
DEFENDER: A DEcomposer for quEries
agaiNst feDERations of Endpoints

Gabriela Montoya1(B), Maria-Esther Vidal1(B), and Maribel Acosta1,2

1 Universidad Simón Boĺıvar, Caracas, Venezuela
{gmontoya,mvidal,macosta}@ldc.usb.ve

2 Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, Germany
maribel.acosta@kit.edu

Abstract. We present DEFENDER and illustrate the benefits of iden-
tifying promising query decompositions and efficient plans that combine
results from federations of SPARQL endpoints. DEFENDER is a query
decomposer that implements a two-fold approach. First, triple patterns
in a SPARQL query are decomposed into simple sub-queries that can
be completely executed on one endpoint. Second, sub-queries are com-
bined into a feasible bushy tree plan where the number of joins is maxi-
mized and the height of tree is minimized. We demonstrate DEFENDER
and compare its performance with respect to state-of-the-art RDF engines
for queries of diverse complexity, networks with different delays, and
dataset differently distributed among a variety of endpoints.

1 Introduction

During the last years, the number of datasets in the Linked Open Data cloud
has exploded as well as the number of SPARQL endpoints that provide access
to these datasets1. Although existing endpoints should be able to execute any
SPARQL query, some endpoints reject the execution of queries whose estimated
execution time or cardinality is greater than a certain number, while others
simply time out without producing any answer. With the appropriate endpoint
technology not ready, there is a need to develop techniques to decompose com-
plex queries into queries that can be executed as well as strategies to integrate
retrieved data. We present DEFENDER, a decomposer for queries against fed-
erations of endpoints that stores information about the available endpoints and
the ontologies used to describe the data accessible through the endpoints, and
decomposes queries into sub-queries that can be executed by the selected end-
points. Additionally, DEFENDER combines sub-queries into an execution plan
where the number of joins is maximized and the height is minimized. The former
condition implies that the number of Cartesian products is minimized, while the
latter benefits the generation of plans where leaves can be independently exe-
cuted. DEFENDER was implemented on top of ANAPSID [1], an adaptive query
engine for the SPARQL 1.1 federation extension2 that adapts query execution
1 http://labs.mondeca.com/sparqlEndpointsStatus/.
2 http://www.w3.org/TR/rdf-sparql1-query/.

c© Springer-Verlag Berlin Heidelberg 2015
E. Simperl et al. (Eds.): ESWC 2012 Satellite Events, LNCS 7540, pp. 480–484, 2015.
DOI: 10.1007/978-3-662-46641-4 49

http://labs.mondeca.com/sparqlEndpointsStatus/
http://www.w3.org/TR/rdf-sparql1-query/


DEFENDER: A DEcomposer for quEries agaiNst feDERations of Endpoints 481

schedulers to data availability and runtime conditions. We demonstrate the
performance of the plans identified by DEFENDER, and show that these plans
are competitive with the plans generated by existing RDF engines. A portal
that publishes results presented at the demo section can be found at http://
code.google.com/p/defender-portal/.

2 The DEFENDER Architecture

DEFENDER comprises a Query Planner, an Adaptive Query Engine and a Cat-
alog of Endpoint Descriptions. The DEFENDER Query Planner is composed of
two main components: the Query Decomposer and the Heuristic-Based Query
Optimizer. The former divides sets of triple patterns in SPARQL 1.0 queries into
sub-sets of triple patterns (TPs) that can be executed by the same endpoint and:
(i) share exactly one variable, or (ii) share one variable with at least one of the
TPs in the sub-query. The query decomposer begins creating single sub-queries
with TPs, then it merges the sub-queries that share exactly one variable, and
repeats this process until a fixed-point is reached in the process of creating the
sub-queries. Then, TPs that share one variable with any TPs are added (Fig. 1).

Once the SPARQL 1.1 query is created, heuristic-based optimization tech-
niques are followed to generate a bushy tree plan, where the leaves correspond
to the sub-queries of TPs previously identified. Optimization techniques do not
rely on statistics recollected from the endpoints, just information about predi-
cates in the datasets accessible through the endpoints. A greedy heuristic-based
algorithm is implemented; it traverses the space of bushy plans in iterations and
outputs a bushy tree plan of the SPARQL 1.1 query with the service clause where
the number of joins is maximized and the height of tree is minimized. Thus, the
size of intermediate results and the number of HTTP requests are reduced.

Fig. 1. The DEFENDER architecture

http://code.google.com/p/defender-portal/
http://code.google.com/p/defender-portal/


482 G. Montoya et al.

3 Demonstration of Use Cases

Consider the following SPARQL 1.0 query: Retrieve diseases and genes associ-
ated with drugs tested in clinical trials where Prostate Cancer was studied.

(0) SELECT DISTINCT ?II ?D ?GN2

(1) WHERE {
(2) ?CT1<http://data.linkedct.org/resource/linkedct/condition> ?C1 .

(3) ?CT1 <http://data.linkedct.org/resource/linkedct/intervention> ?I .

(4) ?I <http://data.linkedct.org/resource/linkedct/intervention type> ”Drug” .

(5) ?C1 <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?D.

(6) ?I <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?II.

(7) ?C <http://data.linkedct.org/resource/linkedct/condition name> ”Prostate Cancer” .

(8) ?CT <http://data.linkedct.org/resource/linkedct/intervention> ?I .

(9) ?CT <http://data.linkedct.org/resource/linkedct/condition> ?C .

(10) ?D <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/associatedGene> ?GN2 .

(11) ?D <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/possibleDrug> ?II}

The answer is composed of 192 tupleswhendata fromDiseasome andLinkedCT
are retrieved. However, if the query is run against existing endpoints, Diseasome3

or LinkedCT4, the answer is empty. This problem is caused by the need to tra-
verse links between these datasets to answer the query. Still, the majority of
existing endpoints have been created for lightweight use and they are not able
to dereference data from other datasets. Existing approaches [2,4] are able to
decompose this query into sub-queries; although these approaches can be very
efficient and effective, if queries are comprised of a large number of triple pat-
terns that can be executed by different endpoints, they may time out without
producing any answer. To overcome these limitations, DEFENDER decomposes
the former query into the following SPARQL 1.1 query with the service clause,
which is comprised of four star-shaped sub-queries. These sub-queries are com-
posed of TPs that can be executed by the same endpoint, and that share exactly
one variable or share one variable with at least one of the TPs in the sub-query.

SELECT ?II ?D ?GN2

WHERE {
{ SERVICE <http://www4.wiwiss.fu-berlin.de/diseasome/sparql> {

?D <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/associatedGene> ?GN2 .

?D <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/possibleDrug> ?II. } }.
{ SERVICE <http://linkedct.org/sparql> {

?I <http://data.linkedct.org/resource/linkedct/intervention type> ”Drug” .

?CT1 <http://data.linkedct.org/resource/linkedct/condition> ?C1 .

?CT1 <http://data.linkedct.org/resource/linkedct/intervention> ?I .

?C1 <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?D. }} .

{ SERVICE <http://linkedct.org/sparql> {
?C <http://data.linkedct.org/resource/linkedct/condition name> ”Prostate Cancer” .

?CT <http://data.linkedct.org/resource/linkedct/condition> ?C. }}.
{ SERVICE <http://linkedct.org/sparql> {

?I <http://data.linkedct.org/resource/linkedct/intervention type> ”Drug” .

?I <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?II .

?CT <http://data.linkedct.org/resource/linkedct/intervention> ?I }}. }

Once the query is decomposed, DEFENDER builds a plan that combines the
sub-queries; the generated plan minimizes intermediate results and the number
3 http://www4.wiwiss.fu-berlin.de/diseasome/sparql.
4 http://data.linkedct.org/sparql/.

http://www4.wiwiss.fu-berlin.de/diseasome/sparql
http://data.linkedct.org/sparql/


DEFENDER: A DEcomposer for quEries agaiNst feDERations of Endpoints 483

of HTTP requests. The DEFENDER portal5 presents the behavior of 36 queries
against the FedBench collections: Cross-Domain, Linked Data and Life Sci-
ence [3]. These queries include 25 FedBench queries and 11 complex queries6;
complex queries are comprised of between 6 and 48 triple patterns and can be
decomposed into up to 8 sub-queries. FedBench collections were accessed through
9 Virtuoso7 endpoints which time out at 240 s. or 71,000 tuples. Endpoint simu-
lators were used to configured network latency, endpoint availability and network
packet size; simulators are comprised of servers and proxies. Servers correspond
to real endpoints that are contacted by the proxies, which send data between
servers and RDF engines following a particular transfer delay and respecting a
given network packet size. Different types of delays are illustrated; all of them
follow a Gamma distribution with different average latency to simulate per-
fect, fast, and medium-fast, and set up the network packet size. Additionally,
we produced SPARQL 1.1 queries for different decompositions and executed
these queries in ARQ 2.8.8. BSD-style8 that supports the Federation extension
of SPARQL 1.1. The behavior of ARQ, DEFENDER, and FedX [4] is demon-
strated in these network configurations. Also, it can be observed the impact of
different decompositions on performance and answer completeness.

Effects of network delays on query execution performance. In an ideal
network without delays, it can be seen that ARQ may time out without
producing any answer, while DEFENDER may be able to finalize the query
processing task before reaching a timeout of 1,800 s. On the other hand,
delays may considerably affect the performance of DEFENDER and ARQ
depending on the type of decomposition. For example, the majority of queries
may either time out or produce empty answers when unitary sub-queries are
executed, i.e., when sub-queries are comprised of only one triple pattern. In
contrast, plans comprised of non-unitary sub-queries, i.e., the ones identi-
fied by DEFENDER, are not equality affected by network delays. Although
DEFENDER performance can be deteriorated, execution time of around half
of the queries remain in the same order of magnitude with respect to these
queries executed in a perfect network. ARQ is also able to execute some of
these plans in the delayed networks without decreasing performance signif-
icantly. The observed behavior of the plans comprised of DEFENDER sub-
queries is caused by a reduced number of HTTP requests as well as the size
of intermediate results which usually can be delivered from the endpoints
in a small number of network packets. Thus, even in presence of delayed
networks, the performance of these plans is acceptable.

Answer completeness when different decompositions are executed.
In a perfect network, DEFENDER and ARQ produce all the answers for
the majority of the queries before timing out. But, when delays are consid-
ered the quality is decreased, mainly when plans are comprised of unitary

5 http://code.google.com/p/defender-portal/.
6 http://www.ldc.usb.ve/∼mvidal/FedBench/queries/ComplexQueries.
7 http://virtuoso.openlinksw.com/.
8 http://sourceforge.net/projects/jena/.

http://code.google.com/p/defender-portal/
http://www.ldc.usb.ve/~mvidal/FedBench/queries/ComplexQueries
http://virtuoso.openlinksw.com/
http://sourceforge.net/projects/jena/


484 G. Montoya et al.

sub-queries are executed. These results are consequence of the poor perfor-
mance exhibited by both engines when unitary sub-queries are run. How-
ever, if intermediate results remain small, quality is not equally affected in
DEFENDER plans even in presence of network latency. We also show the
scenario where the same predicate is accessible through different endpoints
and demonstrate how dataset distributions impact on answer completeness.

Effects of the plan shape on execution time and answer completeness.
Optimal bushy trees and left-linear plans are reported for each query and
executed in DEFENDER. These plans may reduce execution time by up to
one order of magnitude when optimal bushy trees are executed. FedX also
exhibits good performance when FedBench queries are executed, being able
to produce most of the answers. In contrast, DEFENDER plans may outper-
form the ones generated by FedX when the queries are comprised of a large
number of triple patterns. Bushy trees are able to scale up to complex queries,
and are competitive with other execution strategies when simple queries are
processed. Finally, the execution time of plans comprised of DEFENDER
sub-queries is low; these plans may reduce by up to two orders of magnitude
the time consumed by plans comprised of unitary sub-queries.

4 Conclusions and Future Work

We present DEFENDER and illustrate results that suggest that our proposed
techniques may reduce execution times by up to two orders of magnitude, and
are able to produce answers when other engines fail. Also, depending on data
distributions among different endpoints and transfer delays, DEFENDER query
plans overcome plans generated by existing RDF engines if size of intermediate
results and the number of HTTP requests are reduced. In the future we plan to
provide DEFENDER endpoint for real-world applications.

References

1. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an
adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011)

2. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID
descriptions. In: Proceedings of the 2nd International Workshop on Consuming
Linked Data, Bonn, Germany (2011)

3. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench:
a benchmark suite for federated semantic data query processing. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg
(2011)

4. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)


	DEFENDER: A DEcomposer for quEries agaiNst feDERations of Endpoints
	1 Introduction
	2 The DEFENDER Architecture
	3 Demonstration of Use Cases
	4 Conclusions and Future Work
	References


