-based code generation, access
path selection, and remaining initialisation (allocating supporting data structures)
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Fig. 8. Execution times (y axis) for queries with increasing workloads (x axis), in
benchmarks that rely on dynamic access path selection, running single-threaded
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for large data sets. We can leverage this insight to use suitable heuristics that
determine whether dynamic optimisation is warranted from the size of any in-
put containers, and default to execution without dynamic compilation for small
workloads, where sub-optimal access paths are not critical.

Dynamic compilation overhead is the price we pay for dynamic optimisation.
We see the value that we gain for this price in Figure 8, which again shows
our benchmarks setnested and arraynested. Both benchmarks operate over two
containers with substantially different sizes. Performance depends on picking the
larger container to iterate over, and the smaller container to check containment
in; this is only possible with run-time information.

For each benchmark, we scale the sizes of both containers by the factor on
the x axis. In our graphs, comp and v2 show our old and new backend, re-
spectively. As we can see, our new backend outperforms the old backend even
without recompilation. However, execution time increases exponentially for both
implementations if they choose the less optimal container for iteration. v2 opt
shows our new backend with dynamic re-compilation, with near constant-time
performance. Initialisation overheads are again shown separately, in Figure 6.

Overall, we found performance of PQL-ESL to be on par with our current
system when not factoring in dynamic optimisation. With dynamic optimisation,
our PQL-ESL backend can greatly outperform our existing system. At the same
time, re-writing our backend in PQL-ESL has given us the flexibility to re-target
compilation to static or dynamic compile time, to add new language features
quickly, and to apply further language-based optimisations in the future.

6 Related Work

Extensible query languages are widely known in the literature. For example, the
Meteor language for the Stratosphere platform [11] can be extended with new
operators, as can PigLatin [13]. FlumeJava [5], PLINQ [9] and Java 8 Streams,
which act as internal DSLs, can be extended by implementing predefined inter-
faces. All of the above systems thus permit users to add new operators.

However, to the best of our knowledge none of these systems utilise a special-
purpose extension language to simplify optimisation, multi-stage or otherwise.
Similarly, none of the above systems will automatically select between different
modes of user-defined operators, as permitted by our read/write mode distinc-
tion. The only optimisations they can apply to language extensions are therefore
optimisations provided by the host language compiler. As we have shown, this
suggests that these systems may be missing optimisation opportunities.

Delite, a framework for highly-optimised domain-specific languages, includes a
query language, OptiQL [16] that can conceptually integrate with other domain-
specific languages, performing parallelisation and other optimisations across
DSLs. However, we are not aware of OptiQL supporting custom operators.
StreamJIT [2], a commensal compiler framework, treats IRs as libraries and
permits IR-level optimisation. Instead of code generation, commensal compila-
tion relies on compiler optimisations; however, it is unclear that complex control
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flow between operators such as ours could be inlined automatically (and without
inline guards) by standard JVM JIT inlining.

Meanwhile, general-purpose Turing-complete languages geared at easing ac-
cess to parallelism, such as Chapel [4], Fortress [1], and X10 [6] allow user-defined
extensions through standard abstractions (functions, classes). However, these
languages provide control over parallel primitives (task distribution, atomic re-
gions) rather than automating parallelisation, and being Turing-complete, they
may be too powerful for effective automatic parallelisation. By contrast, PQL/-
Java strives first to be easy to parallelise, foregoing expressivity to achieve this
goal, with PQL-ESL bridging the gap to our Turing-complete host language.

Our focus in this paper has been on extending the PQL/Java backend. Com-
plementary frontend extensions could be based on techniques from the literature,
such as those found in Sugar [10] or Silver [18].

7 Conclusion

PQL-ESL is a mechanism for extending the PQL/Java backend with support for
new primitives and for more effectively optimising existing primitives. Leveraging
PQL-ESL with a two-stage compiler permits us to compile PQL queries statically
and dynamically re-optimising as new information becomes available.

We have shown that PQL-ESL is effective at describing PQL primitives by
re-implementing our compiler backend in it, and effective at describing new prim-
itives by adding four extensions to PQL. Furthermore, our experiments demon-
strate that our execution performance is competitive with our previous backend.
For some queries, dynamic compilation enables optimisations that permits the
PQL-ESL backend to outperform our previous backend by reducing the algo-
rithmic overhead from O(n) to O(1). Our implementation is publicly available1.
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