
The Randomized Iterate, Revisited - Almost

Linear Seed Length PRGs from a Broader Class
of One-Way Functions

Yu Yu1,2, Dawu Gu1, Xiangxue Li3, and Jian Weng4

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, China

2 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

{yyuu,dwgu}@sjtu.edu.cn
3 Department of Computer Science and Technology,

East China Normal University, China
xxli@cs.ecnu.edu.cn

4 College of Information Science and Technology, Jinan University, China
cryptjweng@gmail.com

Abstract. We revisit “the randomized iterate” technique that was
originally used by Goldreich, Krawczyk, and Luby (SICOMP 1993) and
refined by Haitner, Harnik and Reingold (CRYPTO 2006) in construct-
ing pseudorandom generators (PRGs) from regular one-way functions
(OWFs). We abstract out a technical lemma (which is folklore in leakage
resilient cryptography), and use it to provide a simpler and more modular
proof for the Haitner-Harnik-Reingold PRGs from regular OWFs.

We introduce a more general class of OWFs called “weakly-regular
one-way functions” from which we construct a PRG of seed length
O(n·logn). More specifically, consider an arbitrary one-way function f

with range divided into sets Y1, Y2, . . ., Yn where each Yi
def
= {y : 2i−1 ≤

|f−1(y)| < 2i}. We say that f is weakly-regular if there exists a (not nec-
essarily efficient computable) cut-off point max such that Ymax is of some
noticeable portion (say n−c for constant c), and Ymax+1, . . ., Yn only sum
to a negligible fraction. We construct a PRG by making Õ(n2c+1) calls
to f and achieve seed length O(n · logn) using bounded space generators.
This generalizes the approach of Haitner et al., where regular OWFs fall
into a special case for c = 0. We use a proof technique that is similar
to and extended from the method by Haitner, Harnik and Reingold for
hardness amplification of regular weakly-one-way functions.

Our work further explores the feasibility and limits of the “randomized
iterate” type of black-box constructions. In particular, the underlying f
can have an arbitrary structure as long as the set of images with maximal
preimage size has a noticeable fraction. In addition, our construction is
much more seed-length efficient and security-preserving (albeit less gen-
eral) than the HILL-style generators where the best known construction
by Vadhan and Zheng (STOC 2012) requires seed length Õ(n3).
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1 Introduction

That one-way functions (OWFs) imply pseudorandom generators (PRGs) [13] is
one of the central results uponwhichmodern cryptography is successfully founded.
The problem dates back to the early 80’s when Blum, Micali [2] and Yao [19] in-
dependently observed that a PRG (often referred to as the BMY generator) can
be efficiently constructed from one-way permutations (OWPs). That is, given a
OWP f on n-bit input x and its hardcore predicate hc (e.g., by Goldreich and
Levin [8]), a single invocation of f already implies a PRG g : x �→ (f(x), hc(x))
with a stretch1 of Ω(log n) bits and it extends to arbitrary stretch by repeated
iterations (seen by a hybrid argument). Unfortunately, the BMY generator does
not immediately apply to an arbitrary OWF since the output of f might be of too
small amount of entropy to be secure for subsequent iterations.

Therandomized iterate-PRGsfromspecialOWFs. Goldreich,Krawczyk,
and Luby [7] extended the BMY generator by inserting a randomized operation
(using k-wise independent hash functions) into every two applications of f , from
which they built a PRG of seed length O(n3) assuming that the underlying OWF
is known-regular2. Haitner, Harnik and Reingold [11] further refined the approach
(for which they coined the name “the randomized iterate”) as in Figure 1 below,
where in between every ith and (i+1)th iterations a randompairwise-independent

x1
f

y1
h1

x2
f

y2
h2 · · · xk

f
yk

hk

Fig. 1. An illustration of the randomized iterate

hash function hi is applied. Haitner et al. [11] showed that, when f is instantiated
with any (possibly unknown) regular one-way function, it is hard to invert any kth

iterate (i.e., recovering any xk s.t. f(xk) = yk) given yk and the description of the
hash functions. This gives a PRG of seed lengthO(n2) by running the iterate n+1
times and outputting a hardcore bit at every iteration. The authors of [10] further
derandomize the PRG by generating all the hash functions from bounded space
generators (e.g., Nisan’s generator [17]) using a seed of lengthO(n log n). Although
the randomized iterate is mostly known for construction of PRGs from regular
OWFs, the authors of [10] also introducedmany other interesting applications such
as linear seed length PRGs from any exponentially hard regularOWFs,O(n2) seed
length PRGs from any exponentially hard OWFs, O(n7) seed length PRGs from
any OWFs, and hardness amplification of regular weakly-OWFs. Dedic, Harnik
and Reyzin [3] showed that the amount of secret randomness can be reduced to
achieve tighter reductions, i.e., if a regular one-way function f has 2k images then
the amount of secret randomness needed is k (instead ofnbits).Yu et al. [21] further

1 The stretch of a PRG refers to the difference between output and input lengths (see
Definition 3).

2 A function f(x) is regular if every image has the same number (sayα) of preimages, and
it is known- (resp., unknown-) regular if α is efficiently computable (resp., inefficient
to approximate) from the security parameter.
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reduced the seed length of the PRG (based on any regular OWFs) toO(ω(1)·n) for
any efficiently computable ω(1).

The HILL approach - PRGs from any OWFs. H̊astad, Impagliazzo, Levin
and Luby (HILL) [13] gave the seminal result that pseudorandom generators
can be constructed from any one-way functions. Nevertheless, they only gave a
complicated (and not practically efficient) construction of PRG with seed length
Õ(n10) and sketched another one with seed length Õ(n8), which was formalized
and proven in [14]. Haitner, Reingold, and Vadhan [12] introduced the notion of
next-block pseudoentropy, and gave a construction of seed length Õ(n4). Vadhan
and Zheng [18] further reduced the seed length of the uniform construction to
Õ(n3), which is the current state-of-the-art.

A summary. The randomized iterate has advantages (over the HILL approach)
such as shorter (almost linear) seed length and tighter reductions, but it remains
open if the approach can be further generalized3 (i.e., to go beyond regular
one-way functions). In this paper, we answer this question by introducing a
more general class of one-way functions and giving a construction based on the
randomized iterate that enjoys seed length O(n · logn) and tighter reductions.

A technical lemma. First, we abstract out a technical lemma from [10] (see
Lemma 1) that, informally speaking, “if any algorithm wins a one-sided game
(e.g., inverting a OWF) on uniformly sampled challenges only with some negli-
gible probability, then it cannot do much better (beyond a negligible advantage)
in case that the challenges are sampled from any distribution of logarithmic
Rényi entropy deficiency4”. In fact, this lemma was implicitly known in leakage-
resilient cryptography. Analogous observations were made in similar settings
[1,5,4], where either the game is two-sided (e.g., indistinguishability applica-
tions) or the randomness is sampled from slightly defected min-entropy source.
Plugging this lemma into [10] immediately yields a simpler proof for the key
lemma of [10] (see Lemma 2), namely, “any kth iterate (instantiated with a reg-
ular OWF) is hard-to-invert”. The rationale is that yk has sufficiently high Rényi
entropy (even conditioned on the hash functions) that is only logarithmically less
than the ideal case where yk is uniform (over the range of f) and independent
of the hash functions, which is hard to invert by the one-way-ness assumption.

The main results. We introduce a class of one-way functions called weakly-
regular one-way functions. Consider an arbitrary OWF f : {0, 1}n → {0, 1}l
with range divided into sets Y1, . . ., Yn, where each Yi

def
= {y : 2i−1 ≤ |f−1(y)| <

2i} and |f−1(y)| refers to preimage size of y (i.e., the number of images that

3 The randomized iterate handles almost-regular one-way functions as well and this
generalization is not hard to see (implicit in [10,21]). Similarly, the construction we
introduced in this paper only needs “weakly-almost-regular one-way functions” (of
which almost-regular one-way functions fall into a special case). See Remark 1 for
some discussions.

4 The Rényi entropy deficiency of a random variable W over set W refers to the
difference between entropies of UW and W , i.e., log |W|−H2(W ), where UW denotes
the uniform distribution over W and H2(W ) is the Rényi entropy of W .
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map to y under f). We say that f is weakly-regular if there exists an integer
function max = max(n) such that Ymax is of some noticeable portion (n−c for
constant c), and Ymax+1, . . ., Yn only sum to a negligible fraction ε(n). Note
that regular one-way functions fall into a special case for c = 0, ε(n) = 0 and
arbitrary (not necessarily efficient) function max(·). We give a construction that
only requires the knowledge about c (i.e., oblivious of max and ε). Informally
speaking, as illustrated in Figure 1, the main idea is that at each kth round
conditioned on yk ∈ Ymax the Rényi entropy of yk given the hash functions is
close to the ideal case where f(Un) hits Ymax with noticeable probability (and
is independent of the hash functions), which is hard to invert. We have by the
pairwise independence (in fact, universality already suffices) of the hash functions
that every yk ∈ Ymax is an independent event of probability n−c. By a Chernoff
bound, running the iterateΔ = n2c·ω(logn) times yields that with overwhelming
probability there is at least one occurrence of yk ∈ Ymax, which implies every
Δ iterations are hard-to-invert, i.e., for any j = poly(n) it is hard to predict
x1+(j−1)Δ given yjΔ and the hash functions. A PRG follows by outputting logn

hardcore bits for every Δ iterations and in total making Õ(n2c+1) calls to f .
This requires seed length Õ(n2c+2), and can be pushed to O(n · logn) bits using
bounded space generators [17,16], ideas borrowed from [10] with more significant
reductions in seed length (we reduce by factor Õ(n2c+1) whereas [10] saves factor
Õ(n)). Overall, our technique is similar in spirit to the hardness amplification
of regular weakly-one-way5 functions introduced by Haitner et al. in the same
paper [10]. Roughly speaking, the idea was that for any inverting algorithm A,
a weakly one-way function has a set that A fails upon (the failing-set of A), and
thus sufficiently many iterations are bound to hit every such failing-set to yield a
strongly-one-way function (that is hard-to-invert on an overwhelming fraction).
However, in our case the lack of a regular structure for the underlying function
and the negligible fraction (i.e., Ymax+1, . . ., Yn) further complicate the analysis
(see Remark 2 for some discussions), and we make our best effort to provide an
intuitive and modular proof.

On the efficiency, feasibility and limits. From the application point
of view, known-regular one-way functions may already suffice for the following
reasons:

1. If a one-way function behaves like a random function, then it is known(-
almost)-regular. In other words, most functions are known(-almost)-regular
(see Lemma 8 in Appendix C).

2. In practice, many one-way function candidates turn out to be known-regular
or even 1-to-1. For example, Goldreich, Levin and Nisan [9] showed that
1-to-1 one-way functions can be based on concrete intractable problems such
as RSA and DLP.

5 We should not confuse “weakly-regular” with “weakly-one-way”, where the former
“weakly” describes regularity (i.e., regular on a noticeable fraction as in Definition 4)
and the latter is used for one-way-ness (i.e., hard-to-invert on a noticeable fraction
[19]).
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It is folklore (see, e.g., [6,21]) that pseudorandom generators can be con-
structed almost optimally from known(-almost)-regular one-way functions, i.e.,
with seed length O(n · ω(1)) and O(ω(1)) non-adaptive OWF calls for any effi-
ciently computable super-constant ω(1). Despite the aforementioned, the study
on minimizing the knowledge required for the underlying one-way functions (and
at the same time improving the efficiency of the resulting pseudorandom gen-
erator) is of theoretical significance, and it improves our understanding about
feasibility and limits of black-box reductions. In particular, Holenstein and Sinha
[15] showed that Ω(n/ logn) black-box calls to an arbitrary (including unknown-
regular) one-way function is necessary to construct a PRG, and Haitner, Harnik
and Reingold [10] gave an explicit construction (from unknown-regular one-way
functions) of seed length O(n · logn) that matches this bound. In the most gen-
eral setting, H̊astad et al. [13] established the principle feasibility result that
pseudorandom generators can based on any one-way functions but the current
state-of-the-art [18] still requires seed length Õ(n3). We take a middle course by
introducing weakly-regular one-way functions that lie in between regular one-
way functions and arbitrary ones, and giving a construction of pseudorandom
generator with seed length O(n · logn) and using tighter reductions. We refer
to the appendix and the full version of this work [20] for missing details, proofs
omitted and a discussion in Appendix C about the gap between weakly one-way
functions and arbitrary ones.

2 Preliminaries

2.1 Notations and Definitions

Notations. We use [n] to denote set {1, . . . , n}. We use capital letters
(e.g., X , Y ) for random variables, standard letters (e.g., x, y) for values, and
calligraphic letters (e.g., Y, S) for sets. |S| denotes the cardinality of set S. We

use shorthand Y[n]
def
=

⋃n
t=1 Yt. For function f : {0, 1}n → {0, 1}l(n), we use

shorthand f({0, 1}n) def
= {f(x) : x ∈ {0, 1}n}, and denote by f−1(y) the set of

y’s preimages under f , i.e. f−1(y)
def
= {x : f(x) = y}. We use s ← S to denote

sampling an element s according to distribution S, and let s
$←− S denote sam-

pling s uniformly from set S, and let y := f(x) denote value assignment. We
use Un and UX to denote uniform distributions over {0, 1}n and X respectively,
and let f(Un) be the distribution induced by applying function f to Un. We use

CP(X) to denote the collision probability of X , i.e., CP(X)
def
=

∑
x Pr[X = x]2,

and denote by H2(X)
def
= − logCP(X) the Rényi entropy. We also define condi-

tional Rényi entropy (and probability) of a random variable X conditioned on
another random variable Z by

H2(X |Z)
def
= − log ( CP(X |Z) )

def
= − log ( Ez←Z

[ ∑
x Pr[X = x| Z = z]2

]
)

A function negl : N → [0, 1] is negligible if for every constant c we have negl(n) <
n−c holds for all sufficiently large n’s, and a function μ : N → [0, 1] is called
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noticeable if there exists constant c such that μ(n) ≥ n−c for all sufficiently
large n’s.

We define the computational distance between distribution ensembles X
def
=

{Xn}n∈N and Y
def
= {Yn}n∈N, denoted by CDT (n)(X ,Y )≤ ε(n), if for every prob-

abilistic distinguisher D of running time T (n) it holds that

| Pr[D(1n, Xn) = 1]− Pr[D(1n, Yn) = 1] | ≤ ε(n) .

The statistical distance between X and Y , denoted by SD(X,Y ), is defined by

SD(X,Y )
def
=

1

2

∑

x

|Pr[X = x]− Pr[Y = x]| = CD∞(X,Y )

We use SD(X,Y |Z) (resp. CDT (X,Y |Z)) as shorthand for SD((X,Z), (Y, Z))
(resp. CDT ((X,Z), (Y, Z))).

Simplifying Assumptions and Notations. To simplify the presentation, we
make the following assumptions without loss of generality. It is folklore that one-
way functions can be assumed to be length-preserving (see [11] for full proofs).
Throughout, most parameters are functions of the security parameter n (e.g.,
T (n), ε(n), α(n)) and we often omit n when clear from the context (e.g., T ,
ε, α). By notation f : {0, 1}n → {0, 1}l we refer to the ensemble of functions
{fn : {0, 1}n → {0, 1}l(n)}n∈N. As slight abuse of notion, poly might be referring
to the set of all polynomials or a certain polynomial, and h might be either a
function or its description, which will be clear from the context.

Definition 1 (pairwise independent hashing). A family of hash functions

H def
= {h : {0, 1}n → {0, 1}m} is pairwise independent if for any x1 �= x2 ∈

{0, 1}n and any v ∈ {0, 1}2m it holds that

Pr
h

$←−H
[(h(x1), h(x2)) = v] = 2−2m

or equivalently, (H(x1), H(x2)) is i.i.d. to U2m where H is uniform over H. It is
well known that there are efficiently computable families of pairwise independent
hash functions of description length Θ(n+m).

Definition 2 (one-way functions). A function f : {0, 1}n → {0, 1}l(n) is
(T (n),ε(n))-one-way if f is polynomial-time computable and for any probabilistic
algorithm A of running time T (n)

Pr
y←f(Un)

[A(1n, y)∈f−1(y)] ≤ ε(n).

We say that f is a (strongly) one-way function if T (n) and 1/ε(n) are both
super-polynomial in n.

Definition 3 (pseudorandom generators [2,19]). A deterministic function
g : {0, 1}n → {0, 1}n+s(n) (s(n) > 0) is a (T (n),ε(n))-secure PRG with stretch
s(n) if g is polynomial-time computable and

CDT (n)( g(1
n, Un) , Un+s(n) ) ≤ ε(n).
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We say that g is a pseudorandom generator if T (n) and 1/ε(n) are both super-
polynomial in n.

Definition 4 (weakly-regular one-way functions). Let f : {0, 1}n → {0, 1}l
be a one-way function. For every n ∈ N divide range f({0, 1}n) into sets Y1,. . .,Yn

(i.e., Y1 ∪ . . . ∪ Yn = f({0, 1}n)) where Yj
def
= {y : 2j−1 ≤ |f−1(y)| < 2j} for ev-

ery 1≤j ≤ n. We say that f is weakly-regular if there exist constant c, integer
function max = max(n), and negligible function ε = ε(n) such that the following
holds for all sufficiently large n’s :

Pr[f(Un) ∈ Ymax] ≥ n−c , (1)

Pr[ f(Un) ∈ ( Ymax+1 ∪ Ymax+2 ∪ . . . ∪ Yn ) ] ≤ ε , (2)

Note that max(·) can be arbitrary (not necessarily efficient) functions and thus
regular one-way functions fall into a special case for c = 0.

Remark 1 (on further categorization and generalization.). We can further di-
vide the above class of functions into weakly-known-regular and weakly-
unknown-regular one-way functions depending on whether max(·) is efficiently
computable or not. This is however not necessary since our construction needs
no knowledge about max(·) and thus handles any weakly-regular one-way func-
tions. In fact, our construction only assumes that f is weakly-almost-regular,
i.e., for some d = d(n)∈O(log n) it holds that

Pr[f(Un) ∈ (Ymax−d ∪ Ymax−d+1 ∪ . . . ∪ Ymax)] ≥ n−c

instead of (1), where almost-regular one-way functions become a special case
for c = 0. We mainly give the proof under the assumption of Definition 4 for
neatness, and sketch how to adapt the proof to the weakly-almost-regular case
in Remark 3 (see Appendix B).

2.2 Technical Tools

Theorem 1 (Goldreich-Levin Theorem [8]). Let (X,Y ) be a distribution
ensemble over {{0, 1}n × {0, 1}poly(n)}n∈N. Assume that for any PPT algorithm
A of running time T (n) it holds that

Pr[ A(1n, Y ) = X ] ≤ ε(n) .

Then, for any efficiently computable m = m(n) ≤ n, there exists an efficient

function family Hc
def
= {hc : {0, 1}n → {0, 1}m} of description size Θ(n)6, such

that
CDT ′(n)( Hc(X) , Um | Y,Hc) ∈ O(2m · (n · ε) 1

3 ) ,

where T ′(n) = T (n) · (ε(n)/n)O(1), and Hc is the uniform distribution over Hc.

6 For example (see [8]), we can use an m×n Toeplitz matrix am,n to describe the

function family, i.e., Hc
def
= {hc(x)

def
=am,n · x, x ∈ {0, 1}n, am,n ∈ {0, 1}m+n−1}.
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Definition 5 (bounded-width layered branching program - LBP). An
(s, k, v)-LBP M is a finite directed acyclic graph whose nodes are partitioned
into k + 1 layers indexed by {1, . . ., k + 1}. The first layer has a single node
(the source), the last layer has two nodes (sinks) labeled with 0 and 1, and each
of the intermediate layers has up to 2s nodes. Each node in the i ∈ [k] layer has
exactly 2v outgoing labeled edges to the (i + 1)th layer, one for every possible
string hi ∈ {0, 1}v.

An equivalent (and perhaps more intuitive) model to the above is bounded
space computation. That is, we assign labels to graph nodes (instead of asso-
ciating them with the edges), at each ith layer the program performs arbitrary
computation on the current node (labelled by s-bit string) and the current v-bit
input hi, advances (and assigns value) to a node in the (i+1)th layer, and repeats
until it reaches the last layer to produce the final output bit.

Theorem 2 (bounded-space generator [17,16]). Let s = s(n), k = k(n), v =
v(n) ∈ N and ε = ε(n) ∈ (0, 1) be polynomial-time computable functions.
Then, there exist a polynomial-time computable function q = q(n) ∈ Θ(v +
(s+log(k/ε)) log k) and a generator BSG : {0, 1}q → {0, 1}k·v that runs in time
poly(s, k, v, log(1/ε)), and ε-fools every (s, k, v)- LBP M , i.e.,

| Pr[M(Uk·v) = 1] − Pr[M(BSG(Un)) = 1] | ≤ ε .

3 Pseudorandom Generators from Regular One-Way
Functions

3.1 A Technical Lemma

Before we revisit the randomized iterate based on regular one-way functions, we
introduce a technical lemma that simplifies the analysis in [10] and is also used to
prove our main theorem in Section 4. Informally, it states that if any one-sided
game (one-way functions, MACs, and digital signatures) is (T ,ε)-secure on uni-

form secret randomness, then it will be (T ,
√
2e+2·ε)-secure when the randomness

is sampled from any distribution with e bits of Rényi entropy deficiency.

Lemma 1 (one-sided game on imperfect randomness). For any e ≤ m ∈
N, let W × Z be any set with |W| = 2m, let Adv : W × Z → [0, 1] be any
(deterministic) real-valued function, let (W,Z) be any joint random variables
over set W ×Z satisfying H2(W |Z) ≥ m− e, we have

E[Adv(W,Z)] ≤
√
2e+2 · E[Adv(UW , Z)] (3)

where UW denotes uniform distribution over W (independent of Z and any other
distributions in consideration).
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Proof. For any given δ, define Sδ
def
= {(w, z) : Pr[W = w|Z = z] ≥ 2−(m−e)/δ}.

2−(m−e) ≥
∑

z

Pr[Z = z]
∑

w

Pr[W = w|Z = z]2

≥
∑

z

Pr[Z = z]
∑

w:(w,z)∈Sδ

Pr[W = w|Z = z]·2−(m−e)/δ

≥ (2−(m−e)/δ) · Pr[(W,Z) ∈ Sδ] ,

and thus Pr[(W,Z) ∈ Sδ] ≤ δ. It follows that

E[Adv(W,Z)] =
∑

(w,z)∈Sδ

Pr[(W,Z) = (w, z)] · Adv(w, z)

+
∑

(w,z)/∈Sδ

Pr[Z = z] · Pr[W = w|Z = z] · Adv(w, z)

≤
∑

(w,z)∈Sδ

Pr[(W,Z) = (w, z)]

+ (2e/δ) ·
∑

(w,z)/∈Sδ

Pr[Z = z]·2−m · Adv(w, z)

≤ δ + (2e/δ) · E[Adv(UW , Z)] ,

and we complete the proof by setting δ =
√
2e · E[Adv(UW , Z)]. �

On how to use the lemma. One can think of Adv(w, z) as the advantage of
any specific adversary conditioned on the challenge being w and the additional
side information being z (e.g., hash functions that are correlated to the chal-
lenges). Thus, the left-hand of (3) gives the adversary’s advantage on slightly
defected random source in consideration, which is bounded by the ideal case on
the right-hand of (3), namely, the advantage on uniformly sampled challenges,
such as a uniform random y←f(Un) (for some regular one-way function f) in-
dependent of the hash functions.

3.2 The Randomized Iterate

Definition 6 (the randomized iterate [10,7]). Let n ∈ N, let f : {0, 1}n →
{0, 1}n be a length-preserving function, and let H be a family of pairwise inde-
pendent length-preserving hash functions over {0, 1}n. For k ∈ N, x1 ∈ {0, 1}n
and vector hk = (h1, . . . , hk) ∈ Hk, recursively define the kth randomized iterate
by:

yk = f(xk), xk+1 = hk(yk)

For k−1 ≤ t ∈ N, we denote the kth iterate by function fk, i.e., yk = fk(x1,h
t),

where ht is possibly redundant as yk only depends on hk−1.

The randomized version refers to the case where x1
$←− {0, 1}n and hk−1 $←−

Hk−1.
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The derandomized version refers to that x1
$←− {0, 1}n, hk−1←BSG(Uq),

where q ∈ O(n·logn), BSG : {0, 1}q → {0, 1}(k−1)·log |H| is a bounded-space
generator7 that 2−2n-fools every (2n + 1, k, log |H|)-LBP, and log |H| is the de-
scription length of H (e.g., 2n bits for concreteness).

Theorem 3 (PRGs from Regular OWFs [10]). For n ∈ N, k ∈ [n+1], let f ,
H, fk and BSG(·) be as defined in Definition 6, and let Hc = {hc : {0, 1}n →
{0, 1}} be a family of Goldreich-Levin predicates, where H and Hc both have
description length Θ(n). We define G : {0, 1}n×Hn×Hc → {0, 1}n+1×Hn×Hc

and G′ : {0, 1}n × {0, 1}q(n) ×Hc → {0, 1}n+1 × {0, 1}q(n) ×Hc as below:

G(x1,h
n, hc) = (hc(x1), hc(x2), . . . , hc(xn+1),h

n, hc),

G′(x1, u, hc) = G(x1, BSG(u), hc).

Assume that f is a regular (length-preserving) one-way function and that BSG(·),
H and Hc are efficient. Then, G and G′ are pseudorandom generators.

Proof sketch of Theorem 3. It suffices to prove Lemma 2: for any 1≤k ≤
n+ 1, given yk and the hash functions (either sampled uniformly or from bounded
space generators), it is hard to recover any xk s.t. f(xk) = yk. Then, Goldreich-
Levin Theorem yields that each hc(xk) is computationally unpredictable given
yk, which (together with hn) efficiently determines all the subsequent hc(xk+1),
. . ., hc(xn+1). We complete the proof by Yao’s “next/previous bit unpredictabil-
ity implies pseudorandomness” argument [19]. It thus remains to prove Lemma 2
below which summarizes the statements of Lemma 3.2, Lemma 3.4, Lemma 3.11
from [11], and we provide a simpler proof below via Lemma 1. �

Lemma 2 (the kth iterate is hard-to-invert). For any n ∈ N, k ∈ [n+1], let
f , H, fk be as defined in Definition 6. Assume that f is a (T, ε) regular one-way
function, i.e., for every PPT A and A′ of running time T it holds that

Pr [ A( f(Un), Hn) ∈ f−1(f(Un)) ] ≤ ε .

Pr [ A′( f(Un), Uq ) ∈ f−1(f(Un) ) ] ≤ ε .

Then, for every such A and A′ it holds that

Pr [ A(Yk, Hn) ∈ f−1(Yk) ] ≤ 2
√
k · ε , (4)

Pr [ A′(Y ′
k, Uq ) ∈ f−1(Y ′

k) ] ≤ 2
√
(k + 1) · ε , (5)

where Yk = fk(X1,H
n), Y ′

k = fk(X1, BSG(Uq)), X1 is uniform over {0, 1}n
and Hn is uniform over Hn.

7 Such efficient generators exist by Theorem 2, setting s(n) = 2n+ 1, k(n) = poly(n),
v(n) = log |H| and ε(n) = 2−2n and thus q(n) = O(n· log n).
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Proof. To apply Lemma 1, let W = f({0, 1}n), Z = Hn, let (W,Z) = (Yk,H
n),

UW = f(Un), and define

Adv(y,hn)
def
=

{
1, if A(y, hn) ∈ f−1(y)
0, if A(y, hn) /∈ f−1(y)

where A is assumed to be deterministic without loss of generality8. We have by
Lemma 3 that

H2(Yk | Hn) ≥ H2( f(Un) | Hn ) − log k

and thus Lemma 1 yields that

Pr [ A(Yk, Hn) ∈ f−1(Yk) ] ≤ 2
√
k · Pr [ A(f(Un), Hn) ∈ f−1(f(Un)) ]

≤ 2
√
k · ε .

The proof for (5) is similar except for setting ( W = Y ′
k, Z = Uq ) and letting

Adv(y, u) = 1 iff A′(y, u) ∈ f−1(y). We have by Lemma 3 that

H2(Y
′
k | Uq ) ≥ H2( f(Un) | Uq ) − log (k + 1)

and thus we apply Lemma 1 to get

Pr [ A′(Y ′
k, Uq ) ∈ f−1(Y ′

k) ] ≤ 2
√
(k + 1) · Pr [ A′(f(Un), Uq )∈f−1(f(Un)) ]

≤ 2
√
(k + 1) · ε . �

The proof of Lemma 3 below appeared in [10], and we also include it in the
full version [20] for completeness.

Lemma 3 (Rényi entropy conditions [10]). For the same assumptions as
in Lemma 2, it holds that

CP( f(Un) ) = CP( f(Un) | Hn ) = CP( f(Un) | Uq ) =
1

|f({0, 1}n)| , (6)

CP(Yk | Hn ) ≤ k

|f({0, 1}n)| , (7)

CP(Y ′
k | Uq ) ≤ k + 1

|f({0, 1}n)| . (8)

4 A More General Construction of Pseudorandom
Generators

In this section we construct a pseudorandomgenerator with seed lengthO(n log n)
from weakly-regular one-way functions (see Definition 4). We first show how to
construct the PRG by running the iterate Õ(n2c+1) times, and thus require large
amount of randomness (i.e., Õ(n2c+2) bits) to sample the hash functions. Then,
we show the derandomized version where the amount of the randomness is com-
pressed into O(n log n) bits using bounded space generators.

8 If A is probabilistic, let Adv(y,hn)= Pr[A(y,hn) ∈ f−1(y)], where probability is
taken over the internal coins of A.
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4.1 The Randomized Version: A PRG with Seed Length Õ(n2c+2)

Recall that any one-way function f can be assumed to be length-preserving
without loss of generality.

Theorem 4 (the randomized version). For n, k ∈ N, assume that f is a
weakly-regular one-way function (with c, max and ε as defined in Definition 4),
let H and fk be defined as in Definition 6, and let Hc = {hc : {0, 1}n →
{0, 1}2 logn} be a family of Goldreich-Levin hardcore functions. Then, for any
efficient α = α(n) ∈ ω(1), Δ = Δ(n) = α · logn · n2c and r = r(n) = �n/ logn�,
the function g:{0, 1}n ×HrΔ−1 ×Hc→{0, 1}2n ×HrΔ−1 ×Hc defined as

g(x1,h
r·Δ−1, hc) = ( hc(x1), hc(x1+Δ), hc(x1+2Δ), . . . , hc(x1+r·Δ),hr·Δ−1, hc )

(9)
is a pseudorandom generator.
Notice that a desirable property is that a construction assuming a sufficiently
large c works with any one-way function whose actual parameter is less than or
equal to c.

Proof. The proof is similar to Theorem 3 based on Yao’s hybrid argument [19].
Namely, the pseudorandomness of a sequence (with polynomially many blocks)
is equivalent to that every block is pseudorandom conditioned on its suffix (or
prefix). By the Goldreich-Levin Theorem and Lemma 4 below we know that ev-
ery hc(x1+jΔ) is pseudorandom conditioned on hc, y(j+1)Δ and hrΔ−1, which
efficiently implies all subsequent blocks hc(x1+(j+1)Δ), . . ., hc(x1+rΔ). This com-
pletes the proof. �

Lemma 4 (every Δ iterations are hard-to-invert). For n, k ∈ N, let f be
a weakly-regular (T ,ε)-OWF (with c as defined in Definition 4), and let H, fk,
α = α(n), Δ = Δ(n) and r = r(n) be as defined in Theorem 4. Then, for every
j ∈ [r], and for every PPT A of running time T (n)− nO(1) (for some universal
constant O(1)) it holds that

Pr
x1

$←−{0,1}n, hrΔ−1
$←−HrΔ−1

[ A(yj·Δ, hrΔ−1) = x1+(j−1)Δ ] ∈ O( n3c/2·r·Δ2 ·√ε ).

(10)

Proof sketch of Lemma 4 . Assume towards a contradiction that

∃j∗ ∈ [r], ∃ PPT A : Pr[ A(Yj∗·Δ, HrΔ−1) = X1+(j∗−1)Δ ] ≥ εA (11)

for some non-negligible function εA = εA(n). Then, we build an efficient al-
gorithm MA (see Algorithm 1) that invokes A and inverts f with probablity
Ω(ε2A/n

3c·r2 ·Δ4) (as shown in Lemma 6), which is a contradiction to the (T, ε)-
one-wayness of f and thus completes the proof.

We define the events Ek and Sk in Definition 7 below, where Sk refers to that
during the first k iterates no yt (1≤t ≤ k) hits the negligible fraction region
(see Remark 2 in Appendix B for the underlying intuitions), and Ek defines the
desirable event that yk hits Ymax (which implies the hard-to-invertness).
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Definition 7 (events Sk and Ek). For any n ∈ N and any k ≤ rΔ, define
events

Sk
def
=

(

(X1,H
rΔ−1) ∈ {

(x1,h
rΔ−1) : ∀t ∈ [k]satisfies f t(x1,h

rΔ−1) ∈ Y[max]

}
)

Ek def
=

(

(X1,H
rΔ−1) ∈ {

(x1,h
rΔ−1) : yk ∈ Ymax,where yk = fk(x1,h

rΔ−1)
}
)

where Y[max] = Y1 ∪ . . . ∪ Ymax and (X1,H
rΔ−1) is uniform distribution over

{0, 1}n × HrΔ−1. We also naturally extend the definition of collision proba-

bility conditioned on Ek and Sk. For example, CP(Yk ∧ Ek ∧ Sk|HrΔ−1)
def
=

EhrΔ−1←HrΔ−1

[
∑

y Pr[f
k(X1,H

rΔ−1) = y ∧ Ek ∧ Sk|HrΔ−1 = hrΔ−1]2
]

and CP( Yk,H
rΔ−1 | Ek ∧ Sk)

def
=

∑
(y,hrΔ−1) Pr[(f

k(X1,H
rΔ−1),HrΔ−1) =

(y,hrΔ−1)|Ek ∧ Sk]
2.

Claim 1. For any n ∈ N, let Sk and Ek be as defined in Definition 7, assume
that f is weakly-regular (with c, ε and max defined as in (1) and (2)). Then, it
holds that

∀k ∈ [rΔ] : Pr[Sk] ≥ 1− kε , Pr[Ek] ≥ n−c , Pr[Ek ∧ Sk] ≥ n−c/2 (12)

∀k ∈ N : Pr[Ek+1 ∨ Ek+2 ∨ . . . ∨ Ek+Δ] ≥ 1− expΔ/n2c ≥ 1− n−α (13)

∀k ∈ [rΔ] : CP( Yk ∧ Ek ∧ Sk | HrΔ−1) ≤ rΔ·2max−n+1 , (14)

where Yk = fk(X1,H
rΔ−1).

Proof. We have that x1, x2 = h1(y1), . . ., xrΔ = hrΔ−1(yrΔ−1) are all i.i.d.
to Un due to the universality of H. This implies that Pr[yi ∈ Y[max]] ≥ 1− ε
for every i ∈ [k] independently, and that E1, . . . and ErΔ are i.i.d. events with
probability at least n−c. The former further implies

Pr[Sk] ≥ (1 − ε)k ≥ 1− k · ε ,

where the second inequality is due to Fact 2 (see Appendix A). Thus, we com-
plete the proof for (12) by

Pr[Ek ∧ Sk] ≥ Pr[Ek] − Pr[¬ Sk] ≥ n−c − k · ε ≥ n−c/2 .

For every k ∈ N, i ∈ [Δ], define ζk+i = 1 iff Ek+i occurs (and ζk+i = 0 otherwise).
It follows by a Chernoff-Hoeffding bound that

∀k ∈ N : Pr[(¬Ek+1) ∧ . . . ∧ (¬Ek+Δ)] = Pr[

Δ∑

i=1

ζk+i = 0]≤ exp−Δ/n2c ≤n−α,
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which yields (13) by taking a negation. For the collision probability in (14), we
consider two instances of the randomized iterate seeded with independent x1

and x′
1 and a common random hrΔ−1 and thus:

CP( Yk ∧ Ek ∧ Sk | HrΔ−1) ≤ CP( Yk ∧ Sk | HrΔ−1)

≤ Pr
x1,x′

1

$←−{0,1}n

[f(x1) = f(x′
1) ∈ Y[max]]

+

k∑

t=2

(

Pr
yt−1 �=y′

t−1, ht−1
$←−H

[f(xt) = f(x′
t) ∈ Y[max]]

)

≤ rΔ
∑

y∈Y[max]

Pr[f(Un) = y]2

≤ rΔ

max∑

i=1

∑

y∈Yi

Pr[f(Un) = y]·2i−n = rΔ

max∑

i=1

Pr[f(Un) ∈ Yi]·2i−n

≤ rΔ·2max−n(1 + 2−1 + . . .+ 2−(max−1)) ≤ rΔ·2max−n+1 ,

where we omit Ek in the first inequality (since we are considering upper bound),
the second inequality is due to that the collision probability is upper bounded by
the sum of events that the first collision occurs on points y1, y2, . . ., yk ∈ Y[max]

respectively, and the third inequality follows from the pairwise independence of
H so that x1, x

′
1, . . ., xk and x′

k are i.i.d. to Un. �

Lemma 5. For any n ∈ N, with the same assumptions and notations as in
Theorem 4, Definition 4 and Definition 7, and let j∗ ∈ [r], A, εA be as assumed
in (11). Then, there exists i∗ ∈ [Δ] such that

Pr[ A(Yj∗ ·Δ, HrΔ−1) = X1+(j∗−1)Δ ∧ E(j∗−1)Δ+i∗ ∧S(j∗−1)Δ+i∗ ] ≥ εA/2Δ .
(15)

Proof. For notational convenience use shorthand C for the event A(Yj∗ ·Δ,HrΔ−1)
= X1+(j∗−1)Δ. Then,

Δ∑

i=1

Pr[C ∧ E(j∗−1)Δ+i ∧ S(j∗−1)Δ+i]

≥
Δ∑

i=1

Pr[C ∧ E(j∗−1)Δ+i ∧ SrΔ]

≥ Pr[ C ∧ SrΔ ∧ ( Δ∨

i=1

E(j∗−1)Δ+i

)
]

≥ Pr[ C] − Pr[ ¬SrΔ] − Pr[¬(
Δ∨

i=1

E(j∗−1)Δ+i

)
]

≥ εA − rΔ · ε − n−α ≥ εA/2 ,
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where the first inequality is due to SrΔ ⊆ Sκ for any κ ≤ rΔ, the second
inequality is the union bound, and the fourth follows from (12) and (13). We
recall that ε and n−α are both negligible in n. Thus, there exists i∗ (that satisfies
(15)) by an averaging argument. �

The intuition for MA
. Lemma 5 states that there exist some i∗ and j∗ condi-

tioned on which A inverts the iterate with non-negligible probability. If we knew
which i∗ and j∗, then we simply replace y(j∗−1)Δ+i∗ with f(Un), simulate the
iterate for the rest iterations and invoke A to invert f . Although the distribution
after the replacement will not be identical to the original one, we use Lemma 1
to argue that the Rényi entropy deficiency is small enough and thus the invert-
ing probability will not blow up by more than a polynomial factor. However, we
actually do not know the values of i∗ and j∗, so we need to randomly sample i
and j over [Δ], [r] respectively. This yields MA as defined in Algorithm 1.

Algorithm 1. MA

Input: y ∈ {0, 1}n
Sample j

$←− [r], i
$←− [Δ], hrΔ−1 $←− HrΔ−1;

Let ỹ(j−1)Δ+i := y ;
FOR k = (j − 1)Δ + i+ 1 TO (j − 1)Δ+Δ

Compute x̃k := hk−1(ỹk−1), ỹk := f(x̃k);
x̃(j−1)Δ+1 ← A(ỹjΔ,hrΔ−1);
FOR k = (j − 1)Δ + 1 TO (j − 1)Δ+ i− 1

Compute ỹk := f(x̃k), x̃k+1 := hk(ỹk) ;

Output: x̃(j−1)Δ+i

Lemma 6 (MA inverts f). For any n ∈ N, let A be as assumed in Lemma 5
and let MA be as defined in Algorithm 1. Then, it holds that

Pr
y←f(Un);j

$←−[r];i
$←−[Δ];hrΔ−1

$←−HrΔ−1

[MA(y; j, i, hrΔ−1) ∈ f−1(y)] ≥ ε2A
29 · n3cr2Δ4

.

Proof. We know by Lemma 5 that there exist j∗ ∈ [r] and i∗ ∈ [Δ] satisfying
(15), which implies

Pr[MA(Y(j−1)Δ+i; j, i,H
rΔ−1) ∈ f−1(Y(j−1)Δ+i) | (j, i) = (j∗, i∗)

∧ E(j−1)Δ+i ∧ S(j−1)Δ+i ]

≥ Pr[ A(Yj∗·Δ, HrΔ−1) = X1+(j∗−1)Δ | E(j∗−1)Δ+i∗ ∧ S(j∗−1)Δ+i∗ ]

≥ Pr[ A(Yj∗·Δ, HrΔ−1) = X1+(j∗−1)Δ ∧ E(j∗−1)Δ+i∗ ∧ S(j∗−1)Δ+i∗ ]

≥ εA/2Δ ,

where the second inequality, in abstract form, is Pr[Ea|Eb] ≥ Pr[Ea|Eb] · Pr[Eb] =
Pr[Ea∧Eb]. The above is not exactly what we need as conditioned on E(j∗−1)Δ+i∗ ∧
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S(j∗−1)Δ+i∗ , the randomvariable (Y(j∗−1)Δ+i∗ ,H
rΔ−1) is not uniformoverYmax×

HrΔ−1. However, we show below that it has nearly full Rényi entropy over Ymax×
HrΔ−1, i.e.,

CP( (Y(j∗−1)Δ+i∗ ,H
rΔ−1) | E(j∗−1)Δ+i∗ ∧ S(j∗−1)Δ+i∗ )

=
CP( (Y(j∗−1)Δ+i∗ ,H

rΔ−1) ∧ E(j∗−1)Δ+i∗ ∧ S(j∗−1)Δ+i∗)

Pr[E(j∗−1)Δ+i∗ ∧ S(j∗−1)Δ+i∗ ]2

≤ CP( Y(j∗−1)Δ+i∗ ∧ E(j∗−1)Δ+i∗ ∧ S(j∗−1)Δ+i∗ | HrΔ−1)

(n−2c/4) · |H|rΔ−1

≤ rΔ·2max−n+1

(n−2c/4) · |H|rΔ−1
=

8rΔ · n2c

2n−max · |H|rΔ−1
,

where the first equality follows from Fact 1 (see Appendix A) and the two in-
equalities are by (12) and (14) respectively. Taking a negative logarithm, we
get H2( (Y(j∗−1)Δ+i∗ ,H

rΔ−1) | E(j∗−1)Δ+i∗ ∧S(j∗−1)Δ+i∗ ) ≥ (n−max+(rΔ−
1) log |H|+1)− e, where entropy deficiency e ≤ 2c · logn+log r+logΔ+4. This
is due to that the uniform distribution over Ymax ×HrΔ−1 has full entropy

H2( (UYmax ,H
rΔ−1) ) ≤ log(

1

2−n+max−1
· |H|rΔ−1)

= n−max+(rΔ− 1) log |H|+ 1 .

To apply Lemma 1, letW=Ymax×HrΔ−1,Z = ∅, letW be (Y(j∗−1)Δ+i∗ ,H
rΔ−1)

conditioned on E(j∗−1)Δ+i∗ and S(j∗−1)Δ+i∗ , and define

Adv(y,hrΔ−1)
def
=

{
1, if MA(y; j∗, i∗, hrΔ−1) ∈ f−1(y)
0, if MA(y; j∗, i∗, hrΔ−1) /∈ f−1(y)

Let Cj∗i∗ max denote the event that (j, i) = (j∗, i∗) ∧ f(Un) ∈ Ymax, and we thus
have

Pr[MA(f(Un); j, i, HrΔ−1) ∈ f−1(f(Un)) ]

≥ Pr[Cj∗i∗ max]·Pr[MA(f(Un); j, i, HrΔ−1) ∈ f−1(f(Un)) | Cj∗i∗ max ]

≥ (1/rΔnc)·E[ Adv(UYmax ,H
rΔ−1) ]/2

≥ (1/rΔnc)·E[ Adv(Y(j∗−1)Δ+i∗ ,H
rΔ−1) | E(j∗−1)Δ+i∗ ∧ S(j∗−1)Δ+i∗ ]2

2e+3

≥ (1/rΔnc)· ε2A/4Δ
2

27 · n2cr ·Δ =
ε2A

29 · n3c·r2 ·Δ4
,

where the second inequality is due to Claim 2 (i.e., conditioned on f(Un) ∈
Ymax random variable f(Un) can be loosely regarded as UYmax), and the third
inequality follows from Lemma 1. �

4.2 The Derandomized Version: A PRG with Seed Length
O(n · logn)

The derandomized version uses a bounded-space generator to expand an O(n ·
logn)-bit u into a long string over HrΔ−1 (rather than sampling a random ele-
ment over it).
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Theorem 5 (the derandomized version). For n, k ∈ N, let f , c, H, Hc, f
k,

α = α(n), Δ = Δ(n) and r = r(n) be as assumed in Theorem 4, let g be as
defined in (9), let

BSG : {0, 1}q(n)∈O(n·logn) → {0, 1}(α·n2c+1−1)·log |H|

be a bounded-space generator that 2−2n-fools every (2n + 1, α·n2c+1 , log |H|)-
LBP (see Footnote 7). Then, the function g′ : {0, 1}n×{0, 1}q×Hc→{0, 1}2n×
{0, 1}q ×Hc defined as

g′(x1, u, hc) = g(x1, BSG(u), hc) (16)

is a pseudorandom generator.

Similar to the randomized version, it suffices to show Lemma 7 (the counter-
part of Lemma 4).

Lemma 7. For the same assumptions as stated in Lemma 4, we have that for
every j ∈ [r], and for every PPT A′ of running time T (n) − nO(1) (for some
universal constant O(1)) it holds that

Pr
x1

$←−{0,1}n, u
$←−{0,1}q

[ A′(y′j·Δ, u) = x′
1+(j−1)Δ ] ∈ O( n3c/2 ·r ·Δ2 ·√ε ) , (17)

where h′rΔ−1 := BSG(u), y′k = fk(x1,h
′rΔ−1) and x′

k+1 = h′
k(y

′
k) for k ∈ N.

The proof of Lemma 7 follows the steps of that of Lemma 4. We define events
S ′
k and E ′

k in Definition 8 (the analogues of Sk and Ek). Although the events
(e.g., E ′

1,. . ., E ′
k) are not independent due to short of randomness, we still have

(18), (19) and (20) below. We defer their proofs to Appendix A, where for every
inequality we define an LBP and argue that the advantage of the LBP onHrΔ−1

and BSG(Uq) is bounded by 2−2n and thus (18), (19) and (20) follow from their
respective counterparts (12), (13) and (14) by adding an additive term 2−2n.

Definition 8 (events S ′
k and E ′

k). For any n ∈ N and any k ≤ rΔ, define
events

S ′
k

def
=

(
(
X1, Uq

) ∈ {
(x1, u) : ∀t ∈ [k] satisfies f t(x1, BSG(u)) ∈ Y[max]

}
)

E ′
k

def
=

(

(X1, Uq) ∈
{
(x1, u) : y

′
k ∈ Ymax , where y′k = fk(x1, BSG(u))

}
)

where (X1, Uq) is uniformdistributionover{0, 1}n×{0, 1}q.Werefer toDefinition 9
inAppendix B for the definitions of the collision probabilities in the following proofs.

∀k ∈ [rΔ] : Pr[S ′
k]≥1−kε−2−2n , Pr[E ′

k]≥n−c−2−2n, Pr[E ′
k∧S ′

k] ≥ n−c/2 (18)

∀k ∈ [(r − 1)Δ] : Pr[E ′
k+1 ∨ E ′

k+2 ∨ . . . ∨ E ′
k+Δ] ≥ 1− n−α − 2−2n (19)
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∀k ∈ [rΔ] : CP( Y ′
k ∧ E ′

k ∧ S ′
k | Uq) ≤ (rΔ + 1)·2max−n+1 (20)

where Y ′
k = fk(X1, BSG(Uq)).

Proof sketch of Lemma 7 . Assume towards a contradiction that for some
non-negligible εA′ = εA′(n) that

∃j∗ ∈ [r], ∃ PPT A′ : Pr[ A′(Y ′
j∗·Δ, Uq) = X ′

1+(j∗−1)Δ ] ≥ εA′ , (21)

where for k ∈ [rΔ] we use notations H ′rΔ−1 = BSG(Uq), Y
′
k = fk(X1,H

′rΔ−1)

and X ′
k+1 = H ′

k(Y
′
k). Then, we define M

A′
that inverts f with the following prob-

ability. Since MA′
is quite similar to its analogue MA we state it as Algorithm 2

in Appendix B.

Pr
y←f(Un); j

$←−[r]; i
$←−[Δ]; u

$←−{0,1}q

[ MA′
(y; j, i, u) ∈ f−1(y) ] ∈ Ω(

ε2A′

n3c·r2 ·Δ4
) ,

(22)
which is a contradiction to the one-way-ness of f and thus concludes Lemma 7.

Proof sketch of (22). Denote by C′ the event A′(Y ′
j∗·Δ, Uq) = X ′

1+(j∗−1)Δ.
Then,

Δ∑

i=1

Pr[C′ ∧ E ′
(j∗−1)Δ+i ∧ S ′

(j∗−1)Δ+i] ≥
Δ∑

i=1

Pr[C′ ∧ E ′
(j∗−1)Δ+i ∧ S ′

rΔ]

≥ Pr[ C′ ∧ S ′
rΔ ∧ ( Δ∨

i=1

E ′
(j∗−1)Δ+i

)
]

≥ Pr[ C′] − Pr[ ¬S ′
rΔ] − Pr[¬(

Δ∨

i=1

E ′
(j∗−1)Δ+i

)
]

≥ εA′ − rΔ · ε − n−α − 2−2n+1 ≥ εA′/2 ,

where the first three inequalities are similar to analogues in the proof of Lemma 5
and the fourth inequality is due to (18) and (19). Thus, by averaging we have
that there exist ∃j∗ ∈ [r] and ∃i∗ ∈ [Δ] such that

Pr[ A′(Y ′
j∗·Δ, Uq) = X ′

1+(j∗−1)Δ ∧ E ′
(j∗−1)Δ+i∗ ∧ S ′

(j∗−1)Δ+i∗ ] ≥ εA′/2Δ.

The proofs below follow the steps of Lemma 6. We have that (proof of (23) given
in Appendix A)

H2( (Y
′
(j∗−1)Δ+i∗ , Uq ) | E ′

(j∗−1)Δ+i∗ ∧ S ′
(j∗−1)Δ+i∗ ) ≥ H2( UYmax , Uq ) − e ,

(23)
where entropy deficiency e≤2c · logn + log r + logΔ + 5. Finally, let W =
Ymax × {0, 1}q, Z = ∅, let W be (Y ′

(j∗−1)Δ+i∗ , Uq) conditioned on E ′
(j∗−1)Δ+i∗

and S ′
(j∗−1)Δ+i∗ , and define

Adv(y, u)
def
=

{
1, if MA′

(y; j∗, i∗, u) ∈ f−1(y)

0, if MA′
(y; j∗, i∗, u) /∈ f−1(y)
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Let Cj∗i∗ max denote the event that (j, i) = (j∗, i∗) ∧ f(Un) ∈ Ymax, and we thus
have

Pr[MA′
(f(Un); j, i, Uq ) ∈ f−1(f(Un)) ]

≥ Pr[Cj∗i∗ max]·Pr[MA′
(f(Un); j, i, Uq ) ∈ f−1(f(Un)) | Cj∗i∗ max ]

≥ (1/rΔnc)·E[ Adv(UYmax , Uq) ]/2

≥ (1/rΔnc)·
E[ Adv(Y ′

(j∗−1)Δ+i∗ , Uq) | E ′
(j∗−1)Δ+i∗ ∧ S ′

(j∗−1)Δ+i∗ ]2

2e+3

≥ (1/rΔnc)·
Pr[ A′(Y ′

j∗·Δ, Uq) = X ′
1+(j∗−1)Δ ∧ E ′

(j∗−1)Δ+i∗ ∧ S ′
(j∗−1)Δ+i∗ ]2

2e+3

≥ (1/rΔnc)· ε2A′/4Δ2

28 · n2cr ·Δ =
ε2A′

210 · n3c·r2 ·Δ4
.

where the inequalities follow the same order as their analogues in the proof of
Lemma 6.
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A Proofs Omitted

Fact 1. For any k ∈ [rΔ], we have

CP( (Yk,H
rΔ−1) | Ek ∧ Sk ) =

CP( (Yk,H
rΔ−1) ∧ Ek ∧ Sk )

Pr[Ek ∧ Sk]2

=
CP( Yk ∧ Ek ∧ Sk | HrΔ−1)

Pr[Ek ∧ Sk]2 · |H|rΔ−1

Proof of Fact 1. We first have that

CP( (Yk,H
rΔ−1) | Ek ∧ Sk ) · Pr[Ek ∧ Sk]

2

= Pr[Ek ∧ Sk]
2 ·

∑

(y,hrΔ−1)

Pr[ (Yk,H
rΔ−1) = (y,hrΔ−1) | Ek ∧ Sk ]2

=
∑

(y,hrΔ−1)

(
Pr[ (Yk,H

rΔ−1) = (y,hrΔ−1) | Ek ∧ Sk ] · Pr[Ek ∧ Sk]
)2

=
∑

(y,hrΔ−1)

Pr[ (Yk,H
rΔ−1) = (y,hrΔ−1) ∧ Ek ∧ Sk ]2

= CP( (Yk,H
rΔ−1) ∧ Ek ∧ Sk ) ,

and complete the proof by the following

CP( Yk ∧ Ek ∧ Sk | HrΔ−1 )

|H|rΔ−1

=

∑
hrΔ−1 Pr[HrΔ−1 = hrΔ−1] ·∑y Pr[Yk = y ∧ Ek ∧ Sk|HrΔ−1 = hrΔ−1 ]2

|H|rΔ−1

=
∑

(y,hrΔ−1)

(
Pr[HrΔ−1 = hrΔ−1] · Pr[Yk = y ∧ Ek ∧ Sk|HrΔ−1 = hrΔ−1 ]

)2

=
∑

(y,hrΔ−1)

Pr[(Yk, H
rΔ−1) = (y,hrΔ−1) ∧ Ek ∧ Sk ]2

= CP( (Yk,H
rΔ−1) ∧ Ek ∧ Sk ) .

�

Claim 2. E[ Adv(f(Un),H
rΔ−1) |f(Un) ∈ Ymax ] ≥ E[ Adv(UYmax ,H

rΔ−1) ]/2.

Proof of Claim 2. We recall that f(Un) is independent of H
rΔ−1.

E[ Adv(f(Un),H
rΔ−1) |f(Un) ∈ Ymax ]

=
∑

(y,hrΔ−1)

Pr[HrΔ−1 = hrΔ−1] · Pr[f(Un) = y|f(Un) ∈ Ymax] · Adv(y,hrΔ−1)

≥ 1

2

∑

(y,hrΔ−1)∈Ymax×HrΔ−1

Pr[HrΔ−1 = hrΔ−1] · 1

|Ymax| · Adv(y,h
rΔ−1)

= E[ Adv(UYmax ,H
rΔ−1) ]/2 ,
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where the inequality is due to for any y ∈ Ymax it holds that

Pr[f(Un) = y | f(Un) ∈ Ymax] =
Pr[f(Un) = y]

∑
y∗∈Ymax

Pr[f(Un) = y∗]

=
1

∑
y∗∈Ymax

Pr[f(Un)=y∗]
Pr[f(Un)=y]

≥ 1

2|Ymax| .

�
Proof of (18). For any k ≤ rΔ, we will define a (n + 1, rΔ, log |H|)-LBP M1

that on input x1 (at the source node) and hrΔ−1 (hi ∈ H at each ith layer),
outputs 1 iff every t ∈ [k] satisfies yt ∈ Y[max]. The BSG 2−2n-fools M1, i.e., for
any x1 ∈ {0, 1}n

| Pr[M1(x1,H
rΔ−1) = 1] − Pr[M1(x1, BSG(Uq)) = 1] |

= |Pr[Sk | X1 = x1]− Pr[S ′
k | X1 = x1]| ≤ 2−2n

and thus
Pr[S ′

k] ≥ Pr[Sk]− 2−2n ≥ 1− kε− 2−2n .

The bounded-space computation of M1 is as follows: the source node input is
(y1 ∈ {0, 1}n, tag1 ∈ {0, 1}), where y1 = f(x1) and tag1 = 1 iff y1 ∈ Y[max]

(or 0 otherwise). At each ith layer up to i = k, it computes xi := hi−1(yi−1),
yi := f(xi) and sets tagi := 1 iff tagi−1 = 1 and yi ∈ Y[max] (tagi := 0 otherwise).
Finally, M1 produces tagk as the final output.

Similarly, we define another (n + 1, rΔ, log |H|)-LBP M2 that on input
(x1,h

rΔ−1), outputs 1 iff yk ∈ Ymax, and thus

Pr[E ′
k] ≥ Pr[Ek]− 2−2n ≥ n−c − 2−2n .

The computation of M2 is simply to compute xi := hi−1(yi−1) and yi := f(xi)
at each ith iteration and to output 1 iff yk ∈ Ymax. It follows that

Pr[E ′
k ∧ S ′

k] ≥ Pr[E ′
k] − Pr[¬S ′

k] ≥ n−c − 2−2n − (kε + 2−2n) ≥ n−c/2 .

�
Proof of (19). For any k ∈ [(r − 1)Δ], consider the following (n+1, rΔ, log |H|)-
LBP M3: on source node input y1 = f(x1) and layered input vector hrΔ−1, it
computes xi := hi−1(yi−1), yi := f(xi) at each ith layer. For iterations numbered
by (k + 1)≤i ≤ (k +Δ), it additionally sets tagi = 1 iff either tagi−1 = 1 or
yi ∈ Ymax, where tagk is initialized to 0. Finally, M3 outputs tagk+Δ. By the
bounded space generator we have

| Pr[M3(X1,H
rΔ−1) = 1] − Pr[M3(X1, BSG(Uq)) = 1] |

= |Pr[
k+Δ∨

i=k+1

Ei ]− Pr[

k+Δ∨

i=k+1

E ′
i ] | ≤ 2−2n ,
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and thus by (13)

Pr[
k+Δ∨

i=k+1

E ′
i ] ≥ Pr[

k+Δ∨

i=k+1

Ei ] − 2−2n ≥ 1− n−α − 2−2n .

�

Proof of (20). For any k ∈ [rΔ], consider the following (2n + 1, rΔ, log |H|)-
LBP M4: on source node input (y1 = f(x1),y

′
1 = f(x′

1),tag1 ∈ {0, 1}), where
tag1 = 1 iff both y1, y

′
1 ∈ Y[max]. For 1≤i ≤ k, at each ith layer M4 computes

yi := f(hi−1(yi−1)), y
′
i := f(hi−1(y

′
i−1)) and sets tagi = 1 iff tagi−1 = 1 ∧ yi ∈

Y[max] ∧ y′i ∈ Y[max]. Finally, at the (k + 1)
th

layer M4 outputs 1 iff yk = y′k ∈
Ymax (in respect for event Ek/E ′

k) and tagk = 1 (in honor of Sk/S ′
k). Imagine

running two iterates with random x1, x
′
1 and seeded by a common hash function

from distribution either HrΔ−1 or BSG(Uq), we have

CP(Yk ∧ Ek∧Sk |HrΔ−1 ) = Pr
(x1,x′

1)←U2n, hrΔ−1←HrΔ−1
[M4(x1, x

′
1,h

rΔ−1) = 1]

CP(Y ′
k ∧E ′

k ∧S ′
k|BSG(Uq)) = Pr

(x1,x′
1)←U2n,hrΔ−1←BSG(Uq)

[M4(x1, x
′
1,h

rΔ−1) = 1]

and thus

| CP(Yk ∧ Ek ∧ Sk | HrΔ−1 ) − CP(Y ′
k ∧ E ′

k ∧ S ′
k | BSG(Uq) ) |

≤ E(x1,x′
1)←U2n

[

|Pr[M4(x1, x
′
1,H

rΔ−1) = 1]− Pr[M4(x1, x
′
1, BSG(Uq)) = 1]|

]

≤ 2−2n .

It follows by (14) that

CP(Y ′
k ∧ E ′

k ∧ S ′
k | BSG(Uq) ) ≤ CP(Yk ∧ Ek ∧ Sk | HrΔ−1 ) + 2−2n

≤ (rΔ + 1)·2max−n+1 .

Note that yk, E ′
k and S ′

k depend only on x1 and hrΔ−1, namely, for any hk−1

and any u1, u2∈BSG−1(hk−1),

CP( Y ′
k ∧ E ′

k ∧ S ′
k | Uq = u1 ) = CP( Y ′

k ∧ E ′
k ∧ S ′

k | Uq = u2)

= CP( Y ′
k ∧ E ′

k ∧ S ′
k | BSG(Uq) = hk−1 ) .

Therefore,

CP(Y ′
k ∧ E ′

k ∧ S ′
k|Uq) = CP(Y ′

k ∧ E ′
k ∧ S ′

k | BSG(Uq)) ≤ (rΔ+ 1)·2max−n+1 .

�
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Proof of (23). We have that

CP( (Y ′
(j∗−1)Δ+i∗ , Uq ) | E ′

(j∗−1)Δ+i∗ ∧ S ′
(j∗−1)Δ+i∗ )

=
CP( (Y ′

(j∗−1)Δ+i∗ , Uq ) ∧ E ′
(j∗−1)Δ+i∗ ∧ S ′

(j∗−1)Δ+i∗)

Pr[E ′
(j∗−1)Δ+i∗ ∧ S ′

(j∗−1)Δ+i∗ ]
2

≤ CP( Y(j∗−1)Δ+i∗ ∧ E(j∗−1)Δ+i∗ ∧ S(j∗−1)Δ+i∗ | Uq )
1

(n−2c/4) · 2q

≤ (rΔ + 1)·2max−n+1

(n−2c/4) · 2q ≤ 16rΔ · n2c

2n−max · 2q ,

where the equality is similar to that in Fact 1 (by renaming HrΔ−1 to Uq), and
the two inequalities are due to (18) and (20) respecitvely and thus

H2((Y
′
(j−1)Δ+i∗ , Uq)|E ′

(j−1)Δ+i∗∧S ′
(j−1)Δ+i∗ ) ≥ n−max+q−2c·logn−log rΔ−4 .

The uniform distribution over Ymax × {0, 1}q has entropy

H2( (UYmax , Uq) ) ≤ log(
1

2−n+max−1
· 2q) = n−max+q + 1 ,

and thus the entropy deficiency (i.e., the difference of two entropies above) e ≤
2c logn+ log r + logΔ+ 5. �

Fact 2. For any δ > −1 and any positive integer q, it holds that

(1 + δ)q ≥ 1 + q · δ

Proof. We prove by induction. For q = 1 the equality holds. Suppose that the
above holds for q = k ∈ N, i.e., (1 + δ)k ≥ 1 + k · δ, then for q = k+ 1 we have

(1 + δ)k+1 ≥ (1 + k · δ)(1 + δ) = 1 + (k + 1) · δ + kδ2 ≥ 1 + (k + 1) · δ

which completes the proof. �

B Definitions, Explanations and Remarks

Remark 2 (some intuitions for Sk). Throughout the proofs, we consider the
(inverting, collision, etc.) probabilities conditioned on event Sk, which requires
that during the first k iterations no yi (1≤i ≤ k) hits the negligible fraction.
This might look redundant as Sk occurs with overwhelming probability (by (12)).
However, our proofs crucially rely on the fact that, as stated in (14), the collision
probability of yk conditioned on Sk is almost the same (roughly Õ(2max−n),
omitting poly(n) factors) as the ideal case, i.e., the collision probability of f(Un)
conditioned on f(Un) ∈ Ymax . This would not have been possible if not being
conditioned on Sk even though Ymax+1, . . ., Yn only sum to a negligible function
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negl(n). To see this, consider the following simplified case for k = 1, the collision
probability of y1 is equal to that of f(Un), and thus we have

1

2
·

n∑

i=1

2i−n · Pr[f(Un) ∈ Yi] ≤
(

CP(f(Un)) =

n∑

i=1

∑

y∈Yi

Pr[f(Un) = y]2
)

<

n∑

i=1

2i−n · Pr[f(Un) ∈ Yi] .

Suppose that there is some Yt such that t = max+Ω(n) and Pr[f(Un) ∈ Yt] =
negl(n), then the above collision probability is of the order O(2max−n(n−c +
2Ω(n)negl(n)). By setting negl(n) = n− logn, the collision probability blows up
by a factor of 2Ω(n) than the desired case Õ(2max−n), and thus unable to apply
Lemma 1. In contrast, conditioned on S1 the collision probability is Õ(2max−n).

Definition 9 (Collision probabilities conditioned on S ′
k and E ′

k). In the
derandomized version, we will use the following conditional collision probabili-
ties (that are quite naturally extended from the standard collision probabilities):

CP( Y ′
k ∧ E ′

k ∧ S ′
k | Uq)

def
= Eu←Uq

[
∑

y Pr[f
k(X1,H

′rΔ−1) = y ∧ E ′
k ∧

S ′
k | H ′rΔ−1 = BSG(u)]2

]

, CP( Y ′
k ∧ E ′

k∧S ′
k | BSG(Uq) )

def
= Eh′rΔ−1←BSG(Uq)

[
∑

y Pr[ f
k(X1,H

′rΔ−1) = y ∧ E ′
k ∧ S ′

k | H ′rΔ−1 = h′rΔ−1 ]2
]

,

CP( Y ′
k, Uq | E ′

k∧S ′
k )

def
=

∑

(y,u)

Pr[ fk(X1, BSG(Uq)) = y ∧ Uq = u | E ′
k∧S ′

k ]2 .

Algorithm 2. MA′

Input: y ∈ {0, 1}n

Sample j
$←− [r], i

$←− [Δ], u
$←− {0, 1}q , hrΔ−1 := BSG(u);

Let ỹ(j−1)Δ+i := y ;
FOR k = (j − 1)Δ + i+ 1 TO (j − 1)Δ+Δ

Compute x̃k := hk−1(ỹk−1), ỹk := f(x̃k);
x̃(j−1)Δ+1 ← A′(ỹjΔ, u);
FOR k = (j − 1)Δ + 1 TO (j − 1)Δ+ i− 1

Compute ỹk := f(x̃k), x̃k+1 := hk(ỹk) ;

Output: x̃(j−1)Δ+i

Remark 3 (On weakening the condition of (1).). In fact, our construction only
assumes a weaker condition than (1), i.e., for some constant c ≥ 0 and d =
d(n) ∈ O(log n) it holds that

Pr[ f(Un) ∈ ( Ymax−d ∪ Ymax−d+1 ∪ . . . ∪ Ymax ) ] ≥ n−c . (24)
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We sketch the idea of adapting the proof to the relaxed assumption. By averaging
there exists t ∈ [0, d] such that Ymax−t has weight at least n−c−1. We thus
consider the chance that Yj hits Ymax−t (instead of Ymax as we did in the original
proof), and O(n2c+2 ·ω(logn)) iterations are bound to hit Ymax−t at least once.
Now we adapt the proof of Lemma 6. Ideally, conditioned on f(Un) ∈ Ymax−t the
distribution (f(Un),H

rΔ−1) is uniform over Ymax−t ×HrΔ−1 with full entropy

H2( (UYmax−t ,H
rΔ−1) ) ≤ log(

1

2−n+max−t−1
· |H|rΔ−1)

= n−max+t+ (rΔ − 1) log |H|+ 1 .

However, we actually only have that

H2( (Y(j−1)Δ+i∗ ,H
rΔ−1) | E(j−1)Δ+i∗ ∧ S(j−1)Δ+i∗ )

≥
(

n−max+t+ (rΔ− 1) log |H|+ 1

)

− e ,

where entropy deficiency e ≤ t+O(log n) = O(log n). Then, we apply Lemma 1
and the hard-to-invertness only blows up by a factor of roughly 2e = nO(1) than
the ideal ε (and taking a square root afterwards), which does not kill the iterate.
Therefore, the iterate is hard to invert for every O(n2c+2 · ω(logn)) iterations.
The proof for the derandomized version can be adapted similarly.

C Regular, Weakly-Regular and Arbitrary OWFs

In this section, we discuss the gap between weakly-regular and arbitrary one-
way functions. First, we show that most functions are known-almost-regular and
thus weakly-almost-regular as well (see Remark 1), namely,“if a one-way function
behaves like a random function, then it is known-almost-regular”.More generally,
weakly-regular one-way functions cover a wider range of one-way functions (for
positive c ∈ N) than regular ones. We also (attempt to) characterize functions
that are not captured by the definition of “weakly-regular”. We show that in
order not to fall into weakly-regular functions, the counterexamples should be
somewhat artificial.

Now, we use probabilistic methods to argue that almost-regularity is a rea-
sonable assumption in the average sense. That is, if the one-way function is
considered as randomly drawn from the set of all (not just one-way) functions,
then it is very likely to be almost-regular and thus a PRG can be efficiently
constructed.

Lemma 8 (A random function is known-almost-regular). Let F = {f :
{0, 1}n → {0, 1}m } be the set of all functions mapping n-bit to m-bit strings.
For any 0 < d < n,

– if m ≤ n− d, then it holds that

Pr
f

$←−F
[ SD( f(Un), Um ) ≤ 2−d/4 ] ≥ 1− 2−d/4 ,
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– if m > n− d, then we have

Pr
f

$←−F , x
$←−{0,1}n

[ 1 ≤ |f−1(f(x))| ≤ 22d+1 ] ≥ 1− 2−d .

Typically, we can set d ∈ ω(logn) so that f will be almost regular except for a
negligible fraction. Note that the first bullet gives even stronger guarantee than
the second one does.

Proof of Lemma 8. We see F as a family of universal hash functions and let F
be a uniform distribution over F . For m ≤ n− d we have by the leftover hash
lemma that

E
f

$←−F
[ SD( f(Un) , Um ) ] = SD( F (Un) , Um | F ) ≤ 2−

d
2 .

It follows by a Markov inequality that the above statistical distance is bounded
by 2−d/2 · 2d/4 except for a 2−d/4-fraction of f . We proceed to the case for
m > n− d to get

CP( F (Un) | F ) ≤ CP(Un) + max
x1 �=x2

{ Pr[F (x1) = F (x2)] } = 2−n + 2−m

≤ 2−n+d+1

We define S def
= {(y, f) : |f−1(y)| > 22d+1} to yield

2−n+d+1 ≥ CP(F (Un)|F ) =
∑

f

Pr[F = f ]
∑

y

Pr[f(Un) = y]2

≥ 2−n+2d+1 ·
∑

f

Pr[F = f ]
∑

y:(y,f)∈S
Pr[f(Un) = y]

= 2−n+2d+1 · Pr[(F (Un), F ) ∈ S] ,

and thus Pr[(F (Un), F ) ∈ S] ≤ 2−d. This completes the proof. Note that
|f−1(y)| ≥ 1 for any y = f(x). �

Beyond regular functions. We cannot rule out the possibility that the one-
way function in consideration is far from regular, namely (using the language
of Definition 4), an arbitrary one-way function can have non-empty sets Yi, . . .,
Yi+O(n). Below we argue that Definition 4 is quite generic and any function
that fails to satisfy it should be somewhat artificial. As a first attempt, one
may argue that if we skip all those Y ′

js (in the descending order of j) that

sum to negligible, the first one that is non-negligible9 (i.e., not meeting (2)) will
satisfy (1) for at least infinitely many n’s. In other words, an arbitrary one-
way function is weakly-regular (at least for infinitely many n’s). This argument

9 Although non-negligible and noticeable are not the same, they are quite close: a
non-negligible (resp., noticeable) function μ(·) satisfies that there exists constant c
such that μ(n) ≥ n−c for infinitely many (resp., all large enough) n’s.
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is unfortunately problematic as (non-)negligible is a property of a sequence of
probabilities, rather than a single value. However, we will follow this intuition
and provide a remedied analysis below.

Lemma 9 (a necessary condition to be a counterexample). Let f :

{0, 1}n → {0, 1}l(n) be any one-way function and denote Yj
def
= {y : 2j−1 ≤

|f−1(y)| < 2j}, and let κ = κ(n) be the number of non-empty sets Yj (that com-
prise the range of f) for any given n, and write them as Yi1 , Yi2 , . . ., Yiκ with
i1 < i2 < . . . < iκ. For every n0 ∈ N ∪ {0}, it must hold that function μn0(·)
defined as

μn0(n)
def
=

{
Pr[f(Un) ∈ Yiκ−n0

], if κ > n0

0 , if κ ≤ n0
(25)

is negligible. Otherwise (if the above condition is not met), there exists constant
c ≥ 0, max(n) ∈ N and negligible function ε(n) ∈ [0, 1] such that (2) holds (for
all n’s) and (1) holds for infinitely many n’s.

Proof of Lemma 9. If (25) does not hold for every n0 ∈ N ∪ {0}, then there
must exist an n0 such that μ0(·), . . . μn0−1(·) are negligible and μn0(·) is non-
negligible. We then define max(·) as

max(n)
def
=

{
iκ(n)−n0

, if κ(n) > n0

⊥ , if κ(n)≤n0

It is easy to see that Yiκ−n0+1 , . . ., Yiκ sum to a negligible fraction in n (i.e.,
the sum of a finite number of negligible functions μ0(·), . . . μn0−1(·) results into
another negligible function). Denote by N⊥

def
= {n ∈ N ∪ {0} : max(n) = ⊥}.

We have by assumption that for some constant c it holds that μn0(n) ≥ n−c

for infinitely many n ∈ N ∪ {0}, and thus μn0(n) ≥ n−c holds also for infinitely
many n ∈ N ∪ {0} \ N⊥. This is due to μn0(n) = 0 for any n ∈ N⊥. Therefore,
Pr[f(Un) ∈ Ymax] is non-negligible, which completes the proof. �

(25) is a necessary and strong condition. The above lemma formalizes a
necessary condition to constitute a counterexample to Definition 4. It is neces-
sary in the sense that any one-way function that does not satisfy it must satisfy
Definition 4 (for at least infinitely many n’s). Note that the condition is actually
an infinite set of conditions by requiring every μn0(n) (for n0 ∈ N ∪ {0}) being
negligible. At the same time, it holds unconditionally that all these μn0(n) (that
correspond to the weights of all non-empty sets) must sum to unity, i.e., for
every n we have

μ0(n) + μ1(n) + . . .+ μκ(n)−1(n) = 1 .

The above might look mutually exclusive to (25) as if every μn0(n) is negligible
then the above sum should be upper bounded by κ(n)·negl(n) = negl′(n) instead
of being unity. This intuition is not right in general, as by definition a negligi-
ble function only needs to be super-polynomially small for all sufficiently large
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(instead of all) n’s. However, it is reasonable to believe that one-way functions
satisfying (25) should be quite artificial.

(25) is not sufficient. Despite seeming strong, (25) is still not sufficient to
make a counterexample. To show this, we give an example function that satisfies
both (25) (for every n0 ∈ N∪ {0}) and Definition 4. That is, let f be a one-way
function where for every n the non-empty sets of f are

Yn/3,Yn/3+1, . . . ,Yn/2 (26)

with Pr[f(Un) ∈ Yn/3] = 1 − n− log n+1/6, Pr[f(Un) ∈ Yn/3+i] = n− log n for all
1≤i≤n/6 and thus κ(n) = n/6 + 1. It is easy to see that this function satisfies
Definition 4 with max(n) = n/3 and ε(n) = n− logn+1/6. In addition, for every
n0 ∈ N∪ {0} function μn0(·) is negligible as μn0(n) = n− logn for all n > 6n0. In
summary, although an arbitrary one-way function may not be weakly-regular,
the counterexamples must be well crafted to satisfy a somewhat artificial (yet
still insufficient) condition.


	The Randomized Iterate, Revisited - Almost Linear Seed Length PRGs from a Broader Class of One-Way Functions
	1 Introduction
	2 Preliminaries
	2.1 Notations and Definitions
	2.2 Technical Tools

	3 Pseudorandom Generators from Regular One-Way Functions
	3.1 A Technical Lemma
	3.2 The Randomized Iterate

	4 A More General Construction of Pseudorandom Generators
	4.1 The Randomized Version: A PRG with Seed Length
	4.2 The Derandomized Version: A PRG with Seed Length

	References
	A Proofs Omitted
	B Definitions, Explanations and Remarks
	C Regular, Weakly-Regular and Arbitrary OWFs




