Key-Homomorphic
Constrained Pseudorandom Functions

Abhishek Banerjeel’*, Georg Fuchsbauer?**, Chris Peikert!***,
Krzysztof Pietrzak® ', and Sophie Stevens® ¥

1 School of Computer Science, College of Computing, Georgia Institute of Technology, USA
2 Institute of Science and Technology Austria
3 University of Bristol, UK

Abstract. A pseudorandom function (PRF) is a keyed function F': K x X —
Y where, for a random key k € K, the function F'(k,-) is indistinguishable
from a uniformly random function, given black-box access. A key-homomorphic
PRF has the additional feature that for any keys k, k" and any input x, we have
F(k+k,z) = F(k,z)® F(k',x) for some group operations +, & on K and),
respectively. A constrained PRF for a family of sets S C P(X’) has the property
that, given any key k and set S € S, one can efficiently compute a “constrained”
key ks that enables evaluation of F'(k,x) on all inputs = € S, while the values
F(k,z) for z ¢ S remain pseudorandom even given ks.

In this paper we construct PRFs that are simultaneously constrained and key
homomorphic, where the homomorphic property holds even for constrained keys.
We first show that the multilinear map-based bit-fixing and circuit-constrained
PRFs of Boneh and Waters (Asiacrypt 2013) can be modified to also be key-
homomorphic. We then show that the LWE-based key-homomorphic PRFs of
Banerjee and Peikert (Crypto 2014) are essentially already prefix-constrained
PRFs, using a (non-obvious) definition of constrained keys and associated group
operation. Moreover, the constrained keys themselves are pseudorandom, and the
constraining and evaluation functions can all be computed in low depth.

As an application of key-homomorphic constrained PRFs, we construct a proxy
re-encryption scheme with fine-grained access control. This scheme allows storing
encrypted data on an untrusted server, where each file can be encrypted relative to
some attributes, so that only parties whose constrained keys match the attributes
can decrypt. Moreover, the server can re-key (arbitrary subsets of) the ciphertexts
without learning anything about the plaintexts, thus permitting efficient and fine-
grained revocation.

* Supported by the third author’s grants.
** Research supported by ERC starting grant (259668-PSPC).

*** This material is based upon work supported by the National Science Foundation under CA-
REER Award CCF-1054495, by DARPA under agreement number FA8750-11-C-0096, and
by the Alfred P. Sloan Foundation. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation, DARPA or the U.S. Government, or the Sloan
Foundation. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

t Research supported by ERC starting grant (259668-PSPC).
 Work done while visiting the Institute of Science and Technology Austria.

Y. Dodis and J.B. Nielsen (Eds.): TCC 2015, Part II, LNCS 9015, pp. 31-60, 2015.
© International Association for Cryptologic Research 2015

32 A. Banerjee et al.

1 Introduction

Pseudorandom functions (PRFs), like the AES block cipher, are the workhorses of cryp-
tography. They allow for efficient and elegant solutions to all the basic symmetric-key
cryptographic tasks, including authentication and encryption. Not surprisingly, PRFs
with additional properties have been intensively investigated, as those properties often
allow for useful additional functionalities. We discuss two such properties below.

Key-homomorphic PRFs. A PRF [GGM&6] is an efficiently computable keyed function
F: K x X — Y. The security property requires that no efficient adversary can distin-
guish F'(k, -) instantiated with a random key k <— K from a uniformly random function,
given oracle access.

A key-homomorphic PRF has the additional feature that for any keys k, &’ and any
input =, we have F(k + k',z) = F(k,z) ® F(k',z) for some group operations +
and @ on K and), respectively. Naor, Pinkas and Reingold [NPR99] observed that
the simple PRF F(k,z) = H(x)*, where H(-) is a random oracle that maps into a
group where the DDH problem is assumed to be hard, is a key-homomorphic PRF.
The first (almost) key-homomorphic PRFs in the standard model was constructed by
Boneh et al. [BLMRI13] from lattice assumptions, and later generalized and improved
by Banerjee and Peikert [BP14].

Applications of key-homomorphic PRFs include an elegant solution to one-round
distributed PRFs for any threshold [BLMR13]. Here, for some parameters ¢{ < n, a
user sends an input x to ¢ servers, who each return a short answer from which the user
can compute F'(k,x). Security requires that to any subset of £ — 1 servers, F'(k,) is
pseudorandom. For £ = n, one can simply share the key as k = ky + ko + ... + &y,
each server computes F'(k;,), and these can then be combined to >_" | F'(k;,z) =
F(>! | ki,x) = F(k,z). Boneh er al. [BLMR13] provide a solution for general £ < n.
Symmetric-key proxy re-encryption is another interesting application, which we will
discuss in detail in Section 1.2.

Constrained PRFs. A constrained PRF for a family of sets S C P(X) has the property
that, given any key k and set S € S, one can efficiently compute a “constrained” key
kg that enables evaluation of F'(k, x) on all inputs « € .S, while the values F'(k, x) for
x ¢ S remain pseudorandom even given kg.

Constrained PRFs were introduced independently in [BW13, KPTZ13, BGI14]. All
three papers note that the classical GGM construction [GGM86] already gives a prefix-
constrained PRF, where from a key k € {0, 1}", for any v € {0, 1}=" one can compute
akey k, that enables the computation of F'(k, x) for all inputs « that start with v. Boneh
and Waters [BW13] construct bit-fixing and circuit-fixing constrained PRFs from mul-
tilinear maps. In the bit-fixing construction, for every v € {0,1,?} one can compute a
key k, that enables the computation of F'(k, x) for any x for which 2; = v; when v; # 7.
The more general circuit-constrained construction allows generating constrained keys
for any circuit C, where with ko one can evaluate the PRF on input z if and only if
C(x)=1.

Key-Homomorphic Constrained Pseudorandom Functions 33

Prefix-constrained PRFs (or rather, “punctured” PRFs, which can be constructed
from them) are a main tool in almost all the applications of indistinguishability ob-
fuscation [GGHT 13b, SW14, PST14]. The papers [BW13, BGI14, KPTZ13] discuss
many more applications of constrained PRFs.

1.1 Results and Techniques

Key-Homomorphic Constrained PRFs. In this paper we construct PRFs that are
simultaneously key-homomorphic and constrained. The key-homomorphic property
holds not only for PRF keys, but also for constrained keys. We first show that the
multilinear-map-based bit-fixing and circuit-constrained PRFs due to Boneh and Wa-
ters [BW13] can be modified to also be key-homomorphic. We then show that the LWE-
based key-homomorphic PRFs of Banerjee and Peikert [BP14] are essentially already
prefix-constrained PRFs, using a (non-obvious) definition of constrained keys and asso-
ciated group operation. Moreover, the constrained keys themselves are pseudorandom,
and the constraining and evaluation functions can all be computed in low depth. The lat-
ter feature can be important for applications of obfuscation, e.g., [GGH'13b, SW14],
where the use of low-depth constrained/punctured PRFs may avoid the need for costly
“bootstrapping” operations and fully homomorphic encryption.

Given the usefulness of the individual key-homomorphic and constraining properties
for PRFs, we expect their combination to find even more exciting applications. We
discuss one such application, symmetric-key proxy re-encryption, in Section 1.2. We
next give a brief overview of our constructions, their salient features, and our proof
techniques.

Bit-Fixing PRFs from MDDH. Leveled multilinear maps [GGH13a] are defined over
a sequence of groups (G, . .., Gy), where G, is generated by an element g;, as bilinear
maps ¢; j: G; X G; — Gy i.e., they satisfy e; ; (9%, g7) = (gi+;)*" forall a, b. The
multilinear decisional Diffie-Hellman assumption states that given random elements
gy, ..., 91", itis hard to distinguish g,{n.;ill % from a random group element in G,.

Using such groups, Boneh and Waters [BW13] define a bit-fixing constrained PRF
for bit strings of length n as follows. A key K consists of a sequence of multilinear
groups of prime order p and values (k, {d; g }ic[n), e{0,1}) from Z,,. The PRF is defined
as F(K,z) = gnk'nie[”l diei While this construction does not appear to be key-
homomorphic, in Section 3 we make it so, by observing that we can “outsource” the
values d; g as D; g = gfi’g to public parameters pp, and redefine

k .)
F(pp» ka l) = e(Dl,xlv e(D2,x27 6(.] e(anl,I",l»Dn,xn)))) = gnk Hie["] disey .

We show that the values D; g can be published without compromising security, that is,
the function values are pseudorandom under the MDDH assumption. Because the secret
key is now just k, the PRF is easily seen to be key-homomorphic.

34 A. Banerjee et al.

Low-Depth Prefix-Fixing PRFs from LWE. In Section 4 we construct key-homo-
morphic prefix-fixing constrained PRFs from the LWE assumption, and hence from
the conjectured hardness of worst-case lattice problems [Reg09, Pei09, BLPT13]. In
addition, natural instantiations of this construction have polylogarithmic circuit depth.
To our knowledge, these are the first sublinear-depth constrained PRFs (whether key-
homomorphic or not), and as such they can admit much more efficient obfuscation
under existing paradigms. (Recall that the basic GGM construction, which yields a
prefix-constrained PRE, is highly sequential.)

Our LWE-based construction is an extension of the recent class of key-homomorphic
PRFs of Banerjee and Peikert [BP14], which generalizes and improves a previous con-
struction of Boneh er al. [BLMR13]. We show that the BP construction can be made
prefix-constrained, and that the constraining algorithm is also key-homomorphic. No-
tably, the approximation factors for the underlying LWE assumption are essentially the
same as in [BP14], e.g., they can be as small as quasi-polynomial *® in the security
parameter.

To show all this, we start with the observation that the security proof for the BP (and
BLMR) construction is very “GGM-like,” i.e., it proceeds in a sequence of hybrids,
one for each successive bit of the PRF input. However, the functions computed in the
hybrids do not quite fit the usual GGM paradigm, because each successive output of
the PRG is broken into two pieces: one piece is fed as input into the next PRG step,
while the “leftover” piece is retained and then later “folded” back into the final output
of all the PRG steps. A natural way to define a constrained key for a partial function
evaluation, then, is to include all the leftover pieces in the constrained key—and this is
indeed the approach we take.

The main technical challenge we face is in defining a suitable group structure on the
leftover pieces, for key homomorphism. At first sight, this appears easy: since the left-
over pieces are eventually combined with the final PRG output via a linear function, it
would appear that one could simply add constrained keys by adding their corresponding
leftover pieces. While this does indeed work—at least syntactically—it yields a useless
construction! The problem is that essentially any application of key-homomorphic (con-
strained) PRFs (e.g., proxy re-encryption as described below in Section 1.2) will require
a statistical “secret sharing”-like property on the (constrained) secret keys. For example,
the sum of any fixed key with a uniformly random key must be uniformly random, so
that the original key is completely hidden. Formally speaking, for any particular con-
straint we need the space of constrained keys to be a finite additive group (so that it
supports a uniform distribution), and for the function to be key-homomorphic under
this group structure.

Resolving the difficulty. Going back to the BP construction, the leftover pieces in con-
strained keys come from a certain finite subset P C Z™, namely, a fundamental region
of a special lattice £. Obviously, the sum of two uniformly random P-elements is not
uniform in P—indeed, it is typically not in P at all! So we cannot naively use the ambi-
ent group Z™ (which is infinite). Another idea would be to use the finite quotient group
Z™/L, i.e., addition modulo the lattice. This also does not work, because the function
is not key-homomorphic under this form of addition.

Key-Homomorphic Constrained Pseudorandom Functions 35

Our solution to the above problem involves a novel method of adding modulo £
“with carries.” That is, the sum of two leftover P-elements is mapped back to P by
reducing modulo the lattice L, i.e., shifting by an appropriate lattice vector x € L. The
vector x is then treated as a “carry” term that is “folded into” the sum of the next two
P-elements in the key, and so on. (The ultimate effect is analogous to grade-school
addition, except that here the “base” in which the “numbers” are written is a high-
dimensional lattice.) We show that by appropriately defining the effect of the carry
terms, the PRF is indeed key-homomorphic under this form of addition.

All of the above applies to the so-called “noisy” version of the BP construction, an in-
termediate object that has perfect constraining, homomorphic, and pseudorandomness
properties, but high circuit depth and (even worse) exponentially large keys. Similar
to [BPR12, BP14], we show that by appropriately “rounding” this noisy construction,
the keys and depth can be made small while preserving the other desirable properties (at
least against computationally bounded attackers). Interestingly, this rounding transfor-
mation requires us to work with a “geometrically nice” set P of representatives modulo
the special lattice £ (which fortunately exists), whereas [BP14] works with any set of
representatives.

1.2 Applications

Using symmetric encryption, one can store data on an untrusted server simply by first
encrypting the files to be stored. Key-homomorphic and/or constrained PRFs enable
symmetric encryption schemes with additional properties which are useful in this set-
ting.

Assume there are many parties who should get access to the stored data, but that we
occasionally need to revoke the access of some party. A simple solution is to re-encrypt
all the data with a fresh key, and then give this key to only the parties who should con-
tinue to have access. Unfortunately, this requires either that the server knows the secret
key k, or that we must download, re-encrypt, and upload the entire database. Boneh
et al. [BLMR13] show how by using a key-homomorphic PRF, one can construct a so-
called proxy re-encryption scheme, where the server can locally transform ciphertexts
under a key k to ciphertexts under a new key k' without learning the plaintexts. We
discuss their construction in Section 5.1.

The second functionality we consider is fine-grained access control, where different
parties should get access to different subsets of the stored data. The trivial but ineffi-
cient solution is to encrypt each file under a separate key, and then send the appropriate
keys to each party. Constrained PRFs (CPRF) provide a more elegant solution: every
encrypted file is associated with some attribute vector x, and every party gets a con-
strained key k, that allows her to evaluate the PRF on only those inputs satisfying an
appropriate predicate p. The PRF then allows her to decrypt only those files whose at-
tributes z satisfy her predicate. Of course, the expressive power of the system depends
upon the predicates supported by the CPRF. A circuit CPRF allows for any efficiently
computable predicate p, whereas prefix CPRFs allow for predicates that are satisfied
by inputs starting with a particular prefix. Using key-homomorphic constrained PRFs
as constructed in this paper, in Section 5 we construct a scheme for outsourced stor-
age that supports proxy re-encryption and fine-grained access control simultaneously.

36 A. Banerjee et al.

The “obvious” way to outsource storage to an untrusted server using CPRFs is to en-
crypt a message m for some attributes x as ¢ = m@® F'(k,). Now, only a party who has
a constrained key k,, where p(z) = 1 can decrypt the ciphertext (c, z), by computing
m = ¢ ® F(k, z). This simple solution has two problems.

First, given two ciphertexts (¢,), (¢, «) for the same attributes x, one can compute
the XOR of the messages as c& ¢’ = ma F(k,z)dm' @ F(k,x) = m@m’, breaking
the security of the encryption scheme.

Second, a single ciphertext ¢ = m @ F(k,) for a known m reveals F'(k, z) = cdm.
This is a problem because the security game for CPFRs only guarantees that F'(k,) is
pseudorandom if the adversary was given constrained keys (for predicates p(.) where
p(z) = 0), but does not guarantee anything if she is also given outputs F'(k,z’) for
some x’ # x. For the GGM based prefix CPRF there is in fact a simple attack (cf.
Footnote 4).

To handle these problems, we show how to “randomize” predicates, in the sense
that p* is a randomization of p if there exists some encoding [-,-] such that for all
(z,7) we have p*([z,r]) = 1 if and only if p(x) = 1. Let P denote the predicates
supported by the CPRF considered. We require p* € P as this will assure that the set
of predicates for the encryption scheme is the same as for the CPRF. We will need some
other properties from the encoding which we outline below. Although we don’t give a
generic result showing how to randomize any set of predicates, we show very simple
constructions that work for prefix, bit-fixing and circuit CPRFs (that is, all the predicates
for which CPRFs have been constructed to date). For bit-fixing and and circuit CPRFs
the encoding is simply concatenation [z, 7] = x||r. For prefix CPRFs the encoding is a
simple prefix-free encoding (cf. the paragraph above Thm. 4).

To solve the problems outlined above, we make encryption probabilistic: we encrypt
mas (r,m @ F(k, [z, r])) using randomness r. A constrained key for the predicate p(-)
for the encryption scheme is now defined as a constrained key for the predicate p™(.)
for the CPRF. Note that with this key we can compute F'(k, [z, r]) and thus decrypt if
p(z) = 1 for any r.

Arguing security is more delicate, and will require two extra properties. First, we
want [-, -] to be injective, which will ensure that the value F'(k, [z, 7]) used in the chal-
lenge ciphertext has never been output before with high probability (i.e., unless we
happened to choose the same randomness r for a previous query). Second, we want
that for every [z,], there exists a predicate py,) € P such that p, ([z,7]) = 1 but
Pla,r)([2,7]) = 0 forall (2',7") # (x,7) (but p[,,1(2) can be 1 for values z outside
the range of [, -]). In the reduction, this latter property allows us to learn the values
F(k,[z,r]) required to answer encryption queries in the CPA game by querying our
oracle (playing the CPRF security game) for the constrained key with predicate py,).
The above property ensures that every such query will exclude at most one possible
candidate for our challenge ciphertext. Thus, if at some point the adversary asks for
a challenge ciphertext using attributes x, we can chose our CPRF challenge as [, 7]
(which will be answered either by F'(k, [z, r]) or uniform), and as we chose r uni-
formly at random, this query will most likely not be invalid (in the sense that it could
be computed using some previously issued constrained key).

Key-Homomorphic Constrained Pseudorandom Functions 37

Efficient re-encryption. Using proxy re-encryption as outlined above requires the server
to re-encrypt the entire database to ensure that a revoked party loses access. When
using fine-grained access control, a party to be revoked might have access to only a
small fraction of the database, so we could re-encrypt only that portion. This would
make re-encryption (potentially much) more efficient, but would require some extra
key-management, as now different parts of the database are encrypted under different
keys.

2 Preliminaries

2.1 Key-Homomorphic Constrained Pseudorandom Functions

We now formally define key-homomorphic constrained pseudorandom functions. We
model constrainability as a directed acyclic graph (DAG) on some (typically huge) set
of nodes. We restrict our attention to DAGs having a unique node that has no incoming
edges, called the root node.

Definition 1. A constrained function family C is given by:

— adirected acyclic graph D = (V, E) with unique root node r € V,

— for each node w € V, a key space KC,, with an efficiently samplable probability
distribution D,, over it,

— for every edge (u,v) € E, a constraining function C,, ,: K,, — K, that is effi-
ciently computable.

The functions C., ., must satisfy the following consistency property: for any u,v € V
and any two paths P = (u = ug, u1,...,ur =v) and P' = (u = ug, uf, ..., u) =)
from u to v, we have that

Cuk—l»uk 0---0 Cul»u2 o Cuo,ul = Cu

pov, © 0 Cugug © Cugag -
For notational convenience, we let Cy, ,,: Ky, = K,, denote the above (composed) func-
tions, and also define C,, := C,., for any node v € V' that is reachable from the root
node r. For consistency with the typical PRF notation, we define Fi,(u) = C, (k) (and
to also cover constrained PRFs, if u represents a subset of inputs then Constraing (u) =
Cu(k))

Lastly, a constrained function family may also have a Setup algorithm, which sam-
ples some (public) parameters that are provided as input to all of the other algorithms.

For the reader who may be familiar with constrained PRFs, we stress that in the above
definition, the DAG nodes roughly correspond with (subsets of) PRF inputs, while the
input k,, and output &, of constraining function C,, ,, correspond to (constrained) secret
keys. Despite these rough correspondences, we stress that in our model there are no
distinct notions of PRF “inputs” or “outputs,” only DAG nodes. This is without loss
of generality: a PRF input can simply be represented as a node w with no outgoing
edges, and the corresponding output is the key k. In fact, our model is somewhat more
general because it allows for defining and proving the pseudorandomness of constrained
keys themselves (even for nodes having outgoing edges), which can be useful in certain
settings.

38 A. Banerjee et al.

Definition 2. Pseudorandomness for a constrained function family C = (D =(V,E),
{Ku},{Cuy}) is defined as follows. It is parameterized by a subset R C 'V of what we
call “challenge” nodes. We consider two closely related experiments (“games”), called
“real” and “ideal,” which proceed as follows:

1. Initialize: For the root node v € V we choose a value k = k, + K, according to
the associated distribution D,.. If the family has a Setup algorithm, it is run and its
output is provided to the adversary.

2. Query: The adversary adaptively issues queries v € V, subject to the condition
that no query in R and any other query have a common descendant in D. That is,
there are no distinct queries u € R, v’ € V and node w € V such that there exists
a (possibly trivial) path from u to w and one from v’ to w.

— In the “real game,” every query v is answered with k,, = Fj,(v) = C, (k).

— In the “ideal game,” if v € V' \ R then it is answered as in the real game, oth-
erwise it is answered with an independent value k;, < D,. (Repeated queries
are answered consistently.)

The family C is said to be pseudorandom if for any polynomial-time adversary, its advan-
tage in distinguishing the real and ideal games is negligible in the security parameter.

In short, the definition above means that constrained keys for the set R of challenge
nodes are pseudorandom. The condition on legal queries is necessary to prevent trivial
distinguishers that work by observing the inconsistency of the ideal-game answers. In a
bit more detail, given answers k,,, k.- for some nodes u € R, u’ € V (respectively) that
have a common descendant w € V/, the distinguisher could check whether C,, o, (ky,) =
Cyr w(ky). This always holds in the real game, but in the ideal game, where k,, is
chosen independently of everything else, it would typically fail to hold.

Definition 3. A constrained function family is (key) homomorphic if all the key spaces
K., are additive groups and if the constraining functions C., ,, are additive homomor-
phisms, i.e., for every (u,v) € E and every ki, ks € IC,y, we have

Cu,v(kl) + Cu,v(kZ) - Cu,v(kl + kZ) .

For key-homomorphic PRFs, all applications we know of implicitly require the key
spaces /C,, to be finite groups, and the associated distributions D,, to be uniform distribu-
tions. In short, this is because the security proofs all rely on statistical “secret sharing”-
type properties, e.g., the sum of any group element and a uniformly random one is
uniformly random. All our final constructions have finite key spaces with uniform dis-
tributions.

3 Bit-Fixing and Circuit-Constrained Constructions from MDDH

Boneh and Waters [BW13] constructed a “bit-fixing” constrained PRF for input space
X = {0,1}", where one can derive constrained keys for any subset of inputs that can
be described by arbitrarily fixing the values of any desired input bits. Any such subset

Key-Homomorphic Constrained Pseudorandom Functions 39

can be described by a string v € {0,1, 7}", as the set of all z € {0,1}" that match v
at all positions where v is different from ‘?’:

Sy :={ze{0,1}" |Vieh] :z;=v; Vv;="} . D

Although not considered in [BW13], their construction can easily be generalized to
allow computation of a constrained key for a set Sy, not only from the root key, but
also from any key for a set Sy, for which Sy, C S,,.. In our DAG-based model, then, the
nodes of the DAG consist of the strings v € {0,1, 7}™, and there is an edge (v, w) if
and only if S, O Sy, (equivalently, w; = v; whenever v; # 7).

The original BW construction does not appear to be key homomorphic. However, we
show how to make it so by defining public parameters for the function (which consist
of elements previously contained in the secret key), and only keeping one Z,, element
as the original secret key.

After these two modifications, we show that the PRF remains a bit-fixing constrained
pseudorandom function family as defined in Definition 2. The set of challenge nodes is
R = {0,1}", corresponding to all “fully constrained” keys. That is, constrained keys
for terminal nodes in the DAG are pseudorandom, but for nodes with outgoing edges
they are not.

3.1 Preliminaries

Multilinear groups. Candidates for sequences of groups with leveled multilinear maps
were first proposed by Garg, Gentry and Halevi [GGH13a]. These constructions imple-
ment graded encodings, which could be viewed as approximate multilinear groups. We
present our results in the language of multilinear groups.

Leveled multilinear groups are generated by a group generator G, which takes as
input the security parameter 1* and £ € N, which determines the number of levels.
G(1*, k) outputs a sequence of groups G = (Gy,...,G,) of prime order p > 2*. We
assume that the description of each group contains a canonical generator g;. For all
1,7 > 1 with ¢ + j < &, there exists a bilinear map ¢; j: G; x G; — G4, which
satisfies:

Va,b € Ly : eii (9, 97) = (9i45)""
We will omit the indices of e and write e(hy, ha, ..., hy) or e({h;}}_;) as a shorthand
fore(hy,e(ha,e(...,e(hn-1,hs)))). We make the following hardness assumption:

Assumption 1 The k-Multilinear Decisional Diffie-Hellman (k-MDDH) assumption
states that given (G1,...,G,) + G(1*,k) and g = g1,g, ..., g+ for (uniformly)
random ci, . .., Cuq1 < Ly, it is hard to distinguish g,ﬁfe[ﬁll % € G from a random
group element in G.

3.2 Key-Homomorphic Bit-Fixing PRF

Setup(1*,1™): On input the security parameter A and the input length n, run G(1*, n)
to compute a sequence of groups G = (Gq,...,G,,) of prime order p, with gen-
erators ¢ := gi,. .., gn. Choose (d1,0,d1,1), ..., (dno,dn,1) < ZZ? uniformly at

40 A. Banerjee et al.

random and set D; 5 := g%# fori € [n] and 8 € {0, 1}. Output the parameters of
the scheme as

pp = (G =(G1,...,Gn), {Dislicm), sefo1}) -

They define the domain as X = {0, 1}" and the range of the PRF as) = G,,. For
akey k € Z,, the PRF value on input x = (z1,...,x,) € {0,1}" is defined as

k . Fap
F(ppa kax) = e({Dsz}ze[n]) = gnk Micrm dies .

Constrain(pp, k, w): On input pp, a key k € Z, U U?:_ll G; and a vector w €
{0,1,?}™, which describes the constrained set as Sy := {x € {0,1}" | Vi €
[n]:x; =w; Vw, =7} let W= {i € [n] : w; # 7} be the set of indices that w
fixes.

— If k € Z,, (that s, k is a master key) then return

k .)
k‘w = e({Di,vi}iEW) = (g\W|)k [Liew diw,; .

— Otherwise, we have k = k, for some set v € {0, 1, ?}", for which we let V be the
set of fixed indices. If V. W or v; # w; for some ¢ € V then return L (since
Sy 2 Sw); else return

kw = e(kv,e({Diyv, tiew\v))
= e((gjv)) ¥ hiev divi, gy Hiewav diwe) = (g o Tliew diw

Eval(pp, k,z): — If k € Zy, return F(pp, k,z) = e({Di 2, }icn))* = g icn dias

— Otherwise, k = ky forsome v € {0,1,7}". Let V := {i € [n] : v; #7} and
V= {i € [n] : v; =7} be its complement. If z; # v, for some ¢ € V then return
1 (since x ¢ Sy); else return

e(kv, e({DlmL}ZEV)) = 6((g‘Vl)k'Hi€V di"’i , (g‘V|)H7EV di»”—'i)
= (ga)“Thets % = F(pp,k,) .

3.3 Properties

Key homomorphism. The construction is key-homomorphic in the sense of [BLMR13],
but it also satisfies Definition 2, which requires that Constrain is homomorphic as well.
The PRF can be described in the language of Definition 1 as follows. (Note that we
identify the set Sy, defined in (1), with the vector v defining it.)

— The set of vertices of the graph D is defined as V := {v : v € {0,1,7}"} and the
root node is r := (7,...,7), representing the set X = {0,1}". There is an edge
from v to w if all bits fixed by v are fixed by w to the same value, i.e., for all
i € [n]:if v; € {0,1} then w; = v;.

— The additive group associated to r is Ky := (Z,, +); for all other vertices v it is
Ky = (Gyy,-) with V := {i € [n] : v; # 7}, 1i.e., the positions of 0’s and 1’s in v.
For all v, the distribution D, is the uniform distribution over /.

Key-Homomorphic Constrained Pseudorandom Functions 41
- Cyw: Ky = Ky, for all v, w for which (v, w) is an edge in D, is defined as
Cy w(k) := Constrain(pp, k, w) .

(Note that for w € {0, 1} we have Constrain(pp, k, w) = Eval(pp, k, w).)

By construction, running Constrain(pp, kv, w) on any key ky € K, derived for some
v € {0, 1, 7}"™ from some master key k € Z, always yields (glw‘)k'HiEW diows if (v, w)
is an edge in D. This shows consistency, which requires that for any nodes v,w &

{0,1,7}™ and any two paths P = (v = vq,vy,...,vy = w) and P’ = (v = v{,
vi,..., v, =w) from v to w in D, we have
Cviavi 0 00y, v, 00y v, = C"vafz o0 CV/pVé © CV6;V/1 ’

Finally, our construction is homomorphic, that is, for every edge (v, w) in D:
Cv,w(kl) ' Cv,w(k2) = C(v,w(kll + k2) . (2)

To show this, let pp = (G, {Di g}icin), se{0,1}) < Setup(1*,1™). For all k1, k2 € Z,
we then have the following:

L. F(pp, ki + ka,x) = g1 T Mhictn es — Ppp, by, @) - F(pp, ko,).
2. Forany v € {0, 1, ?}" we have:

Constrain(pp, k1 + ko, v) = (glv‘)(kl+k2)'niev div;
= Constrain(pp, k1, Vv) - Constrain(pp, ka,v) .

3. For any v,w € {0,1,7}" for which v; =7 or v; = w; forall ¢ € [n]: if ky, =
Constrain(pp, k, v) and k,, = Constrain(pp, k', v) then

Constrain(pp, ky - k{;, W) = e(ky - ky, Dy (w)) = (gjw)) *) Thiew i
= Constrain(pp, kv, w) - Constrain(pp, k,, w) .

By 1. we have Cy (k1 + k2) = Crz(k1) - Cy z(k2) for all z € X; by 2. we have
Crv(k1 + k2) = Cr (k1) - Cr (ko) for all v; and by 3. we have Cy w (k1 + k2) =
Cy,w(k1) - Cy w(ke) for v # r; together this shows Equation (2).

Security. We show that publishing part of the secret key as parameters does not make
the construction insecure. In particular, we show that our construction satisfies Defini-
tion 2, when the challenge set Ris {0,1}" C V = {0,1,7}", that is, the set of leaves
of the DAG, which corresponds to the PRF domain X' = {0,1}".

We need to show that when pp < Setup and k < Z,, then an adversary that is given
an oracle, which when queried on v € {0,1,7}™\ {0, 1}" returns Constrain(pp, k, v)
and when queried on z € {0, 1}" returns either F'(pp, k,) or a random element, can-
not distinguish these two cases—provided it does not query a descendant + € R of
some other query u € V.

42 A. Banerjee et al.

Theorem 1. If there exists a PPT adversary breaking security of the above key-homo-
morphic bit-fixing PRF for n-bit-inputs, with challenge set R = {0,1}", with advan-
tage £(\) and making q(\) queries for challenge elements, then there exists a PPT
algorithm that breaks the n-Multilinear Decisional Diffie-Hellman assumption with ad-
vantage 2=™ - g(\) 71 - g(\).

The proof first reduces the original game to a game where the adversary can only ask
for one challenge query, which loses a factor ¢(\), by a standard hybrid argument. That
game is then reduced to MDDH, following the proof from [BLMR13]; in particular,
since in the simulation the reduction knows the values {D; g}, it can output them as
public parameters (which do not exist in the original proof). See the full version for a
detailed proof.

3.4 Circuit-Constrained PRF with Key-Homomorphic Evaluation

Boneh and Waters [BW13] give a second construction based on multilinear maps, which
allows for constraining keys to more expressive sets, namely, all sets that can be decided
by a circuit of some fixed depth. By defining public parameters, we construct a variant
that is key-homomorphic as defined by Boneh et al. [BLMR13]. That is, we have that
for all pp, k1, ko, x,

F(ppa kl +k2a$) = F(ppa]Cl,l') F(ppa k?ax) . (3)

However, our construction is not key-homomorphic in the sense of Definition 3, as the
key-constraining function is not homomorphic.

The PRF is set up for input length n and circuit depth ¢. The parameters are a se-
quence (G, ..., Gy) of groups G; of prime order p, generated by g;, where kK = n + £;
as well as elements D; g, uniformly chosen from G, for i € [n] and § € {0,1}. The
secret-key space is Z,, and the PRF on input z = (x1,...,2,) € {0,1}" is defined as

F(pp, k,) := e(e({Diz, Yicm)"s 9¢) = g e i (4)

(with d; g such that D; g = gdi»ﬁ). It is thus defined exactly as for the bit-fixing con-
struction, except that there are more groups in the sequence, and satisfies (3).

Removing the values d; g from the secret key of the construction in [BW13] entails
another syntactical change. Above, we defined the PRF value F' in terms of k£ and the
parameter values D; g, whereas in [BW13] they are defined directly as the last term
of Equation (4). In [BW13], components of constrained keys (those corresponding to
input wires) are defined as K, := g"v %1 which we replace by K, := (Dy,,1)"™.

The values d; g are not used anywhere else. Our construction still satisfies pseudo-
randomness, since, as for the bit-fixing PRF, in the security proof the simulator knows
the values D; g.

4 Prefix-Fixing Construction from LWE

In this section we prove that variants of the LWE-based key-homomorphic PRF of Baner-
jee and Peikert [BP14] also support prefix constraints, and that the constraining functions

Key-Homomorphic Constrained Pseudorandom Functions 43

are key-homomorphic as well. After recalling some standard background and notation
in Section 4.1, the contents of this section have the following high-level structure:

— In Section 4.2 we define a key-homomorphic, prefix-constrained pseudorandom
function family called Constrain, which we refer to as the “noisy” family. However,
the functions in this family are highly sequential, with circuit depth proportional to
the input length. More significantly, they have huge keys, of size exponential in the
input length, so they cannot actually be used in reality. The purpose of defining this
family is to give us a baseline object that has “perfect” consistency, homomorphic,
and pseudorandomness properties (but terrible space and depth complexity), which
we rely upon in the later subsections.

— In Section 4.3 we specialize the noisy Constrain family to be “errorless,” i.e., all
error terms are set to zero. We call the resulting family PConstrain. As a special-
ization of Constrain, it inherits that latter’s perfect consistency and homomorphic
properties. We show that the PConstrain functions (1) have small keys, (2) can be
computed in low depth (e.g., logarithmic in the input length) by a slight modifi-
cation to the Constrain algorithms, and (3) have outputs that are “close” to those
of the noisy Constrain functions (under a mild condition on the input). However,
we are still not quite done yet, because the errorless PConstrain functions are not
pseudorandom.

— In Section 4.4 we combine the previous two families to obtain a family PConstrain
that has essentially all the desired properties: small keys, low depth, pseudoran-
domness, consistency, and homomorphism. (The latter two of these properties do
not hold perfectly, but only computationally: no efficient adversary can make any
queries that reveal a violation of either property.) The PConstrain functions are de-
fined simply as appropriately rounded functions from errorless family PConstrain.
As such, they inherit the latter’s small keys and low depth. In addition, they are pseu-
dorandom because they coincide with the rounded noisy pseudorandom Constrain
functions; this follows from the fact that the (unrounded) errorless PConstrain and
noisy Constrain functions have “close” outputs, and the rounding precision is taken
to be sufficiently coarse to conceal this difference. Finally, consistency and homo-
morphism hold for PConstrain essentially because rounding can be seen as adding
a particular kind of (deterministic) error, so PConstrain may be seen as an instanti-
ation of Constrain.

4.1 Preliminaries

We first recall some standard background from [MP12, BP14]. For an integer modulus
q > 1,let Zy = Z/qZ denote the quotient ring of integers modulo ¢, where for conve-
nience we always let ¢ = 2¢ be a power of two. For ¢ = log ¢ > 2, define the “gadget”
(row) vector

g=(1,2,4,... 2 ezl

and the (deterministic) “binary decomposition” functiong~!: Z, — {0, 1}4 as follows:
identifying each a € Z, with its integer representative in {0,...,q — 1}, let g7 !(a) =
(xo,x1,...,20-1) € {0, 1}4 where a = Zf;é x;2° is the binary representation of a.

44 A. Banerjee et al.

Note that by definition, (g, g~ !(a)) = a for all a € Z,, which explains our choice of
notation.
Similarly, for vectors and matrices over Z, we define the function G~': Z7*™ —

{0, 1}7LZ><m by applying g ! entry-wise. Notice that for all A € Zng we have
GG_l(A) :A, Where G:In®g:dlag(g,,g) c ZZILXHK

is the block-diagonal matrix having n copies of g as diagonal blocks, and zeros else-
where. We let P C Z™ denote a certain set of canonical representatives of the additive
quotient group Z;‘Z /(Zy - G). Specifically, as shown in [MP12], we can use!

4
Po={-9.. -1,

We define a bijection Decode: Z2* — P x Z? as Decode(u) = (v, s), where

u=v+s-G.

As shown in [MP12], there is an efficient algorithm for computing Decode in depth
proportional to £ = log g, and clearly Decode_l(v, s)=v+s-G.

We recall the following easy lemma about the spectral norm, denoted s1(-), of
binary matrices. (See, e.g, [BP14, Lemma 3.1] for a proof.) Recall that s;(M) =
max||y |1 [|uM]||, where the maximum is taken over real unit vectors u.

Lemma 1. If S is a binary (i.e., 0-1) m-by-m matrix, then s1(S) < m.

Binary trees. A full binary tree T is one in which each node is either a leaf, or has
two (nonempty) children. We let |T'| denote the number of leaves in 7', and index the
leaves from 0 to |T'| — 1 by the inorder traversal of T If |T| > 1, we let T'.l and T'.r
respectively denote its left and right subtrees, both of which are nonempty.

Given matrices Ay, A € ZZX"Z, we define the function Arp(x): {0, 1}‘T‘ —
Zp*nt as follows:

A, if [T =1,
Ar(z) = .)
Ar(z;) - GY (A7, (7)) otherwise,
where in the second case we parse the input « = x;x, where |z;| = |T.I| and |z,| =

|T.r|.

Rounding. For a positive integer e, we define the integer rounding function |-],: Z —
eZ as |x|, := |x/e] - e, and extend it component-wise to vectors and matrices. In
words, | 2] simply rounds z to the nearest integer multiple of e.?

! This choice of P is possible because we have taken g to be a power of two. It may be possible
to generalize our results to other values of ¢ using the alternative lattice bases given in [MP12],
but it seems to substantially complicate the proofs.

2 We point out that this function differs slightly from the “modular” rounding function considered
in prior works, which mapped Zq to Zj as [z], = |z - p/q] mod p. Here e corresponds with
q/p, but the rounding input and output have the same “scale.”

Key-Homomorphic Constrained Pseudorandom Functions 45

4.2 “Noisy” Function Family C

As in previous work [BPR12, BP14], we first define and analyze a certain family C of
“noisy” constraining functions, which have huge (exponential-size) keys, because each
key contains many error terms. To avoid technical complications related to efficient
computation on exponential-size inputs, throughout this section the error terms are al-
ways sampled “lazily,” i.e., not until they are needed. In Section 4.2 we show that the
constraining functions are consistent, in Section 4.2 we show that they are homomor-
phisms under an appropriate group operation on the key spaces, and in Section 4.2 we
show that the family is pseudorandom.

The public parameters of the noisy family are two matrices Ay, A; € ZQX”@, chosen
uniformly at random. Following Definitions 1 and 3, to describe our family we need to
give a DAG with a unique root node, a key space with an additive group structure for
each node in the DAG, and a constraining function for each edge in the DAG.

DAG. For a full binary tree T', our DAG corresponds to prefix-fixing constraints on
{0,111, i.c., the nodes are identified with the strings in {0,1}=/"!, and there is an
edge (w,wx) for every w and x # ¢ such that |wx| < |T'|. This DAG clearly has a
unique root node, namely, the empty string €.

Key spaces. For any full binary tree T and 0 < j < |T'|, we define

Ly if |T] =1,
Rrj = Rru; if j < T,

P X Ry otherwise.

For convenience in our recursive algorithms, we also define R 7| = P x Zy. In words,
Rr,; has one P-component for each left subtree “hanging off” the path from the root
to the jth leaf. (Recall that we number the leaves starting from zero.) We also define,
for0 <j<|T

b}

IT|—j+1 _
erym [I z-@y

ye{()’l}SIT\—j

In &7 ;, the several 7™ components (which represent the error vectors) are indexed
by the binary strings of length at most |T'| — 5, which is why there are 2/71-7+1 — 1
components.

For each w € {0, 1}S‘T‘, the key space K, and associated distribution for w are
defined as:

ICT,u) = RT,\w\ X 5T,|w|)

I TI—lwl+1_q

DT,w = U(RT,\M\) X (an))

where x is some error distribution over Z that will be used in the security proof. Note
that KCr ., does not depend on the actual bits in w, only on its length |w|.

46 A. Banerjee et al.

To make K, an additive group (for |w| > 0), we stress that we do not simply treat
it as a product group of its components—indeed, P C Z" is not even closed under
addition, so it is not a group. Instead, in Section 4.2 below we define a special addition
operation on R |,,| to make it a group. Then K, is simply the product group of this
group with €7 ||, with the usual addition operation on the latter.

Constraining functions. It now remains to define (consistent) constraining functions
Constraing y, 51 K1 — K1,y for all strings w, z such that x # ¢ and |wz| < |T[;
for convenience, we also define Constrainy ,, 5 to be the identity function for z = €.
Functional pseudocode for the constraining functions is given in Algorithm 4.1. We re-
mark that it would have been sufficient to define functions Constraing 5 ,, for |z| = 1
alone. Indeed, by Lemma 2 below it follows that our pseudocode is actually equivalent
to the sequential composition of such functions, and hence has circuit depth propor-
tional to |x|. We choose to present the constraining functions for general « here because
in Section 4.4 we show that a slight modification yields highly parallel functions.

In summary, the constraining functions are defined recursively on the tree structure.
In the base case |T'| = 1, forkey (v, (€z),¢(0,1351) € K = Zg X (Z*)3, we simply
compute and decode the “noisy” value vA , +e, € ZZILZ . There are three recursive cases,
depending on whether we are constraining entirely within the left subtree, within the
right subtree, or across the two subtrees. In the first two cases, we simply recurse on the
appropriate subtree. In the third case, we recursively constrain over the remainder of
the left subtree, then over the desired portion of the right subtree. Lastly, whenever we
finish constraining over an entire (sub)tree we need to appropriately “fold” the results,
which consist of some leftover value in P C Z"™ from the left subtree and some value
in P X Zy from the completed right subtree, into a value in P x Z; for the entire tree.

We remark that although our presentation is (necessarily) quite different, our con-
straining functions correspond to the partial evaluations of the noisy function family
from [BP14], which the simulator computes internally when answering queries in the
security proof.

Consistency. We first show consistency.

Lemma 2 (Consistency). For any full binary tree T, parameters A, A1, and strings
w, x, z where |lwxz| < |T|, we have that

Constraing 3, © Constraing y, » = Constraing z -

Proof. We proceed by induction on |T|. The base case of |T'| = 1 is trivial, because
Constrainr ¢ is the identity function.

We have three inductive cases. In the first two cases, where |waz| < |T.I| or |w| >
|T.1|, the claim follows immediately by the inductive hypothesis on 7. or T'.r, respec-
tively. The last inductive case is |w| < |T'.I| and |wzz| > |T.l|. We analyze this in two
subcases.

Key-Homomorphic Constrained Pseudorandom Functions 47

Algorithm 4.1. Constraing o : K1 — Ky for |wz| < T,z # ¢
Input: (v, (ey)jy|<|r|-jw|) € Krw = Ro,juw| X E1,ju|

1. if |T| = 1 then > base case, so v € Zg

2. return Decode(v-A, +e;)

3. else if wz| < |T.1| then > constrains entirely in left subtree. . .

4. return (ConstrainT,l’w’I (v, (ey)|y|S‘T_l|_|w|), (emy)|y|S‘T‘_‘wx|) > ...s0 just
recurse.

5. else if |w| < |T.I| then > incomplete left subtree. . .

6. parse x = x;z, where |wx;| = |T.l|

7. let (vi, %) = Constraing .z, (V, (€y) |y|<|T.1~|w|]) - ..complete left subtree

(self-recurse). . .
8. return Constraing yz, ., (Vl, (eIly)|y|§‘T_,‘|) > ...and self-recurse to finish.

9. else > constrains entirely in right subtree. ..
10. parse w = wyw, where |w;| = |T.l|and v = (v;, V) € P X Ry juw, |
11. let (ky,*) = Constraing , v, « (v,, (ey)|y|S‘T‘_‘w‘) > ...SO recurse.
12. if |jwz| = |T| then > constrains over entire tree (so k, € P X Zy)...
13. return Decode(v;- G~ (Ar.,(w,x)) 4+ Decode " (k,)) > ...so fold results.
14. else > doesn’t complete the tree. . .
15. return (v, k;) > ...so append results.
The first subcase is |wzx| > |T.l|. Here we parse © = z;x, with |wa;| = |T.l|. By

definition, we have

Constraing,, » = Constraing .z, © Constraing 4,

Constraing, . = Constraing i, 2, - © Constraing », -

The claim then follows by the inductive hypothesis on 7.r, by composing
Constraing . on the left of the first equation above.

The second subcase is |wz| < |T.I|. This proceeds essentially identically to the first
subcase, where we instead parse z = 2z, with |wzz| = |T.1).

Homomorphism. Before we can prove that the constraining functions are homomor-
phisms, we must make K7, = Rr || X E7,|0| an additive group for |w] > 0. (Recall
that R0 = Zg, which is already a group.) We do so by defining a special group op-
eration Addr ,, on the set R |,,|—note that the operation depends on w itself, not just
its length. We then let K1, be the product group with £z ||, under its usual addition
operation. For convenience, we overload Addr,, to also refer to the group operation for
this product group, where the intended domain should be clear by context.

48 A. Banerjee et al.

For convenience in the recursive definitions, we let Addr ,, take an auxiliary input
t € Zy, which should be thought of as a kind of “carry” term that comes from reducing

the sum of two P-elements (in Z"*) back to P. Initializing this carry input to zero yields
the group operation. Formally, we define

Addr,., (t € Z;L,V,V/) =

t+v+v if|T| =1, |w| =0,
Addr 1, (t, v, V') if |w| < |T.1),
(V1. Addr o, (£, v V1)) i 7] < | < |T,

Decode(t - Ap(w) + Decode™* (v) + Decode_l(v’)) if |w| =T,

where in the third case we parse w = wyw, for |w;| = |T.I| and v = (v, v,), v =

(v, v).) € P X Re.p,|w,|» and let (v, t) = Decode(t - Az (w;) + vi + vy).

We now prove that the Constrain functions are homomorphisms.

Lemma 3 (Homomorphism). For any parameters A, A1 and any full binary tree T,
any bit strings w, x such that |wz| < |T'|, and any t € Zy and k, k" € Kr ., we have

Constrainy y » (Add7 ., (t, k, k')
= Addr sz (t, Constraing 4, .. (k), Constrainy ., (k")) . (5)

In particular, by setting t = 0 we have that Constraing ,, , is an additive homomor-
phism.

Proof. The claim is trivial for x = ¢, so from now on we assume that z # . Let
i=|w|landj = |wx|,s00 <i < j <|T| Parse k = (v, (ey)), k' = (v, (e])), and
letk = (v, (&,)) = Addr ., (t, k, k).

As usual, we proceed by induction over |T'|. In the base case, where w = ¢ and
|x| = |T| = 1, we have

Constraing . (v, (€,)) = Decode(v - A, + &;)
= Decode((t + v+ V') - A, + (e, + €)))
(b-As+(v-As+e)+ (v A, +e)))
= Addr . (t, Constrain(v, (e,)), Constrain(v’, (e},))) .

= Decode

We now consider the inductive cases. Because Constrain simply passes an appro-
priate subset of the input error terms (the Z™* vectors in the key) to the output, for
simplicity of exposition we suppress the error terms in the remainder of the proof. The
final claim then follows by the product group structure of KCr .

The first inductive case, where i < j < |T'.|, follows immediately from the inductive
hypothesis on Constraing,; 4, 5. For the second inductive case, where i < |T.I| < j, we
defer to the final paragrap of the proof. For the third inductive case, where |T.1| < i,

Key-Homomorphic Constrained Pseudorandom Functions 49

parse w = wyw, and v = (v;,v,),v' = (v},v,.),Vv = (V;,V;), and note that by
definition,

vV, = AddT.r,w,,.z(fv A\ V;«)) (6)

Vitt-G=t-Ar(w)+vi+v; (7

for some t € ZZ. As in the code for Constrain, let k, = Constrainy., 4, »(v,) and

similarly for k., k,.. Then by the inductive hypothesis on Constraing ., , - and Equa-
tion (6), we have

k, = Constrainr., u, (V,) = Add7. w2 (8, ks, K).) @®)

Now if j = |wz| < |T|, then by definition of Constrainy ,, , and Addy ., (respec-
tively), the left- and right-hand sides of Equation (5) are respectively just v; prepended
to the left- and right-hand sides of Equation (8), so they are equal. Butif j = |wzx| = |T,
then the output of Constrainy 4, (V) is “folded,” (i.e., in P x Zy), as are k., kK, k, as
defined above. We proceed by applying the folding operation to both sides of Equa-
tion (8), namely, apply Decode™ ", add v; - G~ (Ar.,.(w,x)), and apply Decode. For
the left-hand side we get exactly ConstrainT,w,x(\‘f), which is the left-hand side of Equa-
tion (5). On the right-hand side, by definition of Add7 . 4, ., by Equation (7), and by
definition of A7 (-), we get Decode applied to

V- G7Y A7, (w,z)) + Decode™ ' (Addr s 40, (t, Ky, K.))

=¥ 4+t-G)- G Y(Ar,(w,x)) + Decode ' (k,.) + Decode ™' (k')

= (t-Aq (w) +v;+V)) - G7I(---) + Decode ' (k,) + Decode™ ' (Kk’.)

=t-Ap(wz)+ (vi- G7I(---) 4 Decode ™! (k,))

+ (v} - G7Y(---) 4 Decode *(K.)) .
As desired, this is the right-hand side of Equation (5), by definition of Constraing q, 4
and Add7 7.
Going back to the second inductive case, where i < |T.I| < j, it follows by writing

Constraing , » = Constraing g, », © Constraing ,, z, Where z = xx, for |wx;| =

|T.1|, then applying the inductive hypothesis on 7.l and T'.r. This completes the proof
of Lemma 3.

Pseudorandomness. We now show that the function family C defined above is pseu-
dorandom according to Definition 2, with all nodes R = {0, 1}S‘T| as challenge nodes.
This follows immediately from the PRG-like property demonstrated in Lemma 4 be-
low, together with the fact (shown in prior works [BGI14, KPTZ13, BW13]) that the
GGM construction [GGMS86] instantiated with such a PRG family yields a prefix-
constrained PRF? In a bit more detail: in the following lemma we show that for

any string w € {0, 1}<‘T‘, the function G, Krw — Krwo X K1 defined as

31t is easy to verify that this remains true even for our slightly stronger definition, where the
adversary can query the function at inputs corresponding to internal nodes of the GGM tree.

50 A. Banerjee et al.

G(k) = (Constraing , o(k), Constrainy,, 1(k)) is a pseudorandom generator, under
the LWE assumption. Instantiating the GGM construction with these PRGs yields our
constraining functions Constrainr ,, ., therefore they are pseudorandom.

Lemma 4. Let T be any full binary tree and w € {0, 1}<|T‘ be any string. Then as-
suming the hardness of decision-L\WE,, 4 ., for k <— D ., we have

(Constrainy .0 (k), Constrainy ., 1 (k)) ~ Drwo X Drowt -

The proof of this lemma involves a simulator embedding the appropriate LWE chal-
lenge in the base case in the computation of Constraing ,, . The rest of the proof con-
sists of showing the outputs corresponding to each distribution (LWE vs uniform) are
distributed accordingly. We defer the details to the full version.

4.3 Parallel Errorless Constrain

In this subsection we consider the “errorless” variants of our Constrain functions, which
we call PConstrain, and show that they can be computed in low depth. We also show
that the output of PConstrain is typically close to that of Constrain, when the errors
used in the latter are small.

Parallel Evaluation. The PConstrain functions simply correspond to the Constrain
functions when all the error vectors are set to zero, that is, PConstrainy q, (v,s) =
Constraing,y »(v,s,0). In particular, this implies that the PConstrain functions are
both consistent and homomorphisms, because the Constrain functions are. In addition,
the errorless setting allows PConstrain to be computed with good parallelism (i.e., in
low depth) by an alternative algorithm that “short circuits” the computation via a base
case that constrains over an entire (sub)tree in just one step. More specifically, we mod-
ify the base case (Lines 1 and 2) of Algorithm 4.1 as shown in Algorithm 4.2 below.
The rest of the algorithm remains unchanged, apart from the fact that PConstrain does
not take or output any error terms.

In Lemma 5 we prove that the alternative algorithm is correct. Then in Section 4.3
we describe how PConstrain can be evaluated in low depth.

Algorithm 4.2. PConstraing o o : Ry jw| — R, jwa| for [wz| <|T|, z # €
Input: v € R |y
l. ifw = ¢ and |z| = |T| then > base case

2. return Decode(v - Ap(z))
3. The remaining code is the same as in Algorithm 4.1, but without any error terms

(ey).

For convenience, we define the function Projectr ,,: K7w — Rr|y|, Which just
outputs the R |,,-component of its input (dropping the &7 |,,|-component, i.e., the
errors), and PrjConstrainy , . = Projecty ,,, o Constrainr y ;.

Key-Homomorphic Constrained Pseudorandom Functions 51

The following lemma states that what the algorithm above does is indeed correct. It
is proved by a simple induction for complete inputs only, that is, for inputs x = ¢ and
w € {0, 1}‘T‘. The complete proof appears in the full version.

Lemma 5. For any fully binary tree T, any bit strings w, x with |wz| < |T
Vv E RT,|w|!

, and any

PConstrainr , . (v) = PrjConstraing , ,(v,0) .

Parallel Evaluation of PConstrain. We now analyze the parallel complexity of the
PConstrain functions according to Algorithm 4.2 (and Algorithm 4.1) above. Our main
goal is to bound what we call the “nonlinear depth” of PConstrainr ,, , in terms of
the topology of 7' and the strings w, x. Nonlinear depth only takes into account the
nonlinear Decode and G ! operations; the remaining operations are all linear over Z.
For an implementation of PConstrain by an arithmetic or boolean circuit, the depth
will depend on the precise circuit model used and the implementation of the linear and
nonlinear operations, but in any case the final depth will be proportional to the nonlinear
depth.

To state our claim we recall from [BP14] the notions of “left depth” and “right depth”
of the jth leaf in a binary tree T', and of T itself. The left depth i-(j) (respectively, right
depth r7(4)) of the jth leaf is the number of edges from a parent to its left (resp., right)
child on the path from the root to that leaf. The left and right depths {(T"),r(T) are
respectively the maximum left and right depths over all leaves in 7.

Lemma 6. The function PConstraing ., »(v) can be computed via (1) a preprocessing
phase (independent of v) of nonlinear depth at most r(T'), and (2) an online phase
(dependent on v) of nonlinear depth at most lr(|w|) + rr(|z|) < UT) + r(T).

We remark that in [BP14], the nonlinear depth of computing the (non-constrained)
PREF is just 7(7T'), so one can obtain an extremely parallel PRF using a “left spine” tree
with 7(T) = 1 and {(T") = |T'| — 1 (this corresponds to the function from [BLMR13]).
But here, evaluating the PRF from a constrained key can require nonlinear depth pro-
portional to the sum of 7”s left and right depths. Therefore, to get good parallelism for
all w, 2 we must use a shallow tree T, e.g., one with depth O(log|T'|). We defer the
proof of this Lemma to the full version.

Closeness. We next analyze the size of the P-components of d discussed above, as they
relate to the errors in the original key k. = (s, (e,)). Recalling that each P-component
of d corresponds to some left-child subtree in 7', it is therefore sufficient to analyze
the accumulated error in fully constrained keys over arbitrary trees. For this purpose
we define a “growth factor” @1 associated with an arbitrary full binary tree, defined
recursively as follows:

oo 1 if |7 =1, o)
' \/@T‘l -nl)2 4+ ()% otherwise.

We next state a lemma that is essentially a restatement of [BP14, Lemma 3.7].

52 A. Banerjee et al.

, let

Lemma 7 (Error Bound). For any w such that |w| = |T
(k,) = Constrainr ., (0, (ey))

for (ey) < Er,0, where the error distribution x is subgaussian with parameter r. Then
Decode ' (k) = e (mod q) for some e € 7™ that is subgaussian with parameter
T- djT-

More generally, let d = PrjConstraing. . (0, (ey)) € Rr,w| for nonempty w €
{0, 1}S‘T|. Then if ¢ > 4r-P7-w(/log \), the following are true with 1 —negl(\) prob-
ability over the choice of (ey) < Er,o: (1) the Zq-component of d is 0, and (2) each
P-component of d for subtree T is subgaussian with parameter r - .

4.4 “Rounded” Function Family C

We now define our final “rounded” family of constraining functions, denoted C, which
we prove to be pseudorandom, as well as (computationally) key-homomorphic and con-
sistent. In C we use the same DAG on {0, 1}S 71 as in the noisy function family, but we
define somewhat different “rounded” (and errorless) key spaces, and thereby different
constraining functions and group operations.

We note that in this scenario, we would only be able to achieve a computational ver-
sion of consistency and homomorphism. That is to say that it is computationally infea-
sible to find inputs on which our family is not consistent (respectively, homomorphic).
We discuss about these properties in more detail in the full version.

Rounding and key spaces. The family C is parameterized by a “rounding factor” er-
for each subtree T” of T'. For convenience of analysis, we choose these factors to all
divide ¢, hence they are also powers of two. The factors are defined recursively to
satisfy the inequalities

e A if 77| =1
err > 7 (10)
(erry - (nl) 4+ err,) - X otherwise.

Note that by inspection of Equations (9) and (10), for all subtrees 7’ we have
e Z r- @TI . /\w(l) .

Next, mirroring the definitions from Section 4.2, we define the “rounded” domain
Kr,; for 0 < j < |T| as follows

Lq if [T =1,
Rrj:= Rra if j < |T.,
|Ple,, X Rrurj—|ra) otherwise.

Key-Homomorphic Constrained Pseudorandom Functions 53

As with R, we also define Ry |7| = [P]
T, we have that | P],

key space for w € {0,1}=

er X Ly Note that for every subtree T’ of
, € P (because every et divides q), we have Rt ; € R ;. The
7| and its associated distribution are then defined to be

ICT,u) = RT,\w\)
DT,w = U(ICTJU) .

Constraining functions. We first define Roundr ;: Ry ; — Ry, for 0 < j < |T| as
follows:

v if 7] = 1
Roundr ;(v) := ¢ Roundr ;(v) if0<j<|T]
(Lvile,.,» Roundr . ;|74 /(vy)) otherwise,

where we parse (v,s) = (v, v;.) € P X Ry, j_ 7. in the last case above. For (v, s) €
Re,7|» we simply define Roundr |7 (v,s) := (|v],,,s).

With this definition in mind, the “rounded” constraining functions PConstraing q, ; :
R jw| — K1, are simply defined as

PConstrain » := Roundr || © PConstraing o -

Pseudorandomness. We now show that the construction of the family C from Sec-
tion 4.4 is a constrained PRF, according to Definition 2. Here, we prove selctive security
of the function as defined in Definition 2, and use the Security of the Constrain family
of functions, as defined in Section 4.2 above. We note that this theorem is very similar
to analogous ones proved in prior work [BPR12, BP14], and thus we defer the proof to
the full version.

Theorem 2. The family C described above is pseudorandom for the set of challenge
nodes {0, 1}§|T|, assuming that the family C is also pseudorandom over the same set of
challenge nodes, where the x distribution of C is a subgaussian distribution over 7 with
parameter r, where r is the number used to define the rounding factors in Equation (10).

5 Proxy Re-encryption with Fine-Grained Access Control

Below we explain the symmetric proxy re-encryption scheme as defined by Boneh et al.
[BLMR13]. Using this scheme as a starting point, we then construct our scheme which
additionally allows for fine-grained access control.

5.1 Symmetric-key Proxy Re-encryption from Key Homomorphic PRFs

As an application of key homomorphic PRFs Boneh et al. [BLMRI13] construct a
symmetric-key proxy re-encryption scheme, a symmetric-key analogue of public-key
proxy re-encryption [BBS98, CHO7, ABH09, LVOS8]. A symmetric proxy re-encryption

54 A. Banerjee et al.

scheme is a symmetric encryption scheme, where given a ciphertext ¢ = Enc(k, m) of
some message m under key k, a proxy can translate this ciphertext to a new ciphertext
¢’ = Enc(k’, m) under a new key given only some re-encryption token A. The security
definition requires roughly that the token only allows to translate ciphertexts in this way,
but does not reveal anything about the encrypted message or the involved keys. Given a
key-homomorphic PRF F': K x X — Y, where (K, o), (Y, ®) are groups such that

F(kok',z)=F(k,x)® F(K,z)

and any symmetric encryption scheme (enc:) x M — C,dec: Y x C — M) we con-
struct 11,00y = (Setup, KeyGen, Enc, Dec, ReKeyGen, ReEnc) as follows. Setup(1*)
outputs public parameters pp to be used by F'. All algorithms will have pp as input,
which we will not denote explicitly. The key generation algorithm KeyGen simply out-
puts a random key k& < K for F. Encryption of the proxy re-encryption scheme is
defined as Enc(k,m) = (r, ¢1, c2) where

c1=k®F(k,r), ca = enc(k, m) for random (r, k) < X x Y (11)

Decryption is Dec(r, c1, co) = dec(c; ® F(k,r)~%, ca) = m . The re-encryption-key
generation ReKeyGen takes two keys k&, k&’ and outputs a re-encryption token

ReKeyGen(k, k') = k' ok’ .

The re-encryption procedure ReEnc takes a re-encryption token A = ReKeyGen(k, k')
and a ciphertext under key k£ and outputs a ciphertext of the same plaintext under the
key k' as

ReEnc(A, (r,c1,¢2)) = (r,c1 @ F(A,7),¢c2) .
Note (r,c1 @ F (A, 1), c2) = (r, kQF(k,7)QF(A,1)),c2) = (r, sk F (K, r), c2) is in-
deed an encryption of m under key &’ as required. We refer the reader to [BLMR13] for
a formal definition of symmetric-key proxy re-encryption and the proof of the following

Theorem 3 ([BLMRI13)). If F is a secure key-homomorphic PRF where the input
space X is of superpolynomial size, then Il oz, is a secure proxy re-encryption scheme.

The superpolynomial domain is required in order for the probability that any two of the
randomly chosen r» € X collide to be negligible.

5.2 Fine-Grained Access Control from Constrained PRFs

Assume the PRF F' from the previous section is not only key-homomorphic, but also a
constrained PRF. That is, there is a function Constrain: I x P — Kp which given a
key k and some predicate p outputs a constrained key k,, that allows to evaluate F'(k;, -)
on all inputs x where p(x) = 1.

Key-Homomorphic Constrained Pseudorandom Functions 55

Consider the proxy re-encryption scheme outlined above, but where we slightly
change the encryption procedure from Eq. (11), and now instead of choosing r at ran-
dom during encryption, it is given as part of the input. We call this input z the attributes
of the ciphertext. Le., we let Enc(k, m,x) = (z, ¢1, c2) with

1 =Kk® F(k,z), co =enc(k,m) forrandom k <) .

This little change now gives us an extra property: given a constrained key &, for a
predicate p, one can decrypt ciphertexts with attribute « iff p(z) = 1. The correctness
property of Enc as a proxy re-encryption scheme is not affected by this change.

Informally, the security notion (which we will define formally later) requires that
ciphertexts encrypted for some attributes = under key k hide the plaintext as long as it
cannot be trivially computed from the outputs of the queries of the adversary (where we
allow adversaries to make re-encryption queries and ask for constrained keys).

The security notion of constrained PRFs implies that given keys ky,,, ..., k,, for
predicates where p; () = 0 forall i = 1,. .., ¢, the output F'(k, z) is pseudorandom. It
might therefore seem that the key « is pseudorandom given the encapsulated key ¢; =
k®F(k, x). Unfortunately, as discussed in the introduction, this is not true, because in a
CPA attack the adversary can not only ask for constrained keys, but also for ciphertexts
which reveal function values. We therefore will use a carefully defined probabilistic
encoding of attributes such that the functionality of the scheme is preserved, while
solving the problems discussed in the introduction.

Randomizable Predicates. How to appropriately define the required encoding is best
explained by an example: Consider a bit-fixing CPRF F with inputs from {0,1}". Re-
call that given a constrained key k, < Constrain(k, p) for a predicate p € {0,1, 7}",
we can compute F'(k, z) for any attribute = where for every ¢ € [n] we have (x[i] =
pli] Vp[i] =7). For any such predicate p, we denote with p* the predicate on n + A bits
(where \ is a statistical security parameter) as p™ (x||a) = p(z), so p™ simply evaluates
p on the first n bits.

In the encryption scheme, the predicate space is still {0,1}", but F is evaluated
on inputs of length n + A and a constrained key for p € {0,1,7}"™ is computed as
k,+ < Constrain(k, p||?*). During encryption we now compute the encapsulated key
as ¢ = k ® F(k, z||«) for some random « (« is also output as part of the ciphertext).
Note that this preserves the proxy re-encryption property: given k,+ one can compute
F(k,z||a) on any (z,a) where p(z) = 1. On the other hand, we’ll show that the
c1 = k ® F(k,z||a) part of the challenge ciphertext hides the encapsulated key &
because F'(k, x||«) is pseudorandom.

Definition 4. A randomization of a set of predicates P is given by an efficient injective
encoding [-,-]: Pin x {0, 1} = Pout (Pin, Pout C P and X being a statistical security
parameter) and a mapping ¢ : Pip, — Pout (we’'ll use p* as shortcut for ¢(p)) such
that p*([x1,22]) = 1 <= p(x1) = 1. For every [z, r] we require that there exists
a Pz € P st pgy([z,r]) = 1but py . ([2',r']) = 0 forall (2',r") # (x,7) €
Pin x {0, 1}

For a CPRF for predicates P that can be randomized, we define Constrain™ (k,p) =
Constrain(k,p™). Note that a key kiz vy < Constrain(k, pi,) allows to evaluate

56 A. Banerjee et al.

F(k,-) only on the value [x,r] in the range of [-,-] (but might allow to evaluate it on
other points not in the range of the encoding).*

With this definition, the encoding for bit-fixing CPRFs we discussed above can be cast
as a randomized predicate with [x1, 23] = x1 ||z simply being concatenation and p™ =
p||?* forany p € {0,1,?7}".

For prefix CPRF, we let 7: {0,1,2} — {0, 1}? be an encoding of a ternary to a bi-
nary alphabet (say, 0, 1, 2 maps to 00, 01, 10). Then we can use the encoding [z1, 23] =
7(x1]|2||z2) and set ¢(z) = 7(x) (so Constrain™ (k, z) = Constrain(k, 7(z))).

We will prove the following theorem.

Theorem 4. If I' is a secure key-homomorphic constrained PRF, the scheme Il ,poxy
defined in Section 5.4 is a secure proxy re-encryption scheme with fine-grained access
control (as defined in Section 5.3).

5.3 Definition of Proxy Re-encryption with Fine-Grained Access Control

A proxy re-encryption scheme with fine-grained access control for predicates P over
X, where for p € P,z € X we denote by p(xz) = 1 that p holds on z, is given by
algorithms

Iy proxy = (Setup, KeyGen, Enc, Dec, Constrain, ReKeyGen, ReEnc) .

Setup(1?). Setup outputs a set of public parameters pp, which are an implicit input to
all other algorithms.

KeyGen(1*). Key generation outputs a key k € K.

Enc: K x X x M — X x C. Encryption takes a key k, attributes x and a message m
and outputs a ciphertext (z, ¢) < Enc(k, z, m).

Constraingnc: K x P — Kp. Constraining takes a key k and a predicate p and outputs
a constrained key k, < Constraingnc(k, p) (we use the subscript ENC to avoid
confusion with the Constrain algorithm of the CPRF).

Dec: (Kp UK) x X x C — M. Decryption takes k and a ciphertext (z, c) and out-
puts m < Dec(k, z, ¢); except when k = k, € Kp and p(z) = 0, then it outputs
1.

4 Looking forward, this condition will allow us to replace (in the reduction) an output value
F(k,[z,r]) with a constrained key, while only excluding one possible challenge ciphertext.
We observe that without this condition simple concatenation [x1, z2] = 1|2 would already
give a randomized predicate for prefix predicates, but this would lead to a trivially insecure
encryption scheme Enc(k,z,m) = (r,m ® F(k,[z,r])) if using a GGM based prefix CPRF.
In such CPRFs, given some F'(k, z||r) (that an adversary can learn via an encryption query) one
can compute F(k,z||r||r") for any r’. Using this fact we can break security of the encryption
scheme by asking for a challenge for attribute ' = x||r which we’ll be able to decrypt.

The extra symbol 2 in-between the prefix x1 and the randomness part x» is there so the condi-
tion from Def. 4 is satisfied. In particular, note that for any z = [z1,z2] = 7(x1]|2||z2), the
constrained key k. = Constrain(k, z) allows to evaluate F'(k,-) only on inputs of the form
z||w, but this is in the range of the encoding [, -] only if w is empty (i.e., only on the unique
input z in the range of [-, -]). Note that with this encoding the attack from Footnote 4 does no
longer work.

[

Key-Homomorphic Constrained Pseudorandom Functions 57

ReKeyGen: K x K — K. Re-encryption key-generation takes two keys and outpus a
re-encryption key ka < ReKeyGen(k, k).

ReEnc: K x C — C. Re-encryption takes a re-encryption key (from k to £') and a ci-
phertext under &, and outputs a ciphertext of the same plaintext under &'.

Correctness. For any pp output by Setup (which is an implicit input to all algorithms)
and all k, z, m and p with p(x) = 1, let ¢ < Enc(k, z, m). Then we require the follow-
ing: Dec(k, z,c¢) = m. For all k, < Constraingnc(k,p): Dec(kyp, z,c) = m. For any
k', ka <+ ReKeyGen(k, k'), ¢ < ReEnc(ka, c¢) we have Dec(k’, ¢/, x) = m.

Security. The notion of security for proxy re-encryption with fine-grained access control
below is a generalization of the security notion for proxy re-encryption of [BLMR13].

We consider a game between an adversary .4 and a challenger. The challenger runs
pp < Setup(1*) (and pp is given to A and to all other algorithms as input), initializes a
counter ctr := 1 and samples a random bit b € {0, 1}. Then .A can make the following
queries.

Uncorrupted Key-Generation: Challenger samples k" < KeyGen(1*) and increases
ctr (the key is not given at A).

Corrupted Key-Generation: Challenger samples k" < KeyGen(1*) and increases ctr.
The key is given to A.

Re-encryption Key-Generation: On input (i, j),4,j < ctr return ReKeyGen(k?, k7) to
A. We require that both keys k¢, k7 are uncorrupted.

Constrained Key Request: On input (i, p) return Constraingnc(k?, p) to A.

Encryption: On input (i, 2, m) return Enc(k?, z, m) to A.

Re-Encryption: On input (i, j, c) return ReEnc(ReKeyGen(k?, k7), c) to A. We require
that k7 was generated using uncorrupted key generation.

Challenge: This oracle is queried only once in an input (¢*, 2*, mg, m}), we require
that k% was generated using uncorrupted key generation, and for every “Constrained
Key Request” query (i,p) where k¢ was generated using uncorrupted key genera-
tion, we have p(mg) = p(m3) = 0 (this also holds for queries to be made after this
challenge query).

The challenger returns Enc(k*, z*,m;) to A.
Guess: A outputs a guess bit b’ (the experiment stops at this point).

Definition 5. Il 0. is a secure proxy re-encryption scheme with fine-grained access
control if for all polynomial-time adversaries A, the advantage | Pr[b = b'] — 1/2] in
the above game is negligible in the security parameter \.

A Remark on Selective Security. Note that the above notion considers selective security
in the sense that the adversary must commit whether a key is corrupted or not during
its generation (the challenge is chosen adaptively, and for this we’ll have to assume
adaptive security of the underlying constrained PRF). This will be useful in the security
proof, where the reduction will sample corrupted keys itself, and implicitly uses the
key of the challenger in the constrained PRF security game to generate uncorrupted
keys. We can get selective security via “complexity leveraging”, but this loses a huge

58 A. Banerjee et al.

exponential (in the number m of generated keys) factor in the security reduction® as
we have to guess initially which keys will be corrupted. When the encryption scheme is
actually used to outsource data to an untrusted server, we can assume that re-encryption-
key generation queries are not arbitrary, but only applied to consecutive keys, i.e., we
only can ask for re-encryption keys ReKeyGen(k?, k*1). In this case, adaptive security
can be proven losing only a quadratic factor (as for the reduction it will be sufficient to
only guess which key will be the first corrupted key before and after the key chosen for
the challenge.)

5.4 Construction of Proxy Re-encryption with Fine-Grained Access Control
from Key-Homomorphic Constrained PRFs

We now describe how to construct a scheme I,y from a key-homomorphic con-
strained PRF F’ for predicates P that can be randomized (cf. Def. 4) and any symmetric
encryption scheme (enc, dec).

Setup(1*) samples and outputs public parameters pp as used by F.

KeyGen(1*) outputs a random key k € K for F'.

Enc(k, z, m) picks a random « € {0, 1}*, a random key « for enc and sets (with [, /]
as in Def 4)

Enc(k,m,z) = ([z,a],c1,c2), wherec; = kQF(k,[x,a]) and c2 = enc(k, m)

Dec(kyp, x, ¢ = ([z,a],c1,c2)) checks if p(x) = 1. If so, it computes k = ¢1 ®
F(kp, [z,])~! and returns dec(k, c2).

Constraingnc(k, p) returns k, + Constrain™ (k, p) (cf. Def. 4)

ReKeyGen(k, k') returns ko = k' o kL.

ReEnc(ka,c = ([z,], c1, o) returns ¢ = ([z, o], F(ka, [z, a]) ® 1, ca).

Proof of Theorem 4. We now show that the scheme constructed in Section 5.4 satis-
fies the security notion from Definition 5. We construct an adversary B, who given an
adversary .4 that breaks the security of the scheme, breaks the security of the underly-
ing constrained PRF with almost the same advantage (we lose an exponentially small
additive term due to the possibility of collisions in the randomness used for encryption).

At setup, adversary B3 gets the public parameters pp for F', and forwards them to .A.
Now, B has access to an oracle Constrain(k, -) (below Constrain™ (k, -) is as in Def. 4).
B will answer A’s queries as follows.

Corrupted Key-Generation: B samples a key k" <+ KeyGen(1%), increases ctr and
gives the key to A.

Uncorrupted Key-Generation: B samples a key kS and implicitly sets £ = k o kS
where k is the key used in the Constrain(k, -) oracle of the security game against
the CPRF. Note that k" is uniform.

® That is, an attacker with advantage ¢ against the scheme is turned into an adversary with advan-
tage /2™ against the constrained PRF.

Key-Homomorphic Constrained Pseudorandom Functions 59

Re-encryption Key-Generation: On input (4, j) where i,j < ctr are uncorrupted keys,
B must return ReKeyGen(k*, k?) to A. It can compute these without knowing & as

ReKeyGen(k', k) = koklyo (kok') ™" =kl o (ki)™

Constrained Key Request: On input (i,p) B queries its oracle for the key k,4 <
Constrain™ (k, p), then computes Kby =kpy o Constrain™ (k,, p) and returns this
key to A.

Encryption: On input (i, m, x) compute ([x, o], ¢1, c2) < Enc(k, m, x) as in Sect. 5.4,
note that for this we have to learn F'(k, [x,). For this BB queries for the constrained
key ki; o] < Constrain(k, p[z,q]) (cf. Def. 4), and then computes F'(k, [z, a]) us-
ing this key.

Return ¢ = ([z, al, ¢}, c2) to A where ¢ = c1 @ F (ky, [z, a]) (this step re-encrypts
from k to k?).

Re-Encryption: On input (4, j, ¢) return ReEnc(ReKeyGen(k?, k%), c) to A (note that
we already explained how to compute ReEnc(ReKeyGen(k®, k7), ¢)).

Challenge and Guess: If A outputs the challenge (i*, *, mf, m}) (where for any pred-
icate p where there was a constrain key-request (7, p) we have p(z*) = 0).

B samples a random « and forwards the challenge [z*,] to its CPRF challenger
(note that as « is random, with overwhelming probability B hasn’t made the query
Constrain(k, p[x,a]) in a previous encryption query, and thus this is a legal chal-
lenge.

B gets from his challenger a value v which is either F'(k, [z*, @]) or a uniformly
random, depending on whether the challenger’s bit b was 0 or 1.

B samples a random bit 3, a random key ~ and computes ¢ = ([z,a],x ® 7,
enc(k,m?)). B sends c to A, who answers with 3'.

If 3 = 8’ B outputs the guess bit b’ = 0 (guessing -y is pseudorandom), otherwise
b’ = 1 (guessing 7 is uniform).

We analyze the probability that b = ’. Conditioned on b = 0, ¢ is correctly generated
and thus 4 has some non-negligible advantage § in guessing correctly. If b = 1, the
c1 = Kk ® ~y part of the ciphertext is independent of «, and thus A’s advantage is some
negligible eenc (by the security of enc).

Pr(b = '] — 1/2
Prlp =18 =0/ ~1/2 Pp=V|F=1]-1/2 5 cex
2 2 -2 2

which is non-negligible assuming e, is negligible but ¢ is not.

1>

References

[ABH09] Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In: Fis-
chlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279-294. Springer, Heidelberg
(2009)

[BBS98] Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127-144.
Springer, Heidelberg (1998)

60 A.

[BGI14]

[BLMR13]

[BLP*13]

[BP14]

[BPR12]

[BW13]

[CHO7]

[GGH13a]

Banerjee et al.

Boyle, E., Goldwasser, S., Ivan, I.: Functional Signatures and Pseudorandom Func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501-519. Springer,
Heidelberg (2014)

Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part L.
LNCS, vol. 8042, pp. 410-428. Springer, Heidelberg (2013)

Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: STOC, pp. 575-584 (2013)

Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom func-
tions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616,
pp- 353-370. Springer, Heidelberg (2014)

Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719—
737. Springer, Heidelberg (2012)

Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280—
300. Springer, Heidelberg (2013)

Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007, pp.
185-194. ACM Press (October 2007)

Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1-17.
Springer, Heidelberg (2013)

[GGH™13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate

[GGMS6]

[KPTZ13]

[LVO08]

[MP12]

[NPR99]

[Pei09]

[PST14]

[Reg09]

[SW14]

indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40-49. IEEE Computer Society Press (October 2013)

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Jour-
nal of the ACM 33, 792-807 (1986)

Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudo-
random functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 669-684. ACM Press (November 2013)

Libert, B., Vergnaud, D.: Unidirectional Chosen-Ciphertext Secure Proxy Re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360-379. Springer,
Heidelberg (2008)

Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700-718. Springer, Heidelberg (2012)

Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327-346. Springer,
Heidelberg (1999)

Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC, pp. 333-342 (2009)

Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500-517. Springer, Heidelberg (2014)

Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
J. ACM 56(6), 1-40 (2005)

Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475-484. ACM Press
(May/June 2014)

	Key-Homomorphic Constrained Pseudorandom Functions
	1
Introduction
	1.1
Results and Techniques
	1.2
Applications

	2
 Preliminaries
	2.1Key-Homomorphic Constrained Pseudorandom Fu
nctions

	3
Bit-Fixing and Circuit-Constrained Constructions from MDDH
	3.1
Preliminaries
	3.2
Key-Homomorphic Bit-Fixing PRF
	3.3
Properties
	3.4
Circuit-Constrained PRF with Key-Homomorphic Evaluation

	4
Prefix-Fixing Construction from LWE
	4.1
Preliminaries
	4.2
``Noisy'' Function Family C
	4.3
Parallel Errorless Constrain
	4.4
``Rounded'' Function Family C

	5
Proxy Re-encryption with Fine-Grained Access Control
	5.
1 Symmetric-key Proxy Re-encryption from Key Homomorphic PRFs
	5.2
Fine-Grained Access Control from Constrained PRFs
	5.3
Definition of Proxy Re-encryption with Fine-Grained Access Control
	5.4
Construction of Proxy Re-encryption with Fine-Grained Access Control from Key-Homomorphic Constrained PRFs

	References

